
A Missing Proofs from Section 2

In this section, we give the full details of the statements in Section 2. Coreset constructions are
known for a variety of problems, e.g., in computational geometry [FMSW10, FL11, BFL16, LK17,
SW18, BLUZ19, HV20, Fel20], linear algebra [BDM+20], machine learning [MSSW18, BLG+19,
MOB+20]. We first show that coreset construction is adversarially robust by considering the merge
and reduce framework. For example, consider the offline coreset construction through sensitivity
sampling.

Lemma A.1 (Lemma 2.3 in [LK17]) Given ε > 0 and δ ∈ (0, 1), let P be a set of weighted points,
with non-negative weight function µ : P → R≥0 and let s : P → R≥0 denote an upper bound on

the sensitivity of each point. For S =
∑
p∈P µ(p)s(p), let m = Ω

(
S2

ε2

(
d′ + log 1

δ

))
, where d′ is

the pseudo-dimension of the query space. Let C be a sample of m points from P with replacement,
where each point p ∈ P is sampled with probability q(p) = µ(p)s(p)

S and assigned the weight µ(p)
m·q(p)

if sampled. Then C is an ε-coreset of P with probability at least 1− δ.

We first observe that any streaming algorithm that uses linear memory is adversarially robust because
intuitively, it can recompute an exact or approximate solution at each step.

Lemma A.2 Given a set of points P , there exists an offline adversarially robust construction that
outputs an ε-coreset of P with probability at least 1− δ.

Proof : Given an adversary A, let P = p1, . . . , pn be a set of points such that each pi with i ∈ [n] is
generated byA, possibly as a function of p1, . . . , pi−1. For example, it may be possible that the points
p1, . . . , pn/2 are a coreset of some set of points P1 and the points pn/2+1, . . . , pn (1) were either
generated with full knowledge of p1, . . . , pn/2 or (2) are a coreset of a set of points P2 generated
with full knowledge of P1. Let s(p) be an upper bound on the sensitivity of each point in P and
consider the sensitivity sampling procedure described in Lemma A.1. We would like to sample each
point with probability q(p). Each point in C is chosen to be p with probability q(p). However, if
our algorithm generates internal randomness to perform this sampling procedure, it may be possible
for an adversary to either learn correlations with the internal randomness or even learn the internal
randomness entirely (such as the seed of a pseudorandom generator). Thus the choice for each point
of C may no longer be independent, so we are no longer guaranteed that the resulting construction is
a coreset.

Instead, suppose the randomness used by the algorithm at time i in the sampling procedure is
independent of the choices of p1, . . . , pi−1, e.g., the algorithm has access to a source of fresh public
randomness at each time in the data stream. Then the algorithm can generate C independent of the
choices of p1, . . . , pi−1. Thus by Lemma A.1, C is an ε-coreset of P with probability at least 1− δ.
2

We emphasize that Lemma A.2 shows that any offline coreset construction is adversarially robust; the
example of sensitivity sampling is specifically catered to our applications of the merge and reduce
framework to clustering.

We now prove our main statement.

Proof of Theorem 1.1: Let δ = 1
poly(n) and consider an ε-coreset construction with failure proba-

bility δ. We prove that the merge and reduce framework gives an adversarially robust construction
for an ε-coreset with probability at least 1− 2nδ. We consider a proof by induction on an input set
P of n points, supposing that n = 2k for some integer k > 0. Observe that C0,j is a coreset of pj
for j ∈ [n] since C0,j = pj . Let Ei be the event that for a fixed i ∈ [k] that Ci−1,j is an ε

2k -coreset
of Ci−1,2j−1 and Ci−1,2j for each j ∈

[
n

2i−1

]
. By Lemma A.2, it holds that for a fixed j, Ci,j is an

ε
2k -coreset of Ci−1,2j−1 and Ci−1,2j with probability at least 1 − δ. By a union bound over n

2i−1

possible indices j, we have that for a fixed i, all Ci,j are ε
2k -coresets of Ci−1,2j−1 and Ci−1,2j with

probability at least 1− n
2i−1 · δ. Thus, Pr [Ei+1] ≥ 1− nδ

2i−1 , which completes the induction. Hence

with Pr
[
∪ki=0Ei

]
, we have that the cost induced by Ck,1 is a

(
1 + ε

2k

)k
-approximation to the cost

induced by P . Since
(
1 + ε

2k

)k ≤ eε/2 ≤ 1 + ε, then Ck,1 is an ε-coreset of P with probability

15

Pr
[
∪ki=0Ei

]
. By a union bound, we have that Pr

[
∪ki=0Ei

]
≥ 1−

∑k
i=0 (1−Pr [Ei+1]) ≥ 1−2nδ.

2

B Missing Proofs from Section 3

Theorem B.1 (Freedman’s inequality) [Fre75] Suppose Y0, Y1, . . . , Yn is a scalar martingale with
difference sequence X1, . . . , Xn. Specifically, we initiate Y0 = 0 and set Yi = Yi−1 + Xi for all
i ∈ [n[Let R ≥ |Xt| for all t ∈ [n] with high probability. We define the predictable quadratic
variation process of the martingale by wk :=

∑k
t=1 E

t−1

[
X2
t

]
, for k ∈ [n]. Then for all ε ≥ 0 and

σ2 > 0, and every k ∈ [n],

Pr

[
max
t∈[k]
|Yt| > ε and wk ≤ σ2

]
≤ 2 exp

(
− ε2/2

σ2 +Rε/3

)
.

We first show robustness of our algorithm by justifying correctness of approximation for Lp norms.

Lemma B.2 (Lp subspace embedding) Suppose ε > 1
n , p ∈ {1, 2}, and C > κp, where κ is an

upper bound on the condition number of the stream. Then Algorithm 1 returns a matrix M such that
for all x ∈ Rd,

| ‖Mx‖p − ‖Ax‖p | ≤ ε ‖Ax‖p ,
with high probability.

Proof : Consider an arbitrary x ∈ Rd and suppose ε ∈ (0, 1/2) with ε > 1
n . We claim through

induction the stronger statement that |‖Mjx‖pp − ‖Ajx‖pp| ≤ ε‖Ajx‖pp for all times j ∈ [n] with
high probability. Here Mj is the matrix consisting of the rows of the input matrix A that have already
been sampled at time j and Aj = a1 ◦ . . . ◦ aj . Note that either a1 is the zero vector or p1 = 1,
so that either way, we have M1 = A1 for our base case. We assume the statement holds for all
j ∈ [n − 1] and prove it must hold for j = n. We implicitly define a martingale Y0, Y1, . . . , Yn
through the difference sequenceX1, . . . , Xn, where for j ≥ 1, we setXj = 0 if Yj−1 > ε‖Aj−1x‖pp
and otherwise if Yj−1 ≤ ε‖Aj−1x‖pp, we set

Xj =

{(
1
pj
− 1
)
|a>j x|p if aj is sampled in M

−|a>j x|p otherwise.
(1)

Since E [Yj |Y1, . . . , Yj−1] = Yj−1, then the sequence Y0, . . . , Yn induced by the differences is
indeed a valid martingale. Furthermore, by the design of the difference sequence, we have that
Yj = ‖Mjx‖pp − ‖Ajx‖pp.

If pj = 1, then aj is sampled in Mj , so we have that Xj = 0. Otherwise, we have that

E
[
X2
j |Y1, . . . , Yj−1

]
= pj

(
1

pj
− 1

)2

|a>j x|2p + (1− pj)|a>j x|2p ≤
1

pj
|a>j x|2p.

For pj < 1, then we have pj = ατj and thus E
[
X2
j |Y1, . . . , Yj−1

]
≤ 1

ατj
|a>j x|2p. By the definition

of τj and the inductive hypothesis that |‖Mj−1x‖pp − ‖Aj−1x‖pp‖ ≤ ε‖Aj−1x‖pp < 1
2‖Aj−1x‖pp,

then we have

τj ≥
2|a>j x|p

‖Mj−1x‖pp + |a>j x|p
≥

|a>j x|p

‖Aj−1x‖pp + |a>j x|p
=
|a>j x|p

‖Ajx‖pp
≥
|a>j x|p

‖Ax‖pp
.

Thus,
∑n
j=1 E

[
X2
j |Y1, . . . , Yj−1

]
≤
∑n
j=1

‖Ax‖pp·|a
>
j x|p

α ≤ ‖Ax‖2pp
α .

Moreover, we have that |Xj | ≤ 1
pj
|a>j x|p. For pj = 1, we have 1

pj
|a>j x|p ≤ ‖Ajx‖pp ≤ ‖Ax‖pp.

For pj < 1, we have pj = ατj < 1. Again by the definition of τj and by the inductive hypothesis
that |‖Mj−1x‖pp − ‖Aj−1x‖pp‖ ≤ ε‖Aj−1x‖pp < 1

2‖Aj−1x‖pp, we have that

|〈aj ,x〉|p

2‖Ajx‖pp
≤ |〈aj ,x〉|p

|Mj−1x|pp + |〈aj ,x〉|p
≤ τj .

16

Hence for α = Cd
ε2 log n, it follows that

|Xj | ≤
1

pj
|a>j x|p ≤

2

α
‖Ajx‖pp ≤

2ε2

Cd log n
‖Ajx‖pp ≤

2ε2

Cd log n
‖Ax‖pp.

We would like to apply Freedman’s inequality (Theorem B.1) with σ2 =
‖Ax‖2pp

α for α =

O
(
d
ε2 log n

)
and R ≤ 2ε2

d logn‖Ax‖pp, as in [BDM+20]. However, in the adversarial setting we
won’t be able bound the probability that |Yn| exceeds ε‖Ax|pp using Freedman’s inequality as the
latter is a random variable. Thus we instead assume that κ1, κ2 are constants so that for p = 1, we
have κ1 and κ2 are lower and upper bounds on ‖A‖1 and for p = 2, we have that κ1 and κ2 are lower
and upper bounds on the singular values of A. We are now ready to apply Freedman’s inequality

with σ2 ≤ κ2p
2 ‖x‖

2p
p

α for α = O
(
d
ε2 log n

)
and R ≤ 2ε2

d lognκ
p
2‖x‖pp. By Freedman’s inequality, we

have that

Pr
[
|Yn| > εκp1‖x‖pp

]
≤ 2 exp

(
−

κ2p1 ε
2‖x‖2pp /2

σ2 +Rκp1ε‖x‖
p
p/3

)
≤ 2 exp

(
−3Cdκ2p1 log n/2

6κ2p2 + 2κp1κ
p
2

)
≤ 1

2d poly(n)
,

for sufficiently large C > (κ1/κ2)p. Note for p = 2, we have the upper bound on the condition
number κ ≥ κ1/κ2 so it suffices to set C = κ2. Since κp1‖x‖pp ≤ ‖Ax‖pp, then we have

Pr
[
|Yn| > ε‖Ax‖pp

]
≤ Pr

[
|Yn| > εκp1‖x‖pp

]
.

Thus | ‖Mx‖pp−‖Ax‖pp | ≤ ε ‖Ax‖pp with probability at least 1− 1
2d poly(n)

. By a rescaling of ε since
p ≤ 2, we thus have that | ‖Mx‖p − ‖Ax‖p | ≤ ε ‖Ax‖p with probability at least 1− 1

2d poly(n)
.

We now show that we can union bound over an ε-net. We first define the unit ball B = {Ay ∈
Rn | ‖Ay‖p = 1}. We also define N to be a greedily constructed ε-net of B. Since balls of radius ε

2

around each point cannot overlap, but must all fit into a ball of radius 1+ ε
2 , then it follows thatN has at

most
(
3
ε

)d
points. Therefore, by a union bound for 1

ε < n, we have | ‖My‖p −‖Ay‖p | ≤ ε ‖Ay‖p
for all Ay ∈ N , with probability at least 1− 1

poly(n) .

We now argue that accuracy on this ε-net implies accuracy everywhere. Indeed, consider any vector
z ∈ Rd normalized to ‖Az‖p = 1. We shall inductively define a sequence Ay1,Ay2, . . . such that∥∥∥Az−

∑i
j=1 Ayj

∥∥∥
p
≤ εi and there exists some constant γi ≤ εi−1 with 1

γi
Ayi ∈ N for all i.

Define our base point Ay1 to be the closest point to Az in the ε-net N . Then since N is a greedily
constructed ε-net, we have that ‖Az−Ay1‖p ≤ ε. Given a sequence Ay1, . . . ,Ayi−1 such that

γi :=
∥∥∥Az−

∑i−1
j=1 Ayj

∥∥∥
p
≤ εi−1, note that 1

γi

∥∥∥Az−
∑i−1
j=1 Ayj

∥∥∥
p

= 1. Thus we inductively

define the point Ayi ∈ N so that Ayi is within distance ε of Az−
∑i−1
j=1 Ayj . Therefore,

| ‖Mz‖p − ‖Az‖p | ≤
∞∑
i=1

| ‖Myi‖p − ‖Ayi‖p | ≤
∞∑
i=1

εi ‖Ayi‖p = O (ε) ‖Az‖p ,

which completes the induction for time n. 2

B.1 Adversarially Robust Spectral Approximation

We observe that Lemma B.2 provides adversarial robustness for free.

Lemma B.3 (Adversarially robust spectral approximation) Algorithm 1 is adversarially robust.

Proof : Let us inspect the proof of Lemma B.2. Observe that since the adversary can observe the
past data and the past randomness of Algorithm 1, then the rows ai are random variables that depend
on the history and the randomness of the algorithm. In other words, ai is measurable with respect
to the sigma algebra generated by a1, . . . ,ai−1, B1, . . . , Bi−1, Ci where Bi is the indicator of the
event that we sample row ai in Algorithm 1 and Ci is the random vector generated by the adversary
at step i to create row ai.

17

Denote Fi the sigma algebra generated by a1, . . . , ai−1, B1, . . . Bi−1, Ci. Then ai is measurable
with respect to Fi. Let us remind that Yj = Yj−1 +Xj and let us observe that the definition of Xj in
Equation (1) can be rewritten as

Xj =

((
1

pj
− 1

)
|a>j x|pBj − |a>j x|p(1−Bj)

)
IYj−1<ε. (2)

It can be easily checked that

E [Xj |Fj] =

((
1

pj
− 1

)
|a>j x|ppj − |a>j x|p(1− pj)

)
IYj−1<ε = 0.

This is because Yj−1, pj , aj are measurable with respect to Fj . This implies that in the adversarial
setting sequence Yj is a martingale with respect to the filtration F0 ⊂ F1 ⊂ · · · ⊂ Fn.

The remainder of the proof of Lemma B.2 goes through as is for arbitrary rows ai’s. Thus, the
algorithm is indeed adversarially robust. 2

We note the established upper bounds on the sum of the online Lp sensitvities, e.g., Theorem 2.2
in [CMP16], Lemma 2.2 and Lemma 4.7 in [BDM+20].

Lemma B.4 (Bound on Sum of Online Lp Sensitivities) [CMP16, BDM+20] Let the rows of A =
a1 ◦ . . . ◦ an ∈ Rn×d arrive in a stream with condition number at most κ and let `i be the online Lp
sensitivity of ai. Then

∑n
i=1 `i = O (d log n log κ) for p = 1 and

∑n
i=1 `i = O (d log κ) for p = 2.

We note that κ is an adversarially chosen parameter, since the rows of the input matrix A are generated
by an adversary. One can mitigate possible adversarial space attacks by tracking κ and aborting if
log κ exceeds a desired threshold.

Proof of Lemma 3.7: Algorithm 1 is adversarially robust by Lemma B.3. It remains to analyze the
space complexity of Algorithm 1. By Lemma B.3 and a union bound over the n rows in the stream,
each row ai is sampled with probability at most 4ατi, where τi is the online leverage score of row ai.
By Lemma B.4, we have

∑n
i=1 τi = O (d log κ) and we also set α = O

(
dκ
ε2 log n

)
. Let γ > 0 be a

sufficiently large constant such that
∑n
i=1 ατi ≤

d2γκ log κ
ε2 log n.

We use a martingale argument to bound the number of rows that are sampled. Consider a martingale
U0, U1, . . . , Un with difference sequence W1, . . . ,Wn, where for j ≥ 1, we set Wj = 0 if Uj−1 >
d2γκ log κ

ε2 log n and otherwise if Uj−1 ≤ d2γκ log κ
ε2 log n, we set

Wj =

{
1− pj if aj is sampled in M

−pj otherwise.
(3)

We have E [Uj |U1, . . . , Uj−1] = Uj−1, then the sequence U0, . . . , Un induced by the differences is
indeed a valid martingale. Note that intuitively, Un is the difference between the number of sampled
rows and

∑n
j=1 pj .

Since aj is sampled with probability pj ∈ [0, 1],

E
[
W 2
j |U1, . . . , Uj−1

]
≤

n∑
j=1

pj ≤
n∑
j=1

ατj .

Moreover, we have E [|Wj | |U1, . . . , Uj−1] ≤ 1. Thus by Freedman’s inequality (Theorem B.1) with
σ2 =

∑n
j=1 ατj ≤

d2γκ log κ
ε2 log n and R ≤ 1,

Pr

[
|Un| >

d2γκ log κ

ε2
log n

]
≤ 2 exp

(
− d4γ2κ2 log2 κ log2 n/(2ε4)

σ2 +Rd2γκ log κ log n/(3ε2)

)
≤ 1

poly(n)
.

Hence we have that with high probability, the number of rows sampled is O
(

1
ε2 d

2κ log κ log n
)
. 2

We remark that the space bounds for Lemma 3.7 could similarly be shown (with constant probability
of success) using Markov’s inequality though analysis Freedman’s inequality provides much higher
guarantees in terms of probability of success.

18

On the other hand, it is not clear how to execute a similar strategy using the Matrix Freedman’s
Inequality rather than using Freedman’s inequality. This is because to obtain the desired spectral
bound, we must define a martingale at time j in terms of both the matrix Aj and whether the rows
a1, . . . ,aj−1 were previously sampled. However, since Aj is itself a function of whether a1, . . .aj−1
were previously sampled, the resulting sequence is not a valid martingale.

We first require the following bound on the sum of the online ridge leverage scores, e.g., Theorem 2.12
from [BDM+20], which results from considering Lemma 2.11 in [BDM+20] at O (log n) different
scales.

Lemma B.5 (Bound on Sum of Online Ridge Leverage Scores) [BDM+20] Let the rows of A =

a1 ◦ . . . ◦ an ∈ Rn×d arrive in a stream with condition number at most κ, let λi =
‖Ai−(Ai)(k)‖2F

k ,
where Ai = a1 ◦ . . . ◦ ai and (Ai)(k) is the best rank k approximation to Ai. Let `i be the online
ridge leverage score of ai with regularization λi. Then

∑n
i=1 `i = O (k log n log κ).

From Lemma B.5 and a similar argument to Lemma B.2, we also obtain adversarially robust
projection-cost preservation and therefore low-rank approximation. Namely, [CMM17, BDM+20]
showed that projection-cost preservation essentially reduces to sampling a weighted submatrix M
of A such that ‖Mx‖22 + λ‖x‖22 ∈ (1 ± ε)(‖Ax‖22 + λ‖x‖22) for a ridge parameter λ. Since the
online ridge leverage score of each row ai can be rewritten as maxx∈Rd

〈ai,x〉2+λ‖x‖22
‖Aix‖22+λ‖x‖22

, then the same
concentration argument of Lemma B.2 gives Lemma 3.8.

B.2 Adversarially Robust Linear Regression

We first give the formal definition of linear regression:

Problem B.6 (Linear Regression) Given a matrix A ∈ Rn×d, a vector b ∈ Rn and an ap-
proximation parameter ε > 0, the goal is to output a vector y such that ‖Ay − b‖2 ≤
(1 + ε) minx∈Rn ‖Ax− b‖2.

Lemma B.7 (Adversarially Robust Linear Regression) Given ε > 0 and a matrix A ∈ Rn×d
whose rows a1, . . . ,an arrive sequentially in a stream with condition number at most κ, there exists
an adversarially robust streaming algorithm that outputs a (1 + ε) approximation to linear regression

and uses O
(
d3

ε2 log2 n log κ
)

bits of space, with high probability.

Proof : Suppose each row of A arrives sequentially, along with the corresponding entry in b. Let
B = A ◦ b so that the effectively, the rows of B arrive sequentially. Note that if M is a spectral
approximation to B, then we have

(1− ε) ‖Bv‖2 ≤ ‖Mv‖2 ≤ (1 + ε) ‖Bv‖2

for all vectors v ∈ Rd+1. In particular, let w ∈ Rd+1 be the vector that minimizes ‖Mv‖2 subject to

the constraint that the last coordinate of w is 1, and let w =

[
y
1

]
. Then we have

‖Ay − b‖2 = ‖Bw‖2 ≤
1

1− ε
‖Mw‖2 .

Let z be the vector that minimizes ‖Ax− b‖2 and let u =

[
z
1

]
. Then we have

‖Az− b‖2 = ‖Bu‖2 ≥
1

1 + ε
‖Mu‖2 ≥

1

1 + ε
‖Mw‖2 ,

where the last inequality follows from the minimality of w. Thus we have that ‖Ay − b‖2 ≤
(1 +O (ε)) ‖Az− b‖2. 2

19

C Missing Proofs from Section 4

Other Related Works Note that there is an alternate streaming algorithm for graph sparsification
given in [GKK10] which has the same guarantees but is computationally faster. However, we choose
to analyze the algorithm of [AG09] since its core argument is sampling based. Nevertheless, it is
possible that the algorithm from [GKK10] is also adversarially robust. Lastly, we recall that our
model is the streaming model where edges arrive one at a time. There is also related work in the
dynamic streaming model (see [KNST19] and references therein) where previously shown edges can
be deleted but this is not the scope of our work.

The notion of the connectivity of an edge is needed to in the algorithm of [AG09].

Definition C.1 (Connectivity [BK96]) A graph is k-strong connected iff every cut in the graph has
value at least k. A k-strong connected component is a maximal node-induced subgraph which is
k-strong connected. The connectivity of an edge e is the maximum k such that there exists a k-strong
connected component that contains e.

Algorithm 2 Graph sparsification algorithm from [AG09].
Input: A stream of edges e1, · · · , em and an accuracy parameter ε > 0
Output: Sparified graph H

1: H ← ∅
2: ρ← C(log n+ logm)/ε2 for sufficiently large constant C > 0
3: for each new edge e do
4: compute the connectivity ce of e in H
5: pe = min(ρ/ce, 1) .Importance of edge e, see Definition C.1
6: Add e to H with probability pe and weight 1/pe times its original weight
7: return H

We begin by providing a brief overview of our proof. The first step is to show that for a cut in G
of value c, the same cut in the sparsified graph H has value that concentrates around c. Note that
in [AG09], the concentration inequality they obtain depends roughly on exp(−c). In other words,
they get a stronger concentration for larger cuts in the original graph. However, their concentration
inequality is not valid in our setting since the value c is random. Therefore, we employ a different
concentration inequality, namely Freedman’s inequality (Theorem Theorem B.1) in conjunction with
an assumption about the sizes of cuts in the graph to obtain concentration for a fixed cut. The second
step is to use a standard worst-case union bound strategy to bound the total number of cuts with a
particular size in the original graph. This uses the standard fact that the number of cuts in a graph
that is at most α times the minimum cut is at most n2α. Then the final result for the property (1) in
Problem 4.1 follows by combining the union bound with the previously mentioned concentration
inequality. The bound for the total number of edges (condition (2) in Problem 4.1) is a “worst case”
calculation in [AG09] so it automatically ports over to our setting. Note that we assume κ1 and κ2 to
be deterministic lower and upper bounds on the size of any cut in G and define κ to be their ratio.

Theorem 1.3 Given a weighted graph G = (V,E) with |V | = n whose edges e1, . . . , em arrive
sequentially in a stream, there exists an adversarially robust streaming algorithm that outputs a 1± ε
cut sparsifier with O

(
κ2n logn

ε2

)
edges with probability 1− 1/ poly(n).

Proof : We claim through induction the stronger statement that the value CH of any cut in H
is a (1 + ε)-approximation of the value CG of the corresponding cut in G for all times j ∈ [m]
with high probability. Consider a fixed set S ⊆ V and the corresponding cut C = (S, V \ S). Let
e1, . . . , em be the edges of the stream in the order that they arrive. We emphasize that e1, . . . , em are
possibly random variables given by the adversary rather than fixed edges. For each j ∈ [m], let Gj
be the graph consisting of the edges e1, . . . , ej and let Hj be the corresponding sampled weighted
subgraph. We abuse notation and define pj := pej to denote the probability of sampling the edge ej
that arrives at time j. We use C(j)

G and C(j)
H to denote the value of the cut at time j in graphs G and

H , respectively. Note that p1 = 1, so we have H1 = G1 for our base case.

We assume the statement holds for all j ∈ [m − 1] and prove it must hold for j = m. We define
a martingale Y0, Y1, . . . , Ym through its difference sequence X1, . . . , Xm, where for j ≥ 1, we set

20

Xj = 0 if C(j−1)
H 6∈ (1± ε)C(j−1)

G . Otherwise if (1− ε)C(j−1)
G ≤ C

(j−1)
H ≤ (1 + ε)C

(j−1)
G , then

we set

Xj =

0 if ej does not cross the cut C(

1
pj
− 1
)

if ej crosses the cut and is sampled in H

−1 if ej crosses the cut and is not sampled in H.

(4)

Because E [Yj |Y1, . . . , Yj−1] = Yj−1, then we have that the sequence Y0, . . . , Yn is indeed a valid
martingale and that Yj = C

(j)
H − C

(j)
G . (We abuse notation and use Y1, . . . , Yi to indicate the similar

filtration to the one in Lemma Lemma B.3).

If pj = 1, then ej is sampled in Hj , so we have that Xj = 0. Otherwise,

E
[
X2
j |Y1, . . . , Yj−1

]
= pj

(
1

pj
− 1

)2

+ (1− pj) ≤
1

pj
.

For pj < 1, then we have pj = ρ/cej and thus E
[
X2
j |Y1, . . . , Yj−1

]
≤ cej

ρ . Thus,∑n
j=1 E

[
X2
j |Y1, . . . , Yj−1

]
≤
∑
j:ej∈C

cej
ρ . Recall that cej is the connectivity of ej in H rather

than G. However, by the definition of cej and the inductive hypothesis that Hj−1 is a (1 + ε) cut
sparsifier of Gj−1, then we have that for ε < 1

2 , the connectivity of cej in H is within a factor of two
of the connectivity of cej in G. By definition of connectivity, we have that the connectivity of cej at
time j in G is at most C(j)

G ≤ C(m)
G if ej crosses the cut C. Hence,

m∑
j=1

E
[
X2
j |Y1, . . . , Yj−1

]
≤

∑
j:ej∈C

C
(j)
G

ρ
≤

2(C
(m)
G)2

ρ
.

By similar reasoning, we have |Xj | ≤ 1
pj
≤ cej

ρ ≤
2(C

(m)
G)

ρ . Now we would like to apply Freedman’s

inequality (Theorem B.1) with σ2 =
2(C

(m)
G)2

ρ and R ≤ 2(C
(m)
G)

ρ for ρ = C(log n + logm)/ε2.

However, we cannot bound the probability that |Yn| exceeds εC(m)
G , as the latter is a random variable.

Thus we instead assume that κ1 and κ2 are lower and upper bounds on C(m)
G . By Freedman’s

inequality,

Pr [|Yn| > εκ1] ≤ 2 exp

(
− κ21ε

2/2

σ2 +Rκ1ε/3

)
≤ 2 exp

(
−3Cκ21 log n/2

6κ22 + 2κ1κ2

)
≤ n−O(C/κ2),

where we define κ := κ2/κ1. Since κ1 ≤ C(m)
G , then we have

Pr
[
|Yn| > εC

(m)
G

]
≤ Pr [|Yn| > εκ1] .

Thus |C(m)
H − C(m)

G | ≤ εC(m)
G with probability at least 1− n−O(C/κ2).

We now union bound over all cuts C. Based on our assumption that every cut in G has value at least
κ1, it follows that for any α ≥ 1, the number of cuts in G of size ακ1 is at most n2α [BK96, AG09].
Note that we are using a deterministic upper bound on the number of cuts that holds for any graph.
Due to our assumption, on the size of cuts, we know that α ranges from 1 ≤ α ≤ κ2/κ1 = κ. Then
using our concentration result derived above, it follows by a union bound that the probability that
there exists some C such that |C(m)

H − C(m)
G | ≤ εC(m)

G is at most∫ κ2/κ1

1

n2α · n−O(C/κ2) dα ≤ n2κ

2 log(κ)
· n−O(C/κ2) ≤ 1

poly(n)

where the last inequality follows by setting C = c′κ2 for some large enough constant c′ > 1. This
verifies part (1) of Problem 4.1.

We now need to check the number of edges in H . For this, we note that the proof of Theorem 3.2
in [AG09] carries over to our setting since the proof there only relies on the fact that if an edge has
strong connectivity at most z in G, its weight in H is at most z/ρ in H which is true for us as well.
The extra κ2 factor in the number of edges comes from our setting of the parameter C in ρ. 2

21

	Missing Proofs from [sec:sec:mr]Section 2
	Missing Proofs from [sec:sec:nla]Section 3
	Adversarially Robust Spectral Approximation
	Adversarially Robust Linear Regression

	Missing Proofs from [sec:sec:gs]Section 4

