A Extended Literature Review, Formulations, and Discussions

A.1 Related Work

Risk-Sensitive/Robust Control and Dynamic Games. H_{∞}-robust control has been one of the most fundamental research fields in control theory, addressing worst-case controller design for linear plants in the presence of unknown disturbances and uncertainties. Frequency-domain and time-domain/state-space formulations of the H_{∞}-robust control problem were first introduced in [34] and [35], respectively. Based on the time-domain approach, the precise equivalence relationships between controllers in the disturbance attenuation (which belongs to a class of H_{∞}-robust control) problem, risk-sensitive linear control, and zero-sum LQ dynamic games have been studied extensively [22, 23, 24, 36, 26, 25]. Specifically, [22] first demonstrated the equivalence of the controllers between LEQG and zero-sum LQ (differential) games; [23] studied the relationship between the mixed H_2/H_∞ design problem, a sub-problem of the H_{∞}-robust control problem, and LEQG; [24, 36] investigated the disturbance attenuation problem through a dynamic games approach, for both finite- and infinite-horizons, time-invariant and -varying, deterministic and stochastic settings. We refer the readers to [26, 25] for comprehensive studies of H_{∞}-robust control, dynamic game theory, risk-sensitive control, and also their precise interconnections.

Policy Optimization for LQ Control. Applying PG methods to LQ control problems has been investigated in both control and learning communities extensively. In contrast to the early work on this topic [37, 38], the recent study focuses more on theoretical aspects such as global convergence and sample complexity of these PG methods [11, 12, 13, 14, 15, 39, 17, 16, 40, 19, 41, 33]. Specifically, [11] was the first work to show the global convergence of PG methods for the LQR problem. Initial sample complexity results for the derivative-free PG methods based on zeroth-order optimization techniques were also reported in [11]. Subsequently, [14] characterized the optimization landscape of the LQR in detail, and provided an initial extension toward the distributive LQR. Building upon these works, [19] enhanced the sample complexity result by adopting a two-point zeroth-order optimization method, in contrast to the single-point method adopted in [11]. The sample complexity result of the two-point method was further improved recently in both continuous- [17] and discrete-time LQR [33]. Moreover, [41] studied the global convergence of PG methods for the LQR where both the state and control weighting matrices are indefinite, but without addressing the derivative-free setting; [15, 39] derived global convergence of PG methods for zero-sum LQ dynamic games, also pointing to the need to investigate the indefinite LQR. The most relevant works that addressed LQ control with robustness/risk-sensitivity concerns using policy optimization methods were [40, 42, 16]. The work in [40] considered LQR with multiplicative noises, which enjoys a similar landscape as standard LQR. The work in [42] studied finite-horizon risk-sensitive nonlinear control, and established stationary-point convergence when using iterative LEQG and performing optimization over control actions directly. [16] examined the mixed H_2/H_{∞} control design problem, a class of H_{∞}-robust control problems, with a different landscape from LQR. However, no sample complexity results were provided in either [42] or [16]. Very recently, [32] has also studied the convergence of policy gradient method for finite-horizon LQR problems. Interestingly, the landscape analysis independently developed in [32] matches some of our findings for the inner-loop subproblem of zero-sum LQ dynamic games, while we consider a more general setting with time-varying system dynamics and a possibly indefinite state-weighting matrix. Other recent results on PO for LQ control include [12, 43, 18, 13, 20, 44, 21]. We also refer the readers to [45, 46] for analyses of model-based methods in solving LQ control problems, and to [47, 48] for online control of LQ systems.

Nonconvex-Nonconcave Minimax Optimization & MARL. Solving minimax problems using PG methods, especially gradient descent-ascent (GDA), has been one of the most popular sub-fields in the optimization community recently. Convergence of the first-order GDA algorithm (and its variants) has been studied in [49, 50, 51, 52] for general nonconvex-nonconcave objectives, in [53] for the setting with an additional two-sided Polyak-Lojasiewicz (PL) condition, and in [54] for the setting under the weak Minty variational inequality condition. In fact, [55] has shown very recently the computational hardness of solving nonconvex-nonconcave constrained minimax problems with...
first-order methods. To the best of our knowledge, zeroth-order/derivative-free methods, as studied in our paper, have not yet been investigated for nonconvex-nonconcave minimax optimization problems. On the other hand, in the multi-agent RL (MARL) regime, policy optimization for solving zero-sum Markov/dynamic games naturally leads to a nonconvex-nonconcave minimax problem [15, 56, 57], whose convergence guarantee has remained open [56] until very recently, except for the aforementioned LQ setting [15, 39]. In particular, [57] has established the first non-asymptotic global convergence of independent policy gradient methods for tabular (finite-state-action) zero-sum Markov games, where GDA with two-timescale stepizes is used. In stark contrast to these works, the crucial global smoothness assumption (or property that automatically holds in the tabular MARL setting) on the objective therein does not hold in our control setting with unbounded and continuous spaces. A careful characterization of the iterate trajectory is thus required in order to establish global convergence and sample complexity results.

Risk-Sensitive/Robust RL. Risk-sensitivity/robustness to model uncertainty/misspecification in RL has attracted significant research efforts, following the frameworks of robust adversarial RL (RARL) and robust Markov decision process (RMDP). Tracing back to [58], early works on RARL exploited the same game-theoretic perspective as in H_{∞}-robust control, by modeling the uncertainty as a fictitious adversary against the nominal agent. This worst-case (minimax) design concept then enabled actor-critic type algorithms with exceptional empirical performance, but rather sparse theoretical footprints [59]. Very recently, theoretical investigations on the convergence and stability of RARL have been carried out in [60] within the LQ setting. In parallel, the RMDP framework has been proposed in [61, 62], and the robustness of RL algorithms under such framework has been further studied in [63, 64, 65] for the finite MDP settings, in contrast to our continuous control tasks. Other recent advances on risk-sensitive/robust RL/MDP include [66, 67].

Contributions Over Existing Works. Seminal works [11, 19] presented sample complexity results for the infinite-horizon deterministic LQR, and [32] studied the finite-horizon stochastic LQR. The main technical challenge between our robust control setting and [11, 19, 32] is the lack of coercivity of the objective function (cf. Lemma 3.5). In particular, the objective value may remain finite while approaching the boundary of the robustness constraint set K (cf. (3.9)), and a descent direction of the objective value may still drive the iterates out of K, which will lead to an unbounded/undefined value. To address this “landscape” challenge in the model-based setting, [15] used an extra projection step, which is restrictive since it requires model information as well as non-standard assumptions. This projection step has been removed in [39] and [16], again in the case when the model is known. Specifically, the Riccati-based arguments in [39] are tailored for the zero-sum game setting and require assumptions that are non-standard for robust control. The implicit regularization arguments in [16] align better with the robust control literature, by leveraging standard tools such as the KYP lemma. However, the arguments in [16] only apply to the setting with a known model, as they rely on a specialized “perturbation technique” which may potentially generate arbitrarily small “margins” between the iterates and the boundary of the robustness feasible set. Such an argument cannot be directly applied to our model-free setting where a uniform margin is required for provable tolerance of statistical errors, when “samples” are used to estimate the policy gradients. Our work has overcome the technical challenges mentioned above, by developing the first implicit regularization results when applying model-free PG methods for robust controller designs.

A.2 Notations

For a square matrix X of proper dimension, we use $\text{Tr}(X)$ to denote its trace. We also use $\|X\|_F$ to denote, respectively, the operator norm and the Frobenius norm of X. If X is further symmetric, we use $X > 0$ to denote that X is positive definite. Similarly, $X \geq 0$, $X \leq 0$, and $X < 0$ are used to denote X being positive semi-definite, negative semi-definite, and negative definite, respectively. Further, again for a symmetric matrix X, $\lambda_{\text{min}}(X)$ and $\lambda_{\text{max}}(X)$ are used to denote, respectively, the smallest and the largest eigenvalues of X. Moreover, we use $(X, Y) := \text{Tr}(X^T Y)$ to denote the standard matrix inner product and use $\text{diag}(X_0, \cdots, X_N)$ to denote the block-diagonal matrix with X_0, \cdots, X_N on the diagonal block entries. In the case where $X_0 = X_1 = \cdots = X_N = X$, we further denote it as $\text{diag}(X^N)$. We use $x \sim \mathcal{N}(\mu, \Sigma)$ to denote a Gaussian random variable with mean μ and covariance Σ and use $\|v\|$ to denote the Euclidean norm of a vector v. Lastly, we use I and 0 to denote the identity and zero matrices with appropriate dimensions.
A.3 Extended Backgrounds

In this section, we first introduce two classic settings in risk-sensitive and robust control, namely LEQG, and LQ disturbance attenuation. We then discuss, in §2.2, the challenges one confronts when attempting to address the above two problems directly using derivative-free PG methods by sampling system trajectories. Fortunately, solving zero-sum LQ (stochastic) dynamic games, a benchmark setting in MARL, via derivative-free PG methods by sampling system trajectories provides a workaround to address these problems all in a unified way, due to the well-known equivalence relationships between zero-sum LQ dynamic games and the two aforementioned classes of problems [25], which we will also discuss in §A.3.3.

A.3.1 Linear Exponential Quadratic Gaussian

We first consider a fundamental setting of risk-sensitive optimal control, known as the LEQG problem [22, 27, 28], in the finite-horizon setting. The time-varying (linear) systems dynamics are described by:

\[x_{t+1} = A_t x_t + B_t u_t + w_t, \quad t \in \{0, \cdots, N-1\}, \]

where \(x_t \in \mathbb{R}^m \) represents the system state; \(u_t \in \mathbb{R}^d \) is the control input; \(w_t \in \mathbb{R}^m \) is an independent (across time) Gaussian random noise drawn from \(w_t \sim \mathcal{N}(0, W) \) for some \(W > 0 \); the initial state \(x_0 \sim \mathcal{N}(0, X_0) \) is a Gaussian random vector for some \(X_0 > 0 \), independent of the sequence \(\{w_t\} \); and \(A_t, B_t \) are time-varying system matrices with appropriate dimensions. The objective function is given by

\[
J(u_t) := \frac{2}{\beta} \log \mathbb{E} \exp \left[\frac{\beta}{2} \left(\sum_{t=0}^{N-1} (x_t^T Q_t x_t + u_t^T R_t u_t) + x_N^T Q_N x_N \right) \right],
\]

where \(Q_t \geq 0 \) and \(R_t > 0 \), for all \(t \in \{0, \cdots, N-1\} \), and \(Q_N \geq 0 \) are symmetric weighting matrices; and \(\beta > 0 \) is a parameter capturing the degree of risk-sensitivity, which is upper-bounded by some \(\beta^* > 0 \) [22, 28, 29].

The goal in the LEQG problem is to find the \(J \)-minimizing optimal control policy \(\mu^*_t : (\mathbb{R}^m \times \mathbb{R}^d) \times \mathbb{R}^m \to \mathbb{R}^d \) that maps, at time \(t \), the history of state-control pairs up to time \(t \) and the current state \(x_t \) to the control \(u_t \), this being so for all \(t \in \{0, \cdots, N-1\} \). It has been shown in [22] that \(\mu_t^* \) has a linear state-feedback form \(\mu_t^*(x_t) = -K_t^* x_t \), where \(K_t^* \in \mathbb{R}^{d \times m} \) for all \(t \in \{0, \cdots, N-1\} \). Therefore, it suffices to search \(K_t^* \) in the matrix space \(\mathbb{R}^{d \times m} \) for all \(t \in \{0, \cdots, N-1\} \), without losing any optimality. The resulting policy optimization problem is then represented as (by a slight abuse of notation with regard to \(J \)):

\[
\min_{\{K_t\}} \mathcal{J} \left(\{K_t\} \right) := \frac{2}{\beta} \log \mathbb{E} \exp \left[\frac{\beta}{2} \sum_{t=0}^{N-1} (x_t^T Q_t x_t + K_t^T R_t K_t x_t) + x_N^T Q_N x_N \right]. \tag{A.1}
\]

To characterize the solution to (A.1), we first introduce the following time-varying Riccati difference equation (RDE):

\[
P_{K_t} = Q_t + K_t^T R_t K_t + (A_t - B_t K_t)^T \overline{P}_{K_{t+1}} (A_t - B_t K_t), \quad t \in \{0, \cdots, N-1\}, \quad P_{K_N} = Q_N, \tag{A.2}
\]

where \(\overline{P}_{K_{t+1}} := P_{K_{t+1}} + \beta P_{K_{t+1}} (W^{-1} - \beta P_{K_{t+1}})^{-1} P_{K_{t+1}} \). Then, (A.1) can be expressed by the solution to (A.2) and the exact PG can be analyzed, as follows, with its proof being deferred to §B.1.

Lemma A.1 (Closed-Form Objective Function and PG) For any sequence of \{\(K_t \)\} such that (A.2) generates a sequence of positive semi-definite (p.s.d.) sequence \{\(P_{K_t} \)\} satisfying \(X_0^* - \beta P_{K_0} > 0 \) and \(W^{-1} - \beta P_{K_t} > 0 \), for all \(t \in \{1, \cdots, N\} \), the objective function \(\mathcal{J} \left(\{K_t\} \right) \) can be expressed as

\[
\mathcal{J} \left(\{K_t\} \right) = -\frac{1}{\beta} \log \det(I - \beta P_{K_0} X_0) - \frac{1}{\beta} \sum_{t=1}^{N} \log \det(I - \beta P_{K_t} W). \tag{A.3}
\]
As $\beta \to 0$, (A.3) reduces to $\text{Tr}(P_{K_t} X_0) + \sum_{i=1}^N \text{Tr}(P_{K_i} W)$, which is the objective function of the finite-horizon linear-quadratic-Gaussian (LQG) problem. Moreover, the PG of (A.3) at time t has the form:

$$
\nabla_{K_t} \mathcal{J} \left(\{ K_i \} \right) := \frac{\partial \mathcal{J} \left(\{ K_i \} \right)}{\partial K_t} = 2 \left[\left(R_t + B_t^T \bar{P}_{K_{t+1}} B_t \right) K_t - B_t^T \bar{P}_{K_{t+1}} A_t \right] \Sigma_{K_t}, \quad t \in \{0, \cdots, N-1\}, \quad (A.4)
$$

where

$$
\Sigma_{K_t} := \prod_{i=0}^{t-1} \left[\left(I - \beta P_{K_{i+1}} W \right)^{-T} (A_i - B_i K_i) \cdot X_0^\frac{3}{2} \left(I - \beta X_0^\frac{1}{2} P_{K_0} X_0^\frac{1}{2} \right)^{-1} X_0^\frac{1}{2} \right.

\cdot \left\{ \prod_{i=0}^{t-1} \left[(A_i - B_i K_i)^T \left(I - \beta P_{K_{i+1}} W \right)^{-1} \right] \right.

+ \sum_{i=1}^{t} \left\{ \left[\prod_{i=0}^{t-1} \left(I - \beta P_{K_{i+1}} W \right)^{-T} (A_i - B_i K_i) \right] \cdot W^\frac{1}{2} \left(I - \beta W^\frac{1}{2} P_{K_i} W^\frac{1}{2} \right)^{-1} W^\frac{1}{2} \right.

\left. \cdot \left(\prod_{i=0}^{t-1} \left[(A_i - B_i K_i)^T \left(I - \beta P_{K_{i+1}} W \right)^{-1} \right] \right) \right\} \right\}
$$

A.3.2 LQ Disturbance Attenuation

Second, we introduce the optimal LQ disturbance attenuation problem, again for finite-horizon settings, with time-varying (deterministic) dynamical systems described by

$$
x_{t+1} = A_t x_t + B_t u_t + D_t w_t, \quad z_t = C_t x_t + E_t u_t, \quad t \in \{0, \cdots, N-1\},
$$

where $x_t \in \mathbb{R}^m$ is the system state; $u_t \in \mathbb{R}^d$ is the control input; $w_t \in \mathbb{R}^n$ is the (unknown) disturbance input; $z_t \in \mathbb{R}^r$ is the controlled output; A_t, B_t, C_t, D_t, E_t are system matrices with appropriate dimensions; and $x_0 \in \mathbb{R}^m$ is unknown. In addition, we assume that $E_t^T [C_t, E_t] = [0, R_t]$ for some $R_t > 0$ to eliminate the cross-weightings between control input u and system state x, which provides no loss of generality, and is standard in the literature [23, 25]. As shown in §3.5.1 of [25], a simple procedure can transform the general problem into a form where there are no coupling terms between u and x, satisfying the above “normalization” assumption that we have made. Subsequently, we introduce the ℓ^2-norms of the vectors $\omega := \left[x_0^T C_0^T, w_0^T, \cdots, w_{N-1}^T \right]$, and $z := \left[z_0^T, \cdots, z_{N-1}^T, x_N Q_{N}^{1/2} \right]^T$, as $||\omega|| := \left[x_0^T C_0^T C_0 x_0 + \sum_{i=0}^{N-1} ||w_i||^2 \right]^{1/2}$ and $||z|| = \left(C \{ \{ u_t \}, \{ w_t \} \} \right)^{1/2} := \left(x_N Q_N x_N + \sum_{i=0}^{N-1} ||z_i||^2 \right)^{1/2}$, where $Q_N \geq 0$ is symmetric, and $|| \cdot \|$ in the two expressions denote appropriate Euclidean norms. Then, the robustness of a designed controller can be guaranteed by a constraint on the ratio between $||z||$ and $||\omega||$. Specifically, the goal of the optimal LQ disturbance attenuation problem is to find the optimal control policy $\mu_t^\ast : (\mathbb{R}^m \times \mathbb{R}^d)^t \times \mathbb{R}^m \to \mathbb{R}^d$ that maps, at time t, the history of state-control pairs until time t and the current state x_t, denoted as $h_t := \{ x_0, \cdots, x_t, u_0, \cdots, u_{t-1} \}$, to the control u_t, such that

$$
\gamma^* = \inf_{\mu_t} \sup_{x_0, |w_t|} \left\{ C \{ \{ \mu_t(h_t) \}, \{ w_t \} \} \right\}^{1/2} = \sup_{x_0, |w_t|} \left\{ C \{ \mu_t(h_t) \}, \{ w_t \} \right\}^{1/2}, \quad (A.5)
$$

where $\gamma^* = \sqrt{(\beta^*)^{-1}} > 0$ is the optimal (minimax) level of disturbance attenuation at the output [23, 25], and recall that β^* is the upper bound for the risk-sensitivity parameter in LEQG. It is known that under closed-loop perfect-state information pattern, the existence of a sequence $\{ \mu_t \}$, $t \in \{0, \cdots, N-1\}$, is always guaranteed and μ_t is linear state-feedback, i.e., $\mu_t(h_t) = -K_t^\ast x_t$ ([25]; Theorem 3.5). Thus, it suffices to search for $K_t^\ast \in \mathbb{R}^{d \times m}$, for all $t \in \{0, \cdots, N-1\}$, to achieve the optimal attenuation.

The problem (A.5) can be challenging to solve to the optimum [25]. Moreover, in practice, due to the inevitable uncertainty in modeling the system, the robust controller that achieves the optimal attenuation level can be too sensitive to the model uncertainty to use. Hence, a reasonable surrogate
of the optimal LQ disturbance attenuation problem is the following: Given a $\gamma > \gamma^*$, find a control policy $\mu_t = -K_t x_t$, for all $t \in \{0, \cdots, N-1\}$, that solves

$$\min_{\{\mu_t(x_t)\}} \mathcal{J}(\{\mu_t(x_t)\}) := \mathbb{E}[\xi_t] \left[\sum_{t=0}^{N-1} \left(x_t^T Q_t x_t + u_t^T R_t u_t \right) + x_N^T Q_N x_N \right] \text{ s.t. } \sup_{x_0} \frac{\|C(x_0)\|^{1/2}}{\|u_0\|} < \gamma,$$

(A.6)

where $Q_t := C_t^T C_t$ for $t \in \{0, \cdots, N-1\}$, $\mathcal{J}(\{\mu_t(x_t)\})$ is the LQG cost of the system $x_{t+1} = A_t x_t + B_t u_t + D_t \xi_t$, and $\xi_t \sim \mathcal{N}(0, I)$ is independent Gaussian noise with unit intensity [30]. Note that the LQ disturbance attenuation problem in (A.6), and particularly with $x_0 = 0$, is also called the mixed H_2/H_∞ problem [35, 30, 68, 16], when the system is time-invariant, and the horizon of the problem N is ∞. To solve (A.6) using policy optimization methods, we introduce the time-varying RDE:

$$P_{K_t} = Q_t + K_t^T R_t K_t + (A_t - B_t K_t)^T \overline{P}_{K_{t+1}} (A_t - B_t K_t), \quad t \in \{0, \cdots, N-1\}, \quad P_{K_N} = Q_N, \quad (A.7)$$

where $\overline{P}_{K_{t+1}} := P_{K_{t+1}} + P_{K_{t+1}} (\gamma^2 I - D_t^T P_{K_{t+1}} D_t)^{-1} P_{K_{t+1}}$. Then, two upper bounds of \mathcal{J} and their corresponding PGs can be expressed in terms of solutions to (A.7) (if exist) [30]. In particular, (A.8) below is closely related to the objective function of LEQG in (A.1), and (A.9) is connected to the objective function of zero-sum LQ dynamic games to be introduced shortly.

Lemma A.2 (Closed-Forms for the Objective Function and PGs) For any sequence of control gains $\{K_t\}$ such that (A.7) generates a sequence of p.s.d. solutions $\{P_{K_{t+1}}\}$ satisfying $\gamma^2 I - D_t^T P_{K_{t+1}} D_t > 0$, for all $t \in \{0, \cdots, N-1\}$, and $\gamma^2 I - P_{K_0} > 0$, then two common upper bounds of the objective function \mathcal{J} in (A.6) are:

$$\overline{\mathcal{J}}(K_t) = -\gamma^2 \log \det(I - \gamma^{-2} P_{K_0}) - \gamma^2 \sum_{t=1}^{N} \log \det(I - \gamma^{-2} P_{K_t} D_{t-1} D_{t-1}^T),$$

(A.8)

$$\overline{\mathcal{J}}(K_t) = \text{Tr}(P_{K_0}) + \sum_{t=1}^{N} \text{Tr}(P_{K_t} D_{t-1} D_{t-1}^T).$$

(A.9)

The PGs of (A.8) and (A.9) at time t can be expressed as

$$\nabla_{K_t} \overline{\mathcal{J}}(K_t) := \frac{\partial \overline{\mathcal{J}}(K_t)}{\partial K_t} = 2 \left(R_t + B_t^T \overline{P}_{K_{t+1}} B_t - B_t^T \overline{P}_{K_{t+1}} A_t \right) \Sigma_t, \quad t \in \{0, \cdots, N-1\}, \quad (A.10)$$

where Σ_t, $t \in \{0, \cdots, N-1\}$, for the PGs of (A.8) and (A.9) are expressed, respectively, as

$$\Sigma_{K_t} := \sum_{t=1}^{l-1} \left[(I - \gamma^{-2} P_{K_{t+1}} D_t D_t^T)^{-1} (A_t - B_t K_t) \right] R_t (I - \gamma^{-2} P_{K_{t+1}} D_t D_t^T)^{-1} \sum_{t=1}^{l-1} \left[(A_t - B_t K_t) (I - \gamma^{-2} P_{K_{t+1}} D_t D_t^T)^{-1} \right]$$

$$+ \sum_{t=1}^{l} \left[(I - \gamma^{-2} P_{K_{t+1}} D_t D_t^T)^{-1} (A_t - B_t K_t) \right] R_t (I - \gamma^{-2} D_{t-1}^T P_{K_t} D_{t-1})^{-1} D_{t-1}^T$$

$$\cdot \sum_{t=1}^{l-1} \left[(A_t - B_t K_t) (I - \gamma^{-2} P_{K_{t+1}} D_t D_t^T)^{-1} \right],$$

$$\Sigma_{K_t} := \sum_{t=1}^{l-1} \left[(I - \gamma^{-2} P_{K_{t+1}} D_t D_t^T)^{-1} (A_t - B_t K_t) (A_t - B_t K_t) (I - \gamma^{-2} P_{K_{t+1}} D_t D_t^T)^{-1} \right]$$

$$+ \sum_{t=1}^{l} \left[(I - \gamma^{-2} P_{K_{t+1}} D_t D_t^T)^{-1} (A_t - B_t K_t) \right] R_t (I - \gamma^{-2} D_{t-1} D_{t-1}^T)^{-1}$$

$$\cdot \sum_{t=1}^{l-1} \left[(A_t - B_t K_t) (I - \gamma^{-2} P_{K_{t+1}} D_t D_t^T)^{-1} \right].$$

The proof of Lemma A.2 is deferred to §B.2. Before moving on to the next section, we provide a remark regarding the challenges of addressing LEQG or the LQ disturbance attenuation problem directly using derivative-free PG methods.
Remark A.3 (Challenges) It seems tempting to tackle LEQG or the LQ disturbance attenuation problem directly using derivative-free PG methods, e.g., vanilla PG or natural PG methods by sampling the system trajectories as in [11]. However, there are several challenges. First, when attempting to sample the LEQG objective (A.1) using system trajectories (and then to estimate PGs), the bias of gradient estimates can be difficult to control uniformly with a fixed sample size per iterate, as the log function is not globally Lipschitz\(^2\). Moreover, for the vanilla PG method, even with exact PG accesses, the iterates may not preserve a certain level of risk-sensitivity/disturbance attenuation, i.e., remain feasible, along the iterations, which can make the disturbance input drive the cost to arbitrarily large values (see the numerical examples in [16] for the infinite-horizon LTI setting). This failure will only be exacerbated in the derivative-free setting with accesses to only noisy PG estimates. Lastly, developing a derivative-free natural PG method (which we will show in §3.3 that it can preserve a prescribed attenuation level along the iterations) is also challenging, because the expressions of \(\Sigma_K\) in Lemmas A.1 and A.2 cannot be sampled from system trajectories directly. Therefore, the game-theoretic approach to be introduced next is rather one workaround.

A.3.3 An Equivalent Dynamic Game Formulation

Lastly, and more importantly, we describe an equivalent dynamic game formulation to the LEQG and the LQ disturbance attenuation problems introduced above. Under certain conditions to be introduced in Lemma A.6, the saddle-point gain matrix of the minimizing player in the dynamic game (if it exists) also addresses the LEQG and the LQ disturbance attenuation problem, providing an alternative route to overcome the challenges reported in Remark A.3. Specifically, we consider a zero-sum LQ stochastic dynamic game (henceforth, game) model with closed-loop perfect-state information pattern, which can also be viewed as a benchmark setting of MARL for two competing agents [69, 70, 15, 39, 71], as the role played by LQR for single-agent RL [3]. The linear time-varying system dynamics follow

\[
x_{t+1} = A_t x_t + B_t u_t + D_t w_t + \xi_t, \quad t \in \{0, \cdots, N-1\},
\]

(A.11)

where \(x_t \in \mathbb{R}^m\) is the system state, \(u_t := \mu_{u,t}(h_{u,t}) \in \mathbb{R}^d\) (resp., \(w_t := \mu_{w,t}(h_{w,t}) \in \mathbb{R}^n\)) is the control input of the minimizing (resp., maximizing) player\(^3\) and \(\mu_{u,t} : (\mathbb{R}^m \times \mathbb{R}^d) \times \mathbb{R}^n \to \mathbb{R}^d\) (resp., \(\mu_{w,t} : (\mathbb{R}^m \times \mathbb{R}^n) \times \mathbb{R}^m \to \mathbb{R}^n\)) is the control policy that maps, at time \(t\), the history of state-control pairs up to time \(t\), and state at time \(t\), denoted as \(h_{u,t} := \{x_0, \cdots, x_t, u_0, \cdots, u_{t-1}\}\) (resp., \(h_{w,t} := \{x_0, \cdots, x_t, w_0, \cdots, w_{t-1}\}\)), to the control \(u_t\) (resp., \(w_t\)). The independent process noises are denoted by \(\xi_t \sim \mathcal{D} \text{ and } A_t, B_t, D_t \text{ are system matrices with proper dimensions}.\) Further, we assume \(x_0 \sim \mathcal{D}\) to be independent of the process noises, and the distribution \(\mathcal{D}\) has zero mean and a positive-definite covariance. We also assume that \(|x_0|, ||\xi_t|| \leq \delta\), for all \(t \in \{0, \cdots, N-1\}\), almost surely, for some constant \(\delta\).\(^4\) The goal of the minimizing (resp. maximizing) player is to minimize (resp. maximize) a quadratic objective function, namely to solve the zero-sum game

\[
\inf_{u_t} \sup_{w_t} \mathbb{E}_{x_0, \xi_0, \cdots, \xi_{N-1}} \left[\sum_{t=0}^{N-1} (x_t^T Q_t x_t + u_t^T R_t^u u_t - w_t^T R_t^w w_t) + x_N^T Q_N x_N \right],
\]

(A.12)

where \(Q_{t} \geq 0, R_{t}^{u}, R_{t}^{w} > 0\) are symmetric weighting matrices and the system transitions follow (A.11). Whenever the solution to (A.12) exists such that the inf and sup operators in (A.12) are interchangeable, then the value (A.12) is the value of the game, and the corresponding policies of the players are known as saddle-point policies. To characterize the solution to (A.12), we first introduce the following time-varying RDE:

\[
P_t^* = Q_t + A_t^T P_{t+1}^* A_t, \quad t \in \{0, \cdots, N-1\},
\]

(A.13)

\(^2\)One workaround for mitigating this bias might be to remove the log operator in the objective (A.1), and only minimize the terms after the \(\mathbb{E}\exp(\cdot)\) function. However, it is not clear yet if derivative-free methods provably converge for this objective, as \(\exp\) function is neither globally smooth nor Lipschitz. We have left this direction in our future work, as our goal in the present work is to provide a unified way to solve all three classes of problems.

\(^3\)Hereafter we will use player and agent interchangeably.

\(^4\)The assumption on the boundedness of distribution is only for ease of analysis [19, 18]. Extensions to sub-Gaussian distributions are standard and do not affect the sample complexity result, as noted by [19].
where $\Lambda_t := I + \left(B_t (R_t^w)^{-1} B_t^T - D_t (R_t^w)^{-1} D_t^T \right) P_{t+1}^*$ and $P_N^w = Q_N$. For the stochastic game with closed-loop perfect-state information pattern that we considered, we already know from [26] that whenever a saddle point exists, the saddle-point control policies are linear state-feedback (i.e., $u_t^\mu(h_{u,t}) = -K_t^* x_t$ and $u_t^\nu(h_{u,t}) = -L_t^* x_t$), and the gain matrices K_t^* and L_t^*, for $t \in \{0, \ldots, N-1\}$, are unique and can be expressed by

$$K_t^* = (R_t^w)^{-1} B_t^T P_{t+1}^* A_t^{-1} A_t, \quad \text{(A.14)}$$

$$L_t^* = -(R_t^w)^{-1} D_t^T P_{t+1}^* A_t^{-1} A_t, \quad \text{(A.15)}$$

where P_{t+1}^*, $t \in \{0, \ldots, N-1\}$, is the sequence of p.s.d. matrices generated by (A.13). We next introduce a standard assumption that suffices to ensure the existence of the value of the game, following from Theorem 3.2 of [25] and Theorem 6.7 of [26].

Assumption A.4 $R_t^w - D_t^T P_{t+1}^* D_t > 0$, for all $t \in \{0, \ldots, N-1\}$, where $P_{t+1}^* \geq 0$ is generated by (A.13).

Under Assumption A.4, the value in (A.12) is attained by the controller sequence $\left([-K_t^* x_t^*], [-L_t^* x_t^*] \right)$, where K_t^* and L_t^* are given in (A.14) and (A.15), respectively, and x_t^* is the corresponding state trajectory generated by $x_{t+1} = A_t^{-1} A_t x_t + \xi_t$, for $t \in \{0, \ldots, N-1\}$ and with $x_0^* = x_0$ [25]. Thus, the solution to (A.12) can be found by searching K_t^* and L_t^* in $\mathbb{R}^{d \times m} \times \mathbb{R}^{m \times n}$, for all $t \in \{0, \ldots, N-1\}$. The resulting minimax policy optimization problem is

$$\min_{K_t^*} \max_{L_t^*} \mathcal{G}(\{K_t^*\}, \{L_t^*\}) := \mathbb{E}_{x_t, \xi_0, \ldots, \xi_{N-1}} \left[\sum_{t=0}^{N-1} x_t^T \left(Q_t + K_t^* R_t^w K_t - L_t^T R_t^w L_t \right) x_t + x_N^T Q_{N,N} x_N \right], \quad \text{(A.16)}$$

subject to the system transition $x_{t+1} = (A_t - B_t K_t^* - D_t L_t^*) x_t + \xi_t$, for $t \in \{0, \ldots, N-1\}$. Some further notes regarding Assumption A.4 are provided in the remark below.

Remark A.5 (Unique Feedback Nash (Saddle-point) Equilibrium) By [25, 26], Assumption 2.1 (A.4) is sufficient to guarantee the existence of feedback Nash (equivalently, saddle-point) equilibrium in zero-sum LQ dynamic games (game), under which it is also unique. Besides sufficiency, Assumption 2.1 (A.4) is also “almost necessary”, and “quite tight” as noted in Remark 6.8 of [26]. In particular, if the sequence of matrices $R_t^w - D_t^T P_{t+1}^* D_t$ for $t \in \{0, \ldots, N-1\}$ in Assumption 2.1 (A.4) admits any negative eigenvalues, then the upper value of the game becomes unbounded. In the context of LEQG and LQ disturbance attenuation (LQDA), suppose we set the system parameters of LEQG, LQDA, and game according to Lemma 2.2 (A.6), and in particular set $\beta^{-1} I$ in LEQG, $\gamma^2 I$ in LQDA, and R_w in the game to be the same. Then these three problems are equivalent as far as their optimum solutions go (which is what we seek). Due to this equivalence, Assumption 2.1 (A.4) is a sufficient and “almost necessary” condition for the existence of a solution to the equivalent LEQG/LQDA. Specifically, if the sequence of matrices $R_t^w - D_t^T P_{t+1}^* D_t$ for $t \in \{0, \ldots, N-1\}$ in Assumption 2.1 (A.4) admits any negative eigenvalues, then no state-feedback controller can achieve a γ-level of disturbance attenuation in the equivalent LQDA, and no state-feedback controller can achieve a β-degree of risk-sensitivity in the equivalent LEQG.

Lastly, we formally state the well-known equivalence conditions between LEQG, LQ disturbance attenuation, and zero-sum LQ stochastic dynamic games in the following lemma, and provide a short proof in §B.3.

Lemma A.6 (Connections) For any fixed $\gamma > \gamma^*$ in the LQ disturbance attenuation problem, we can introduce an equivalent LEQG problem and an equivalent zero-sum LQ dynamic game. Specifically, if we set $\beta^{-1} I, R_t, C_t^T C_t, W$ in LEQG, $\gamma^2 I, R_t, C_t^T C_t, D_t D_t^T$ in the LQ disturbance attenuation problem, and $R_w^*, R_t^w, Q_t, D_t D_t^T$ in the game to be the same, for all $t \in \{0, \ldots, N-1\}$, then the optimal gain matrices in LEQG, the gain matrix in the LQ disturbance attenuation problem, and the saddle-point gain matrix for the minimizing player in the game are the same.

By the above connections and Remark A.3, we will hereafter focus on the stochastic zero-sum LQ dynamic game between a minimizing controller and a maximizing disturbance, using PG methods with exact gradient accesses in §3, and derivative-free PG methods by sampling system trajectories in §4. As a result, the minimizing controller we obtain solves all three classes of problems introduced above altogether.
A.4 Compact Formulations

In this section, we re-derive the game formulations in §2.3 (and equivalently, §A.3.3), with linear state-feedback policies for the two players, using the following compact notations:

\[
x = \begin{bmatrix} x_0, \ldots, x_N \end{bmatrix}^T, \quad u = \begin{bmatrix} u_0, \ldots, u_{N-1} \end{bmatrix}^T, \quad w = \begin{bmatrix} w_0, \ldots, w_{N-1} \end{bmatrix}^T, \quad \xi = \begin{bmatrix} x_0, \xi_0, \ldots, \xi_{N-1} \end{bmatrix}^T,
\]

\[
A = \begin{bmatrix} 0_{m \times mN} & 0_{m \times dN} \\
\text{diag}(A_0, \ldots, A_{N-1}) & 0_{m \times mN} \end{bmatrix}, \quad B = \begin{bmatrix} 0_{m \times dN} \\
\text{diag}(B_0, \ldots, B_{N-1}) \end{bmatrix}, \quad D = \begin{bmatrix} 0_{m \times mN} \\
\text{diag}(D_0, \ldots, D_{N-1}) \end{bmatrix},
\]

\[
Q = \begin{bmatrix} \text{diag}(Q_0, \ldots, Q_N) \end{bmatrix}, \quad R^u = \begin{bmatrix} \text{diag}(R^u_0, \ldots, R^u_{N-1}) \end{bmatrix}, \quad R^w = \begin{bmatrix} \text{diag}(R^w_0, \ldots, R^w_{N-1}) \end{bmatrix},
\]

\[
K = \begin{bmatrix} \text{diag}(K_0, \ldots, K_{N-1}) \end{bmatrix}, \quad L = \begin{bmatrix} \text{diag}(L_0, \ldots, L_{N-1}) \end{bmatrix}.
\]

With the above definitions, the game in §2.3 is characterized by the transition dynamics

\[
x = Ax + Bu + Dw + \xi = (A - BK - DL)x + \xi,
\]

where \(x\) is the concatenated system state, \(u = -Kx\) (respectively, \(w = -Lx\)) is the linear state-feedback controller of the minimizing (resp., maximizing) player, and \(A, B, D\) are the system matrices in their corresponding compact forms. Note that \(A\) is essentially a nilpotent matrix with degree of \(N + 1\) (i.e. a lower triangular matrix with zeros along the main diagonal) such that \(A^{N+1} = 0\). Also, \(\xi\) is a vector that concatenates the independently sampled initial state \(x_0 \in \mathcal{D}\) and process noises \(\xi_t \in \mathcal{D}, t \in \{0, \ldots, N-1\}\). The objective of the minimizing (resp. maximizing) player is to minimize (resp. maximize) the objective function re-written in terms of the compact notation, that is to solve

\[
\inf_{K} \sup_{L} \mathcal{G}(K, L) := \mathbb{E}_x \left[x^T (Q + K^T R^u K - L^T R^w L) x \right]
\]

subject to the transition dynamics (A.17).

An Illustrative Example: Let us now consider a scalar example with \(N, n, m, d = 1\) with the following concatenated notations:

\[
x = \begin{bmatrix} x_0 \\
x_1 \end{bmatrix}, \quad \xi = \begin{bmatrix} 0 \\
x_0 \end{bmatrix}, \quad (u, w, R^u, R^w) = (u_0, w_0, R^u_0, R^w_0), \quad A = \begin{bmatrix} 0 & 0 \\
A_0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\
B_0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 \\
D_0 \end{bmatrix},
\]

\[
Q = \begin{bmatrix} Q_0 & 0 \\
0 & Q_1 \end{bmatrix}, \quad K = \begin{bmatrix} 0 \\
K_0 \end{bmatrix}, \quad L = \begin{bmatrix} 0 \\
L_0 \end{bmatrix}.
\]

Then, the system dynamics of the game and the linear state-feedback controllers are represented as

\[
x = Ax + Bu + Dw + \xi \iff \begin{bmatrix} x_0 \\
x_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\
A_0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\
x_1 \end{bmatrix} + \begin{bmatrix} 0 \\
B_0 \end{bmatrix} u_0 + \begin{bmatrix} 0 \\
D_0 \end{bmatrix} w_0 + \begin{bmatrix} x_0 \\
x_0 \end{bmatrix} \xi_0,
\]

\[
u = -Kx \iff u_0 = -K_0 x_0, \quad w = -Lx \iff w_0 = -L_0 x_0,
\]

\[
x = (A - BK - DL)x + \xi \iff \begin{bmatrix} x_0 \\
x_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\
A_0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\
x_1 \end{bmatrix} + \begin{bmatrix} 0 \\
B_0 \end{bmatrix} K_0 x_0 + \begin{bmatrix} 0 \\
D_0 \end{bmatrix} L_0 x_0 + \begin{bmatrix} x_0 \\
x_0 \end{bmatrix} \xi_0,
\]

\[
\Rightarrow \begin{bmatrix} x_0 \\
x_1 \end{bmatrix} = \begin{bmatrix} A_0 - B_0 K_0 - D_0 L_0 & 0 \\
0 & A_0 - B_0 K_0 - D_0 L_0 \end{bmatrix} \begin{bmatrix} x_0 \\
x_1 \end{bmatrix} + \begin{bmatrix} x_0 \\
x_0 \end{bmatrix} \xi_0.
\]

Moreover, we define \(A_{K_0, L_0} := A_0 - B_0 K_0 - D_0 L_0\) and establish the equivalence between the recursive Lyapunov equation (3.3) and its compact form (3.4) such that

\[
\]

\[
\Rightarrow \begin{bmatrix} P_{K_0, L_0} & 0 \\
0 & P_{K_1, L_1} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\
A_{K_0, L_0} & 0 \end{bmatrix} \begin{bmatrix} P_{K_0, L_0} & 0 \\
0 & P_{K_1, L_1} \end{bmatrix} + \begin{bmatrix} Q_0 + K_0^T R^u_0 K_0 - L_0 R^w_0 L_0 & 0 \\
0 & Q_1 \end{bmatrix},
\]

\[
\Rightarrow \begin{bmatrix} P_{K_0, L_0} & 0 \\
0 & P_{K_1, L_1} \end{bmatrix} = \begin{bmatrix} A_{K_0, L_0} P_{K_1, L_1} + A_{K_0, L_0} + Q_0 + K_0^T R^u_0 K_0 - L_0 R^w_0 L_0 & 0 \\
0 & Q_1 \end{bmatrix}.
\]
Next, we note that the solution to (3.5), Σ_{KL}, is also a recursive formula in the compact form, such that

$$
\Sigma_{KL} = (A - BK - DL)\Sigma_{KL}(A - BK - DL)^\top + \Sigma_0
$$

This completes the illustrative example.

A.5 Extended Discussions

Remark A.7 (Double-Loop Scheme) Our double-loop scheme, which has also been used before in [15, 39], is pertinent to the descent-multi-step-ascent scheme [72] and the gradient descent-ascent (GDA) scheme with two-timescale stepsizes [51, 73, 74] for solving nonconvex-(non)concave minimax optimization problems, with the number of multi-steps of ascent going to infinity, or the ratio between the fast and slow stepsizes going to infinity (the τ-GDA scheme with $\tau \to \infty$ [51, 74]). Another variant is the alternating GDA (AGDA) scheme, which has been investigated in [53] to address nonconvex-nonconcave problems with two-sided PL condition. However, unlike this literature, one key condition for establishing convergence, the global smoothness of the objective function, does not hold in our control setting with unbounded decision spaces and objective functions. In fact, as per Lemma 3.3, a non-judicious choice of K may lead to an undefined inner-loop maximization problem with unbounded objective. Hence, one has to carefully control the update-rule here, to ensure that the iterates do not yield unbounded/undefined values along iterations. As we will show in §D.4, it is not hard to construct cases where descent-multi-step-ascent/AGDA/τ-GDA diverges even with infinitesimal stepsizes, similar to the negative results reported in the infinite-horizon setting in [60]. These results suggest that it seems challenging to provably show that other candidate update schemes converge to the global NE in zero-sum LQ games, except the double-loop one, as we will show next.

Remark A.8 (IR) Suppose that the initial control gain matrix satisfies $K_0 \in K$. Then Lemma A.6 shows that K_0 is the control gain matrix that attains a γ-level of disturbance attenuation. By the implicit regularization property in Theorem 3.7, every iterate $K_k \in K$ for all $k \geq 0$ following the NPG (3.16) or the GN (3.17) update rules will thus preserve this γ-level of disturbance attenuation throughout the policy optimization (learning) process. Theorem 3.7 thus provides some provable robustness guarantees for two specific policy search directions, (3.17) and (3.18), which is important for safety-critical control systems in the presence of adversarial disturbances, since otherwise, the system performance index can be driven to arbitrarily large values.

Remark A.9 When solving LEQG and LQ disturbance attenuation (LQDA) problems using the proposed double-loop derivative-free PG methods (cf. Algorithms 1 and 2), we exploited the equivalence relationships in Lemma 2.2 to construct and solve an equivalent zero-sum LQ game. We comment on how to construct such an equivalent game problem in the model-free setting where only oracle-level accesses to the LEQG and LQDA models are available.

Suppose that one would like to solve the LQDA problem by solving the equivalent zero-sum game; then, the only information needed is oracle-level accesses to the LQDA model (cf. §2.2). In particular, for a fixed sequence of gains K_t, and any sequence of disturbances w_t, we assume that this LQDA oracle can return the $\|\bar{z}\|$ as defined in §2.2. Then, the LQDA oracle with an additionally injected sequence of independent Gaussian noise (with any positive definite covariance matrix) suffices to serve as the oracle for our double-loop derivative-free PG algorithms (for the stochastic game). Therefore, no explicit knowledge on the system parameters $(A_1, B_1, D_1, C_1, E_0, \gamma)$ is needed.

However, if one would like to solve the LEQG problem by solving an equivalent zero-sum game, one will need knowledge of W (to build-up the black-box sampling oracle/simulator, but still, the exact value of W is not revealed to the learning agent) in addition to oracle-level accesses to the original LEQG model (cf. 2.1). Also, explicit knowledge of the parameters $(A_t, B_t, Q_t, R_t, \beta)$ is not required. We would like to note that the assumption on the knowledge (and/or the availability of the
estimate) of W is reasonable for a large family of control applications where system dynamics and disturbance can be studied separately. For example, consider the risk-sensitive control of a wind turbine. The turbine dynamics and the wind information can be gathered separately. One can identify W by looking at the past wind data. Similar situations hold for many aerospace applications where the properties of process noise (e.g. wind gust) can be estimated beforehand.

B Proofs of Main Results

B.1 Proof of Lemma A.1

Proof Since $x_0 \sim \mathcal{N}(0, X_0)$, $w_0, \ldots, w_{N-1} \sim \mathcal{N}(0, W)$, $P_{K_t} \geq 0$ for all t, $X_0^{-1} - \beta P_{K_0} > 0$, and $W^{-1} - \beta P_{K_t} > 0$, for all $t \in \{1, \ldots, N\}$, we have by Lemma C.1 of [16] that the objective function of LEQG can be represented by (A.3). Also, the conditions that $X_0^{-1} - \beta P_{K_0} > 0$ and $W^{-1} - \beta P_{K_t} > 0$, for all $t \in \{0, \ldots, N\}$, ensure the existence of the expression Σ_{K_t}, which can be verified through applying matrix inversion lemma as in (B.1). Thus, the existence of the expression $\nabla_{K_t} \mathcal{J}(K_t)$ is also ensured, for all $t \in \{0, \ldots, N-1\}$. Let us now use ∇_{K_t} to denote the derivative w.r.t. K_t. Then, for $t \in \{1, \ldots, N-1\}$, we have

\[
\nabla_{K_t} \mathcal{J}(K_t) = -\frac{1}{\beta} \text{Tr} \left[(I - \beta P_{K_0} X_0)^{-T} \cdot \nabla_{K_t} (I - \beta P_{K_t} X_0)^{-1} \cdot \nabla_{K_t} (I - \beta P_{K_t} W)^{-T} \cdot [\nabla_{K_t} (I - \beta P_{K_t} W)]^T \right]
\]

\[
= \text{Tr} \left[(I - \beta P_{K_0} X_0)^{-1} \cdot \nabla_{K_t} (P_{K_0} X_0) \right] + \sum_{\tau = 1}^{t} \text{Tr} \left[(I - \beta P_{K_t} W)^{-1} \cdot \nabla_{K_t} (P_{K_t} W) \right]
\]

\[
= \text{Tr} \left[\nabla_{K_t} P_{K_0} \cdot X_0 (I - \beta P_{K_0} X_0)^{-1} + \sum_{\tau = 1}^{t} \text{Tr} \left[\nabla_{K_t} P_{K_t} \cdot W (I - \beta P_{K_t} W)^{-1} \right] \right]
\]

\[
= \text{Tr} \left[\nabla_{K_t} P_{K_0} \cdot X_0 (I - \beta X_0^{-1} P_{K_0} X_0^{-1})^{-1} X_0^{-1} \right] + \sum_{\tau = 1}^{t} \text{Tr} \left[\nabla_{K_t} P_{K_t} \cdot W \cdot (I - \beta W^{-1} P_{K_t} W)^{-1} \right],
\]

where the first equality is due to $\nabla_X \log \det X = X^{-T}$, the chain rule, and the fact that P_{K_t}, for all $t \in \{t+1, \ldots, N\}$, is independent of K_t. The second and third equalities are due to the cyclic property of matrix trace, $\text{Tr}(A^T B^T) = \text{Tr}(AB)$, and that X_0, W are independent of K_t. The last equality uses matrix inversion lemma, such that for $V \in \{X_0, W\}$:

\[
V \cdot (I - \beta P_K V)^{-1} = V^2 (I - \beta V^{-1} P_K V) V^{-1} V^2
\]

(B.1)

Then, by the definition of the RDE in (A.2) and defining $M_0 := X_0^{-1} (I - \beta X_0^{-1} P_{K_0} X_0^{-1})^{-1} X_0^{-1}$, $M_t := W \cdot (I - \beta W^{-1} P_{K_t} W)^{-1} W \cdot$ for all $t \in \{1, \ldots, N-1\}$, we have:

\[
\forall t \in \{0, \ldots, N-1\}, \quad \nabla_{K_t} \mathcal{J}(K_t) = \sum_{\tau = 0}^{t-1} \text{Tr} \left[\nabla_{K_t} P_{K_t} \cdot M_{\tau} \right]
\]

\[
= \sum_{\tau = 0}^{t-1} \text{Tr} \left[\nabla_{K_t} P_{K_t} \cdot M_{\tau} \right] + 2 \left[(R_t + B_t^T \bar{P}_{K_{t+1}} B_t) K_t - B_t^T \bar{P}_{K_{t+1}} A_t M_t \right]
\]

\[
+ \text{Tr} \left[(A_t - B_t K_t)^T \cdot \nabla_{K_t} \bar{P}_{K_{t+1}} \cdot (A_t - B_t K_t) M_t \right]
\]

\[
= \sum_{\tau = 0}^{t-1} \text{Tr} \left[\nabla_{K_t} P_{K_t} \cdot M_{\tau} \right] + 2 \left[(R_t + B_t^T \bar{P}_{K_{t+1}} B_t) K_t - B_t^T \bar{P}_{K_{t+1}} A_t M_t \right],
\]

where the last equality is due to $\bar{P}_{K_{t+1}}$ not depending on K_t and thus $\nabla_{K_t} \bar{P}_{K_{t+1}} = 0$. Then, for all $t \in \{1, \ldots, t-1\}$, we first recall the definition that $\bar{P}_{K_t} = P_{K_t} + \beta P_{K_t} (W^{-1} - \beta P_{K_t}^{-1} P_{K_t})$, and then
take the derivatives on both sides with respect to K_t to get
\[
\nabla_{K_t} \vec{P}_{K_t} = \nabla_{K_t} \left[P_{K_t} + \beta P_{K_t} (W^{-1} - \beta P_{K_t})^{-1} P_{K_t} \right] = \nabla_{K_t} \left[(I - \beta P_{K_t}) W^{-1} P_{K_t} \right] \\
= (I - \beta P_{K_t}) W^{-1} \cdot \nabla_{K_t} [P_{K_t} \cdot \beta W (I - \beta P_{K_t}) W^{-1} P_{K_t}] + (I - \beta P_{K_t}) W^{-1} \cdot \nabla_{K_t} P_{K_t} \\
= (I - \beta P_{K_t}) W^{-1} \cdot \nabla_{K_t} P_{K_t} \cdot \left[W^{\frac{1}{2}} (I - W^{\frac{1}{2}} P_{K_t} W^{\frac{1}{2}})^{-1} W^{\frac{1}{2}} P_{K_t} + I \right] \\
= (I - \beta P_{K_t}) W^{-1} \cdot \nabla_{K_t} P_{K_t} \cdot (I - \beta W P_{K_t})^{-1} = (I - \beta P_{K_t}) W^{-1} \cdot \nabla_{K_t} P_{K_t} \cdot (I - \beta P_{K_t}) W^{-\top},
\]
where the second and the fifth equalities use matrix inversion lemma, the third equality uses $\nabla_X (P^{-1}) = -P^{-1} \cdot \nabla_X P \cdot P^{-1}$, and the fourth equality uses (B.1). Now, for any $\tau \in \{0, \cdots, t-1\}$, we can iteratively unroll the RDE (A.2) to obtain that
\[
\text{Tr} [\nabla_{K_t} P_{K_t} \cdot M_\tau] = 2 \left((R_t + B_t^T \vec{P}_{K_{t+1}} B_t) K_t - B_t^T \vec{P}_{K_{t+1}} A_t \right) \\
\cdot \prod_{i=\tau}^{t-1} \left[(I - \beta P_{K_{i+1}} W)^{-\top} (A_i - B_i K_i) \right] \cdot M_\tau \cdot \prod_{i=\tau}^{t-1} \left[(A_i - B_i K_i)^T (I - \beta P_{K_{i+1}} W)^{-1} \right].
\]
Taking a summation proves the PG expression in (A.4).

\[B.2 \, \text{Proof of Lemma A.2}\]
\textbf{Proof} We first prove the policy gradient of (A.8). By the conditions that $\gamma^2 I - D_t^T P_{K_{t+1}} D_t > 0$, for all $t \in \{0, \cdots, N-1\}$, and $\gamma^2 I - P_{K_0} > 0$, the expression Σ_{K_t} exists and thus the expression $\nabla_{K_t} \vec{J}(\{K_i\})$ exists, for all $t \in \{0, \cdots, N-1\}$. Then, the PG expression of (A.8) follows from the proof of Lemma A.1 by replacing β^{-1} and W therein with γ^2 and $D_t D_t^T$, respectively, and also replacing the X_0 in the expression of Σ_{K_t} by I. Next, we prove the PG of (A.9) w.r.t. K_t. Let us now use $\nabla_{\vec{K}_t}$ to denote the derivative w.r.t. K_t. Then, for $t \in \{0, \cdots, N-1\}$, we have
\[
\nabla_{K_t} \vec{J}(\{K_i\}) = \text{Tr} \left[\nabla_{K_t} P_{K_0} \right] + \sum_{t=1}^N \text{Tr} \left[\nabla_{K_t} \left(P_{K_t} (D_{t-1} D_t^T) \right) \right] = \text{Tr} \left[\nabla_{K_t} P_{K_0} \right] + \sum_{t=1}^N \text{Tr} \left[(D_{t-1}^T \cdot \nabla_{K_t} P_{K_t} \cdot D_t) \right],
\]
where the first equality is due to that P_{K_t}, for all $\tau \in \{t+1, \cdots, N\}$, does not depend on K_t. Recalling the RDE in (A.7), we can unroll the recursive formula to obtain
\[
\text{Tr} \left[\nabla_{K_t} P_{K_0} \right] = 2 \left((R_t + B_t^T \vec{P}_{K_{t+1}} B_t) K_t - B_t^T \vec{P}_{K_{t+1}} A_t \right) \\
\cdot \prod_{i=0}^{t-1} \left[(I - \gamma^{-2} P_{K_{i+1}} D_t D_t^T)^{-\top} (A_i - B_i K_i) \right] \cdot (I - \gamma^{-2} P_{K_{i+1}} D_t D_t^T)^{-1}.
\]
Moreover, for any $\tau \in \{1, \cdots, t\}$, we have
\[
\text{Tr} \left[(D_{\tau-1}^T \cdot \nabla_{K_t} P_{K_t} \cdot D_{\tau-1}) \right] = 2 \left((R_t + B_t^T \vec{P}_{K_{t+1}} B_t) K_t - B_t^T \vec{P}_{K_{t+1}} A_t \right) \\
\cdot \prod_{i=\tau}^{t-1} \left[(I - \gamma^{-2} P_{K_{i+1}} D_t D_t^T)^{-\top} (A_i - B_i K_i) \right] \cdot D_{\tau-1} D_{\tau-1}^T \cdot \prod_{i=\tau}^{t-1} \left[(A_i - B_i K_i) \right] \cdot (I - \gamma^{-2} P_{K_{i+1}} D_t D_t^T)^{-1}.
\]
Taking a summation proves the expression of the policy gradient in (A.10).

\[B.3 \, \text{Proof of Lemmas 2.2 and A.6}\]
\textbf{Proof} The equivalence relationships are proved in three parts. Firstly, by Chapter 6.4, page 306 of [26], the discrete-time zero-sum LQ dynamic game with additive stochastic disturbance (zero-mean, independent sequence), and with closed-loop perfect-state information pattern, admits the same saddle-point gain matrices for the minimizer and the maximizer as the deterministic version of the game (that is, without the stochastic driving term).

Subsequently, by Theorem 4.1 of [24], we can introduce a corresponding (deterministic) zero-sum LQ dynamic game with $R^T = \gamma^2 I$ for any fixed $\gamma > \gamma^*$ in the LQ disturbance attenuation problem. Then,
if we replace R^u_t, R^w_t, Q_t in the deterministic version of the game presented in §2.3 by $\gamma^2 I, R_t, C_t^T C_t$ in §2.2, respectively, for all $t \in \{0, \cdots, N-1\}$, and also set other shared parameters in §2.3 and §2.2 to be the same, the saddle-point gain matrix for the minimizing player in that game is equivalent to the gain matrix in the disturbance attenuation problem.

Lastly, by §VI.B of [22] and if we replace $R^u_t, R^w_t, Q_t, D_t D_t^T$ in the deterministic version of the game presented in §2.3 by $\gamma^{-1} I, R_t, C_t^T C_t, W$ in §2.1 for all $t \in \{0, \cdots, N-1\}$, and also set other shared parameters in §2.3 to be the same as the ones in §2.1, then the deterministic zero-sum LQ dynamic game is equivalent to the LEQG problem with perfect state measurements, in the sense that the optimal gain matrix in the latter is the same as the saddle-point gain matrix for the minimizing player in the former. This completes the proof.

B.4 Proof of Lemma 3.1

Proof We first prove that for a fixed $K \in \mathcal{K}$, the optimization problem with respect to L can be nonconcave, by establishing an example of the game. Here, \mathcal{K} is the feasible set as defined in (3.9), which ensures that for a fixed K, the solution to the maximization problem with respect to L is well defined. Specifically, we consider a 3-dimensional linear time-invariant system with $A_t = A, B_t = B, D_t = D, Q_t = Q, R^u_t = R^u, \text{and } R^w_t = R^w$ for all t, where

\[A = \begin{bmatrix} 1 & 0 & -5 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -10 & 0 \\ 0 & 3 & 1 \\ -1 & 0 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.2 & 0 \\ 0 & 0 & 0.2 \end{bmatrix}, \]

\[Q = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, \quad R^u = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 4 & -2 \\ 0 & -2 & 3 \end{bmatrix}, \quad R^w = 5 \cdot I. \]

Also, we set $\Sigma_0 = I, N = 5$, and choose the time-invariant control gain matrices $K_t = K, L^1_t = L^1, L^2_t = L^2, L^3_t = L^3 = \frac{L^1 + L^2}{2}$ for all t, where

\[K = \begin{bmatrix} -0.12 & -0.01 & 0.62 \\ -0.21 & 0.14 & 0.15 \\ -0.06 & 0.05 & 0.42 \end{bmatrix}, \quad L^1 = \begin{bmatrix} -0.86 & 0.97 & 0.14 \\ -0.82 & 0.36 & 0.51 \\ 0.98 & 0.08 & -0.20 \end{bmatrix}, \quad L^2 = \begin{bmatrix} -0.70 & -0.37 & 0.09 \\ -0.54 & -0.28 & 0.23 \\ 0.74 & 0.62 & -0.51 \end{bmatrix}. \]

The concatenated matrices $A, B, D, Q, R^u, R^w, K, L^1, L^2, L^3$ are generated following the definitions in §3. Then, we first note that $K \in \mathcal{K}$ holds, as $B_{K,L(K)} \succeq 0$ exists and one can calculate that $\lambda_{\min}(R^w - D^T B_{K,L(K)} D) = 0.5041 > 0$. Subsequently, we can verify that $\left(\mathcal{G}(K, L^1) + \mathcal{G}(K, L^2) \right)/2 - \mathcal{G}(K, L^3) = 6.7437 > 0$. Thus, we can conclude that there exists a $K \in \mathcal{K}$ such that the objective function is nonconcave with respect to L. Next, we prove the other argument by choosing the following time-invariant control gain matrices $L_t = L, K^1_t = K^1, K^2_t = K^2, K^3_t = K^3$ for all t, where

\[L = 0, \quad K^1 = \begin{bmatrix} 1.44 & 0.31 & -1.18 \\ 0.03 & -0.13 & -0.39 \\ 0.36 & -1.71 & 0.24 \end{bmatrix}, \quad K^2 = \begin{bmatrix} -0.08 & -0.16 & -1.96 \\ -0.13 & -1.12 & 1.28 \\ 1.67 & -0.91 & 1.71 \end{bmatrix}, \quad K^3 = \frac{K^1 + K^2}{2}. \]

Following similar steps, we can verify that $\left(\mathcal{G}(K^1, L) + \mathcal{G}(K^2, L) \right)/2 - \mathcal{G}(K^3, L) = -1.2277 \times 10^5 < 0$. Therefore, there exists L such that the objective function is nonconvex with respect to K.

\[\blacksquare \]
B.5 Proof of Lemma 3.2

Proof For \(t \in \{0, \ldots, N-1\} \), we can define the cost-to-go function starting from time \(t \) to \(N \) as \(G_t \). Recalling the definition of \(\bar{G}_{t+1} \) in (3.3), we can write \(G_t \) as

\[
G_t = \mathbb{E}_{x_t, \xi_{t-1}, \xi_{N-1}} \left\{ x_t^T P_{k_{t+1}} x_t + \sum_{\tau = t}^{N-1} \xi_{\tau}^T P_{k_{\tau+1}} \xi_{\tau} \right\} + \mathbb{E}_{x_t, \xi_{N-1}} \left\{ \sum_{\tau = t}^{N-1} \xi_{\tau}^T P_{k_{\tau+1}} \xi_{\tau} \right\}
\]

We denote \(\nabla L G_t := \frac{\partial G_t}{\partial t} \) for notational simplicity, and note that the last term of the above equation does not depend on \(L_t \). Then, we can show that \(\nabla L G_t = 2 \left((R^u + D^T P_{k_{t+1}} D) - D^T P_{k_{t+1}} (A - B K) \right) X_{0,t} \), where \(\Sigma_{K,L} \) is the solution to (3.5). Using similar techniques, we can derive, for a fixed \(L \), the PG of \(G(K, L) \) with respect to \(K \) to be \(\nabla K G(K, L) = 2 \left((R^u + B^T P_{k_{t+1}} B) - B^T P_{k_{t+1}} (A - D L) \right) X_{0,t} \). Since \(\Sigma_0 \) being full-rank ensures that \(\Sigma_{K,L} \) is also full-rank and we have \(\nabla K G(K, L) = 0 \) at the stationary points, the PG forms derived above imply

\[
K = (R^u + B^T P_{k_{t+1}} B)^{-1} B^T P_{k_{t+1}} (A - D L), \quad L = -(R^u + D^T P_{k_{t+1}} D)^{-1} D^T P_{k_{t+1}} (A - B K),
\]

where by assumption, we have \(R^u - D^T P_{k_{t+1}} D > 0 \), and \(R^u + B^T P_{k_{t+1}} B > 0 \) is further implied by \(P_{k,L} \geq 0 \) (and thus they are both invertible). Therefore, we can solve (B.2) to obtain

\[
K = (R^u)^{-1} B^T P_{k_{t+1}} \left[I + \left(B (R^u)^{-1} B^T - D (R^u)^{-1} D^T \right) P_{k_{t+1}} \right]^{-1} A,
\]

\[
L = -(R^u)^{-1} D^T P_{k_{t+1}} \left[I + \left(B (R^u)^{-1} B^T - D (R^u)^{-1} D^T \right) P_{k_{t+1}} \right]^{-1} A,
\]

which are (A.14) and (A.15) in their corresponding compact forms. Moreover, at the Nash equilibrium, the solution to (A.13) in its compact form, denoted as \(P' \), is also the solution to the Lyapunov equation

\[
P' = Q + (K')^T R^u K' - (L)^T R^u L' + (A - B K' - D L')^T P' (A - B K' - D L').
\]

Lastly, under Assumption A.4, the solution to the RDE (A.13) is uniquely computed. As a result, the stationary point of \(G(K, L) \) is also the unique Nash equilibrium of the game. This completes the proof.

B.6 Proof of Lemma 3.3

Proof Let the sequence of outer-loop control gains \(\{K_t\}, t \in \{0, \ldots, N-1\} \), be fixed. To facilitate the analysis, we first construct a sequence of auxiliary zero-sum LQ dynamic games, denoted as \(\{\tilde{G}_t\}, t \in \{0, \ldots, N-1\} \), where each \(\tilde{G}_t \) has closed-loop state-feedback information structure. Specifically, for any \(t \), \(\tilde{G}_t \) starts from some arbitrary \(x_0 \) and follows a deterministic system dynamics \(x_{t+1} = \overline{A}_t x_t + \overline{B}_t u_t + \overline{D}_t v_t \) for a finite horizon of \(N - t \), where

\[
\overline{A}_t := A_{t+1} - B_{t+1} K_{t+1}, \quad \overline{B}_t := 0, \quad \overline{D}_t := D_{t+1}, \quad \overline{u}_t := -\overline{K}_t x_t - K_{t+1} x_t, \quad \overline{v}_t := -\overline{L}_t x_t.
\]

The weighting matrices of \(\tilde{G}_t \) are chosen to be \(\overline{Q}_t := Q_{t+1} + R^u_{t+1} R^u_{t+1} + R^w_{t+1} \) for all \(t \in \{0, \ldots, N-t-1\} \) and \(\overline{Q}_{N-t} := Q_N \). Moreover, for any sequence of control gains \(\{\tilde{L}_t\}, t \in \{0, \ldots, N-t-1\} \), we define \(\overline{P}_{t+1} := (\overline{A}_t - \overline{D}_t \overline{L}_t)^T \overline{P}_{t+1} (\overline{A}_t - \overline{D}_t \overline{L}_t), \quad \overline{P}_{N-t} := \overline{Q}_{N-t} \).
Then, for any $t \in \{0, \ldots, N-1\}$, Theorem 3.2 of [25] suggests that Γ_d admits a unique feedback saddle-point if the sequence of p.s.d. solutions $\{\overline{P}_\tau\}$, $\tau \in \{0, \ldots, N-t\}$, computed by the recursive Riccati equation
\[
\overline{P}_\tau = \overline{Q}_\tau + \overline{R}_\tau^T \overline{R}_\tau K_\tau + A_\tau^T \overline{P}_{\tau+1} A_\tau + A_\tau^T \overline{P}_{\tau+1} D_\tau (R_\tau^u - D_\tau^T \overline{P}_{\tau+1} D_\tau)^{-1} D_\tau^T \overline{P}_{\tau+1} A_\tau, \quad \overline{P}_{N-t} = \overline{Q}_{N-t},
\] (B.4)
exists and satisfies
\[
R_\tau^u - D_\tau^T \overline{P}_{\tau+1} D_\tau > 0, \quad \tau \in \{0, \ldots, N-t \}.
\] (B.5)
Whenever exist, the saddle-point solutions at time τ, for any $\tau \in \{0, \ldots, N-t \}$, are given by
\[
\overline{P}_\tau = 0, \quad \overline{w}_\tau = -\overline{L}_\tau \overline{x}_\tau = (R_\tau^u - D_\tau^T \overline{P}_{\tau+1} D_\tau)^{-1} D_\tau^T \overline{P}_{\tau+1} A_\tau \overline{x}_\tau.
\] (B.6)
Moreover, the saddle-point value of Γ_d is $\exists_0^T \overline{P}_0 \overline{x}_0$ and the upper value of Γ_d becomes unbounded when the matrix $R_\tau^u - D_\tau^T \overline{P}_{\tau+1} D_\tau$ has at least one negative eigenvalue for at least one $\tau \in \{0, \ldots, N-t \}$. Further, since the choice of \overline{x}_0 was arbitrary, it holds that $\overline{P}_0 \geq \overline{P}_{\overline{I}_\tau}$ for any sequence of $\{\overline{I}_\tau\}$, $\tau \in \{0, \ldots, N-t \}$. Because the above properties hold for all Γ_d, $t \in \{0, \ldots, N-1\}$, we can generate a compact matrix $P_{K(L)} \in \mathbb{R}^{m(N+1)\times m(N+1)}$ by putting \overline{P}_0 for each Γ_d, $t \in \{0, \ldots, N-1\}$, sequentially on the diagonal and putting Q_N at the end of the diagonal. The resulting $P_{K(L)}$ then solves (3.8), and satisfies $P_{K(L)} \geq P_{K(L)}$, for all $L \in S(n, m, N)$, where $P_{K(L)}$ is computed by (3.4).

Subsequently, we construct an analytic zero-sum LQ dynamic game Γ_s with closed-loop state-feedback information pattern, using compact notations. In particular, Γ_s has a horizon of N and a (stochastic) system dynamics being $\mathbf{x} = \overline{A} \mathbf{x} + \overline{B} \overline{u} + \overline{D} \overline{w} + \overline{e}$, where the initial state is some arbitrary \overline{x}_0 and
\[
\overline{A} := A - BK, \quad \overline{B} := 0, \quad \overline{D} := D, \quad \overline{e} := \begin{bmatrix} x_0^T, \xi_0^T, \ldots, \xi_{N-1}^T \end{bmatrix}^T, \quad \overline{u} = -\overline{K} \overline{e}, \quad \overline{w} = -\overline{L} \overline{e}.
\]
We assume that $x_0, \xi_0, \ldots, \xi_{N-1}$ are all zero-mean and independent random variables. The weighting matrices of Γ_s are chosen to be $\overline{Q} := Q$, $\overline{R} := R^u$, and $\overline{D} := D^u$. By Corollary 6.4 of [26], Γ_s is equivalent to Γ_{d_0} above in that the Riccati equation (B.4) and the saddle-point gain matrices (B.6) are the same for Γ_s and Γ_{d_0}.

Note that for a fixed outer-loop control policy $u = -Kx$, the inner-loop subproblem is the same as Γ_s, in that Γ_s essentially absorbs the fixed outer-loop control input into system dynamics. Therefore, the properties of Γ_s, which are equivalent to those of Γ_{d_0}, apply to our inner-loop subproblem. Specifically, (3.8) is a compact representation of (B.4) and (3.9) is the set of K such that (B.4) admits a sequence of p.s.d. solutions satisfying (B.5). Therefore, $K \in \mathcal{K}$ is a sufficient and almost necessary condition for the solution to the inner-loop to be well defined, in that if $K \notin \overline{K}$, the inner-loop objective $G(K, \cdot)$ can be driven to arbitrarily large values. Whenever the solution to the inner-loop exists, it is unique and takes the form of (3.10). This completes the proof.

\section*{B.7 Proof of Lemma 3.4}

\textbf{Proof} Let $K \in \mathcal{K}$ be fixed. First, the nonconcavity of the inner-loop objective $G(K, \cdot)$ follows directly from Lemma 3.1. Then, we have by (3.9) and the definitions of the compact matrices that $P_{K(L)} \geq 0$ exists and satisfies $R_\tau^u - D_\tau^T P_{K(L)} D_\tau > 0$, for all $t \in \{0, \ldots, N \}$. Also, for any sequence of $\{L_t\}$, the sequence of solutions to the recursive Lyapunov equation (3.3), $\{P_{K(L)}\}$, always exists and is unique: by Lemma 3.3, it holds that $P_{K(L)} \geq P_{K(L)}$, and thus $R_\tau^u - D_\tau^T P_{K(L)} D_\tau > 0$ for all $t \in \{0, \ldots, N-1\}$. Now, for any $t \in \{0, \ldots, N-1\}$, we have by (3.3) that
\[
P_{K(L)} = (A_1 - B_1 K_1 - D_1 L_t)^T P_{K(L)} (A_1 - B_1 K_1 + Q_1 + K_1^T R_1^u K_1 - L_1^T R_1^u L_1) (A_1 - B_1 K_1)^T P_{K(L)} (A_1 - B_1 K_1 + Q_1 + K_1^T R_1^u K_1 - L_1^T R_1^u L_1) D_1 L_t
\] (B.7)
Note that as $\|L_t\| \to +\infty$, the quadratic term in (B.7), with leading matrix $-(R_\tau^u - D_\tau^T P_{K(L)} D_\tau) < 0$, dominates other terms. Thus, as $\|L_t\| \to +\infty$ for some $t \in \{0, \ldots, N-1\}$, $\lambda_{\min}(P_{K(L)}) \to -\infty$, 30
which further makes \(\lambda_{\text{min}}(P_{K,L}) \to -\infty \). In compact forms, this means that \(\lambda_{\text{min}}(P_{K,L}) \to -\infty \) as \(||L|| \to +\infty \). By (3.2), the inner-loop objective for a fixed \(K \in \mathcal{K} \) and any \(L \in \mathcal{S}(n,m,N) \) has the form of \(G(K,L) = \text{Tr}(P_{K,L} \Sigma_0) \), where \(\Sigma_0 > 0 \) is full-rank. This proves the coercivity of the inner-loop objective \(G(K,\cdot) \).

Moreover, for a fixed \(K \in \mathcal{K} \), as \(P_{K,L} \) is a polynomial of \(L \), \(G(K,\cdot) \) is continuous in \(L \). Combined with the coercivity property and the upper-boundedness of \(G(K,\cdot) \) for \(K \in \mathcal{K} \), we can conclude the compactness of the superlevel set (3.12). The local Lipschitz and smoothness properties of \(G(K,\cdot) \) follow from Lemmas 4 and 5 of \cite{19}, with their \(A,B,Q,R \) matrices replaced by our \(A-BK,D,Q+K^T R^a K - R^q \), respectively. Note that the property \(||\Sigma_K|| \leq \frac{\lambda_{\text{min}}(Q)}{\phi} \) in the proof of Lemma 16 in \cite{19} does not hold in our setting as we only assume \(Q \geq 0 \) and \(Q+K^T R^a K \) may not be full-rank. Instead, we utilize the fact that \(L_K(a) \) is compact, and thus there exists a uniform constant \(c_{\Sigma,a} := \max_{L \in L_K(a)} ||\Sigma_K|| \) such that \(||\Sigma_K|| \leq c_{\Sigma,a} \) for all \(L \in L_K(a) \). Subsequently, we note that for all \(L \in L_K(a) \), the operator norms of the PG (3.13) and the Hessian, which are continuous functions of \(L \), can be uniformly bounded by some constants \(l_{K,a} > 0 \) and \(\psi_{K,a} > 0 \), respectively. That is, \(l_{K,a} := \max_{L \in L_K(a)} ||\nabla_L G(K,L)|| \), \(\psi_{K,a} := \max_{L \in L_K(a)} ||\nabla_L^2 G(K,L)|| = \max_{L \in L_K(a)} \sup_{||X|| = 1} ||\nabla_L^2 G(K,L)||_{[X,X]} \).

where \(\nabla_L^2 G(K,L)[X,X] \) denotes the action of the Hessian on a matrix \(X \in \mathcal{S}(n,m,N) \). The expression of \(\nabla_L^2 G(K,L)[X,X] \) follows from Proposition 3.10 of \cite{14}, with their \(R,B,X,Y,A_K \) being replaced by our \(-R^q,D,P_{K,L},L_K,A \neq BK- DL \), respectively. This proves the global Lipschitzness and smoothness of \(G(K,\cdot) \) over the compact superlevel set \(L_K(a) \).

To prove the PL condition, we first characterize the difference between \(P_{K,L} \) and \(P_{K,L(K)} \) as \(P_{K,L(K)} - P_{K,L} = A_{K,L,K}^T(P_{K,L(K)} - P_{K,L})A_{K,L,K} + (L(K) - L)^T E_{K,L} \)

where \(A_{K,L,K} := A - BK - DL \). From Lemma 3.3 and \(K \in \mathcal{K} \), we can conclude that for all \(L \), the inequality \(H_{K,L} \geq 0 \) holds because \(P_{K,L(K)} \geq P_{K,L} \) for all \(L \in \mathcal{S}(n,m,N) \). Then, by Proposition 2.1(b) of \cite{14}, we have that for every \(q^0 > 0 \), \((L(K) - L)^T E_{K,L} + E_{K,L}^T (L(K) - L) \leq \frac{1}{q^0} (L(K) - L)^T (L(K) - L) + \phi E_{K,L}^T E_{K,L} \).

Choosing \(q^0 = 1/\lambda_{\text{min}}(H_{K,L}) \) yields

\[
(L(K) - L)^T E_{K,L} + E_{K,L}^T (L(K) - L) \leq \frac{E_{K,L}^T E_{K,L}}{\lambda_{\text{min}}(H_{K,L})} \leq \frac{E_{K,L}^T E_{K,L}}{\lambda_{\text{min}}(H_{K,L,K})},
\]

where the last inequality is due to \(H_{K,L,K} \leq H_{K,L}, \forall L \in \mathcal{S}(n,m,N) \). Let \(Y \) be the solution to \(Y = A_{K,L,K}^T Y A_{K,L,K} + \frac{E_{K,L}^T E_{K,L}}{\lambda_{\text{min}}(H_{K,L,K})} \). From (B.8), we further know that \(P_{K,L(K)} - P_{K,L} \leq Y \) and \(Y = \sum_{i=0}^N \left[A_{K,L,K}^T \right]^i \frac{E_{K,L}^T E_{K,L}}{\lambda_{\text{min}}(H_{K,L,K})} \left[A_{K,L,K} \right]^i \). Therefore, letting \(\Sigma_{K,L,K} = \sum_{i=0}^N \left[A_{K,L,K}^T \right]^i \lambda_{\text{min}}(H_{K,L,K}) \left[A_{K,L,K} \right]^i \), we have

\[
G(K,L(K)) - G(K,L) = \text{Tr}\left(\sum_0^N \left[A_{K,L,K}^T \right]^i \frac{E_{K,L}^T E_{K,L}}{\lambda_{\text{min}}(H_{K,L,K})} \left[A_{K,L,K} \right]^i \right) \leq \frac{||\Sigma_{K,L,K}||}{\lambda_{\text{min}}(H_{K,L,K})} \text{Tr}(E_{K,L}^T E_{K,L}),
\]

\[
\leq \frac{||\Sigma_{K,L,K}||}{\lambda_{\text{min}}(H_{K,L,K})} \text{Tr}(E_{K,L}^T E_{K,L} \Sigma_{K,L,K}) \leq \frac{||\Sigma_{K,L,K}||}{4 \lambda_{\text{min}}(H_{K,L,K}) \phi^2} \text{Tr}(\nabla_L G(K,L)^T \nabla_L G(K,L)).
\]

Inequality (B.9) follows from the cyclic property of matrix trace and the last inequality is due to \(\Sigma_0 \leq \Sigma_{K,L,K} \). Hence,

\[
G(K,L(K)) - G(K,L) \leq \frac{||\Sigma_{K,L,K}||}{4 \lambda_{\text{min}}(H_{K,L,K}) \phi^2} \text{Tr}(\nabla_L G(K,L)^T \nabla_L G(K,L)).
\]

Substituting in \(\mu_K := 4 \lambda_{\text{min}}(H_{K,L,K}) \phi^2 / ||\Sigma_{K,L,K}|| \) completes the proof.
B.8 Proof of Lemma 3.5

Proof The nonconvexity proof is done by constructing a time-invariant example, which chooses $A_t = A$, $B_t = B$, $D_t = D$, $Q_t = Q$, $R_t^u = R^u$, and $R_t^w = R^w$ for all t, where

\[
A = \begin{bmatrix} 1 & 0 & -5 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -10 & 0 \\ 0 & 3 & 1 \\ -1 & 0 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \end{bmatrix},
\]

\[
Q = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}, \quad R^u = \begin{bmatrix} 2 & 1 \\ 1 & 3 \\ 1 & -1 \end{bmatrix}.
\]

and $R^w = 7.22543 \cdot I$. We also choose the time-invariant gain matrices $K_1 = K^1$, $K_2 = K^2$, and $K_3 = K^3$, where

\[
K^1 = \begin{bmatrix} -0.8750 & 1.2500 & -2.5000 \\ -0.1875 & 0.1250 & 0.2500 \\ -0.4375 & 0.6250 & -0.7500 \end{bmatrix}, \quad K^2 = \begin{bmatrix} -0.8786 & 1.2407 & -2.4715 \\ -0.1878 & 0.1237 & 0.2548 \\ -0.4439 & 0.5820 & -0.7212 \end{bmatrix}, \quad K^3 = \frac{K^1 + K^2}{2}.
\]

The concatenated matrices $A, B, D, Q, R^u, R^w, K^1, K^2, K^3$ are generated following the definitions in §3. Subsequently, we can prove that $K^1, K^2, K^3 \in K$ by verifying that the recursive Riccati equation (3.8) yields p.s.d. solutions for K^1, K^2, K^3, respectively, and $\lambda_{\min}(H_{K^1,L(K^1)}) = 4.3496 \times 10^{-6}$, $\lambda_{\min}(H_{K^2,L(K^2)}) = 0.1844$, $\lambda_{\min}(H_{K^3,L(K^3)}) = 0.0926$. Then, we can compute that $(G(K^1, L(K^1)) + G(K^2, L(K^2)))/2 - G(K^3, L(K^3)) = -0.0224 < 0$. Thus, we can conclude that $G(K, L(K))$ is nonconvex in K. Subsequently, we show that the outer loop is noncoercive on K by a scalar example with $N = 2$ and time-invariant system matrices being $A_t = A$, $B_t = D_t = Q_t = R_t^u = 1$, and $R_t^w = 5$, for all t. Then, we consider the gain matrix $K^e = \begin{bmatrix} 2 - \epsilon & 0 & 0 \\ 0 & 2 - \epsilon & 0 \end{bmatrix} \in K$, $\forall \epsilon \in \left(0, \frac{16}{7}\right)$. It can be observed that $\lim_{\epsilon \to 0^+} G(K^e, L(K^e)) = 11 < \infty$, while $\lim_{\epsilon \to 0^+} K^e \in \partial K$, for $\epsilon \in \left(0, \frac{16}{7}\right)$. Therefore, $G(K, L(K))$ is not coercive. Lastly, by Lemma 3.2, the stationary point of the outer loop in K, denoted as $(K^*, L(K^*))$, is unique and constitutes the unique Nash equilibrium of the game. ■

B.9 Proof of Theorem 3.6

Proof We prove the global convergence of three inner-loop PG updates as follows:

PG: For a fixed $K \in \mathcal{K}$ and an arbitrary L_0 that induces a finite $G(K, L_0)$, we first define superlevel sets $\mathcal{L}_K(G(K, L_0))$ and $\mathcal{L}_K(a)$ as in (3.12), where $a < G(K, L_0)$ is an arbitrary constant. Clearly, it holds that $L_0 \in \mathcal{L}_K(G(K, L_0)) \subset \mathcal{L}_K(a)$ and thus $\mathcal{L}_K(G(K, L_0))$ is nonempty as well as compact (as shown before in Lemma 3.4). Next, denote the closure of the complement of $\mathcal{L}_K(a)$ as $(\overline{\mathcal{L}_K(a)})^c$, which is again nonempty and also disjoint with $\mathcal{L}_K(G(K, L_0))$, i.e., $\mathcal{L}_K(G(K, L_0)) \cap (\overline{\mathcal{L}_K(a)})^c = \emptyset$, due to a being strictly less than $G(K, L_0)$. Hence, one can deduce (see for example Lemma 1.1 of [75]) that, there exists a Hausdorff distance $\delta_a > 0$ between $\mathcal{L}_K(G(K, L_0))$ and $(\overline{\mathcal{L}_K(a)})^c$ such that for a given $L \in \mathcal{L}_K(G(K, L_0))$, all L' satisfying $||L' - L||_F \leq \delta_a$ also satisfy $L' \in \mathcal{L}_K(a)$. Now, since $L_0 \in \mathcal{L}_K(G(K, L_0))$, we have $\|\nabla_L G(K, L_0)\|_F \leq l_{K,G(K,L_0)}$, where $l_{K,G(K,L_0)}$ is the global Lipschitz constant over $\mathcal{L}_K(G(K, L_0))$. Therefore, it suffices to choose $\eta_0 \leq \frac{\delta_a}{l_{K,G(K,L_0)}}$ to ensure that the one-step “fictitious” PG update satisfies $L_0 + \eta_0 \nabla_L G(K, L_0) \in \mathcal{L}_K(a)$. By Lemma 3.4, we can apply the descent lemma (for minimization problems) [76] to derive:

\[
G(K, L_0) - G(K, L_0 + \eta_0 \nabla_L G(K, L_0)) \leq -\eta_0 \left(\nabla_L^2 G(K, L_0), \nabla_L G(K, L_0)\right) + \frac{\eta_0^2 \psi_{K,a} \|\nabla_L G(K, L_0)\|_F^2}{2}.
\]

Thus, we can additionally require $\eta_0 \leq 1/\psi_{K,a}$ to guarantee that the objective is non-decreasing (i.e., $L_0 + \eta_0 \nabla_L G(K, L_0) \in \mathcal{L}_K(G(K, L_0)))$. This also implies that starting from $L_0 + \eta_0 \nabla_L G(K, L_0)$,
taking another “fictitious” PG update step of \(\eta_0 \nabla E_g(K, L_0) \) with \(\eta_0 \leq \min\{\delta_0/\|K, g(K, L_0)\|, 1/\psi_K, q\} \) ensures that \(L_0 + 2\eta_0 \nabla E_g(K, L_0) \in L_K^2(g(K, L_0)). \) Applying the same argument iteratively certifies that we can actually take a much larger stepsize \(\eta_0 \), with the only requirement being \(\eta_0 \leq 1/\psi_K, q \), which guarantees that after one-step of the “actual” PG update, \(L_1 = L_0 + \eta_0 \nabla E_g(K, L_0) \), it holds that \(L_1 \in L_K^2(g(K, L_0)) \). This is because \(1/\psi_K, q \) can be covered by a finite times of \(\delta_0/\|K, g(K, L_0)\| \).

Now, since \(L_1 \in L_K^2(g(K, L_0)) \), we can repeat the above arguments for all future iterations and show that with a fixed stepsize \(\eta \) satisfying \(\eta \leq 1/\psi_K, q \), the iterates of the PG update (3.13) satisfies for all \(l \geq 0 \)

\[
G(K, L_{l+1}) - G(K, L_l) \leq -\eta \left(\nabla E_g(K, L_l) \right) + \frac{\eta^2 q \psi_K, q}{2} \| \nabla E_g(K, L_l) \|^2 \leq 0.
\]

By the choice of \(\eta \), we characterize the convergence rate of the PG update (3.13) by exploiting the PL condition from Lemma 3.4, such that

\[
G(K, L_{l+1}) - G(K, L_l) \leq -\frac{1}{2\psi_K, q} \| \nabla E_g(K, L_l) \|^2 \leq -\frac{\mu_K}{2\psi_K, q} \left(G(K, L(K)) - G(K, L_l) \right),
\]

where \(\mu_K \) is the global PL constant for a given \(K \in \mathcal{K} \). Thus, \(G(K, L(K)) - G(K, L_{l+1}) \leq \left(1 - \frac{\mu_K}{2\psi_K, q} \right) \left(G(K, L(K)) - G(K, L_l) \right) \). This completes the proof for the linear convergence of the objective.

Next, we show the convergence of the control gain matrix to \(L(K) \). We let \(q := 1 - \frac{\mu_K}{2\psi_K, q} \) and present the following comparison

\[
G(K, L(K)) - G(K, L_l) = \text{Tr} \left[(P_{K, L(K)} - P_{K, L_l}) \Sigma_0 \right]
\]

where the second equality is due to that \(E_{K, L(K)} = 0 \) from the property of stationary points, and the last inequality is due to \(\Sigma_{K, L_l} = \Sigma_0, \forall l \geq 0 \). Then, we can conclude that

\[
\| L(K) - L_l \|_F \leq \frac{1}{\sqrt{\mu_K, 0}} \| H_{K, L(K)} \| \left(G(K, L(K)) - G(K, L_l) \right)
\]

This completes the convergence proof of the gain matrix.

NPG: We argue that for a fixed \(K \in \mathcal{K} \), the inner-loop iterates following the NPG update (3.14) with a certain stepsize choice satisfy \(P_{K, L_{i+1}} \geq P_{K, L_l} \) in the p.s.d. sense, for all \(l \geq 0 \). By the definition of \(R_{K, L} \) in (3.4), we can derive the following comparison between \(P_{K, L_{i+1}} \) and \(P_{K, L_l} \):

\[
P_{K, L_{i+1}} - P_{K, L_l} = A_{K, L_{i+1}}(P_{K, L_{i+1}} - P_{K, L_l})A_{K, L_{i+1}} + 4\eta E_{K, L_{i+1}} E_{K, L_{i+1}} - 4\eta^2 E_{K, L_{i+1}} E_{K, L_{i+1}} H_{K, L_{i+1}} E_{K, L_{i+1}}
\]

where \(A_{K, L} := A - B K - DL \). As a result, we can require \(\eta \leq \frac{1}{\|H_{K, L_{i+1}}\|} \) to guarantee that \(P_{K, L_{i+1}} \geq P_{K, L_l} \) for all \(l \geq 0 \). Meanwhile, Lemma 3.3 suggests that for a fixed \(K \in \mathcal{K} \), it holds that \(P_{K, L} \leq P_{K, L(K)} \) in the p.s.d. sense for all \(L \). Thus, if we require \(\eta \leq \min\{\frac{1}{\|H_{K, L}\|}, \ldots \} \), then \(\{P_{K, L}\}_{l \geq 0} \) constitutes a monotonically non-decreasing sequence in the p.s.d. sense. Moreover, since \(K \in \mathcal{K} \) and \(\{P_{K, L}\}_{l \geq 0} \) monotonically non-decreasing, the sequence \(\{H_{K, L}\}_{l \geq 0} \) is monotonically non-increasing (in the p.s.d. sense) and each \(H_{K, L} \) is both symmetric and positive-definite. Therefore, we can choose a uniform stepsize \(\eta = \frac{1}{\|H_{K, L_0}\|} \leq \min\{\frac{1}{\|H_{K, L_0}\|}, \ldots \} \) and show the convergence rate of the NPG update (3.14) as follows:

\[
G(K, L_{i+1}) - G(K, L_l) = \text{Tr} \left[(P_{K, L_{i+1}} - P_{K, L_l}) \Sigma_0 \right] \geq \text{Tr} \left[(4\eta E_{K, L_{i+1}} E_{K, L_{i+1}} - 4\eta^2 E_{K, L_{i+1}} E_{K, L_{i+1}} H_{K, L_{i+1}} E_{K, L_{i+1}}) \Sigma_0 \right]
\]

This completes the proof for the linear convergence of the objective.

33
where the last inequality follows from (B.9). Thus,

\[G(K, L(K)) - G(K, L_{t+1}) \leq \left(1 - \frac{\phi \lambda_{\text{min}}(H_{K,L}(K))}{\|H_{K,L}\| \|\Sigma_{K,L}(K)\|} \right)(G(K, L(K)) - G(K, L_{t})). \]

This implies the globally linear convergence of the objective. The convergence proof of the gain matrix is similar to the one presented for the vanilla PG update. The only difference is to have \[q := 1 - \frac{\phi \lambda_{\text{min}}(H_{K,L}(K))}{\|H_{K,L}\| \|\Sigma_{K,L}(K)\|} \] instead.

GN: Similar to the proof for NPG, we first find a stepsize such that \(\{P_{K,L}\}_{t \geq 0} \) constitutes a monotonically non-decreasing sequence bounded above by \(P_{K,L(K)} \) in the p.s.d. sense (based on Lemma 3.3). Taking the difference between \(P_{K,L_{t+1}} \) and \(P_{K,L_{t}} \) and substituting in (3.15) yield

\[
P_{K,L_{t+1}} - P_{K,L_{t}} = A_{K,L_{t+1}}^T (P_{K,L_{t+1}} - P_{K,L_{t}}) A_{K,L_{t+1}} + 4\eta E_{K,L_{t}} H_{K,L_{t}}^{-1} E_{K,L_{t}} - 4\eta^2 E_{K,L_{t}}^T H_{K,L_{t}}^{-1} H_{K,L_{t}} E_{K,L_{t}}.
\]

Therefore, \(P_{K,L_{t+1}} \geq P_{K,L_{t}} \) can be ensured by choosing \(\eta \leq 1 \). Subsequently, we characterize the convergence rate of the GN update with \(\eta \leq 1/2 \) as follows

\[
G(K, L_{t+1}) - G(K, L_{t}) = \text{Tr}((P_{K,L_{t+1}} - P_{K,L_{t}}) E_{0}) \geq \text{Tr}(4\eta E_{K,L_{t}}^T H_{K,L_{t}}^{-1} E_{K,L_{t}} - 4\eta^2 E_{K,L_{t}}^T H_{K,L_{t}}^{-1} H_{K,L_{t}} E_{K,L_{t}}) E_{0} \geq \phi \lambda_{\text{min}}(H_{K,L}(K)) G(K, L(K)) - G(K, L_{t})
\]

where the last inequality follows from (B.9) and the fact that \(\{H_{K,L}(K)\}_{t \geq 0} \) is a monotonically non-increasing sequence lower bounded by \(H_{K,L}(K) > 0 \), in the p.s.d. sense. Thus,

\[
G(K, L(K)) - G(K, L_{t+1}) \leq \left(1 - \frac{\phi \lambda_{\text{min}}(H_{K,L}(K))}{\|H_{K,L}\| \|\Sigma_{K,L}(K)\|} \right)(G(K, L(K)) - G(K, L_{t})).
\]

and the globally linear convergence rate of the objective is proved. Lastly, the locally Q-quadratic convergence rate for the GN update directly follows from [14, 41] and the convergence proof of the gain matrix is the same as the one for the NPG update. This completes the proof.

B.10 Proof of Theorem 3.7

Proof We first introduce the following cost difference lemma for the outer-loop problem, whose proof is deferred to §C.1.

Lemma B.1 (Cost Difference Lemma for Outer-Loop) Suppose that for two sequences of control gain matrices \(\{K_i\} \) and \(\{K'_i\} \) and a given \(t \in \{0, \ldots, N - 1\} \), there exist p.s.d. solutions to (3.3) at time \(t+1 \), denoted as \(P_{K_{t+1},L(K_{t+1})} \) and \(P_{K'_{t+1},L(K'_{t+1})} \), respectively. Also, suppose that the following inequalities are satisfied:

\[
R_{tu}^T - D_{tl}^T P_{K_{t+1},L(K_{t+1})} D_t > 0, \quad R_{tu}^T - D_{tl}^T P_{K'_{t+1},L(K'_{t+1})} D_t > 0.
\]

Then, there exist p.s.d. solutions to (3.3) at time \(t \), denoted as \(P_{K_t,L(K_t)} \) and \(P_{K'_t,L(K'_t)} \), and their difference can be quantified as

\[
P_{K'_t,L(K'_t)} - P_{K_t,L(K_t)} = A_{K'_t,L(K'_t)}^T (P_{K'_t,L(K'_t)} - P_{K_t,L(K_t)}) A_{K'_t,L(K'_t)} + \mathcal{R}_{K_t,K'_t} - \mathcal{Z}_{K_t,K'_t} (R_{tu}^T - D_t^T P_{K_{t+1},L(K_{t+1})} D_t)^{-1} D_t^T P_{K_{t+1},L(K_{t+1})}
\]

where

\[
P_{K_{t+1},L(K_{t+1})} := P_{K_{t+1},L(K_{t+1})} + P_{K_{t+1},L(K_{t+1})} D_t (R_{tu}^T - D_t^T P_{K_{t+1},L(K_{t+1})} D_t)^{-1} D_t^T P_{K_{t+1},L(K_{t+1})}
\]

\[
F_{K_t,L(K_t)} := (R_{tu}^T + B_t^T P_{K_{t+1},L(K_{t+1})} B_t) K_t - B_t^T P_{K_{t+1},L(K_{t+1})} A_t
\]

\[
L(K_t) := (-R_{tu}^T + D_t^T P_{K_{t+1},L(K_{t+1})} D_t)^{-1} D_t^T P_{K_{t+1},L(K_{t+1})} (A_t - B_t K_t)
\]

\[
\mathcal{Z}_{K_t,K'_t} := - (R_{tu}^T - D_t^T P_{K_{t+1},L(K_{t+1})} D_t) L(K'_t) - D_t^T P_{K_{t+1},L(K_{t+1})} (A_t - B_t K'_t)
\]

\[
\mathcal{R}_{K_t,K'_t} := (A_t - B_t K_t)^T (R_{tu}^T + B_t^T P_{K_{t+1},L(K_{t+1})} B_t) (A_t - B_t K'_t) - P_{K_t,L(K_t)} + Q_t + (K'_t)^T R_{tu} (K'_t)
\]

\[
= (K'_t - K_t)^T F_{K_t,L(K_t)} + F_{K_t,L(K_t)} (K'_t - K_t) + (K'_t - K_t)^T (R_{tu}^T + B_t^T P_{K_{t+1},L(K_{t+1})} B_t) (K'_t - K_t).
\]
Subsequently, we prove that starting from any $K \in \mathcal{K}$, the next iterate K' is guaranteed to satisfy $K' \in \mathcal{K}$ following the NPG update (3.17) or the GN update (3.18) with proper stepsizes. Note that (3.8) is the compact form of the following recursive Riccati equation

$$P_{K_t}(K_t) = Q_t + K_t^T R_{t}^u K_t + (A_t - B_t K_t)^T \tilde{P}_{K_{t+1},L(K_{t+1})} (A_t - B_t K_t), \quad t \in \{0, \ldots, N-1\}$$ \hspace{1cm} (B.14)

where $P_{K_{t+1},L(K_{t+1})}$ is as defined in (B.12) and $P_{K_{N+1},L(K_N)} = Q_N$. Thus, $K \in \mathcal{K}$ is equivalent to that (B.14) admits a solution $P_{K_{t+1},L(K_{t+1})} \geq 0$ and $R_{t}^u - D_{t}^T P_{K_{t+1},L(K_{t+1})} D_{t} > 0$, for all $t \in \{0, \ldots, N-1\}$. Since $K \in \mathcal{K}$ and $P_{K_{N+1},L(K_N)} = P_{K_{N+1},L(K_{N+1})} = Q_N$ for any K', we have

$$R_{N-1}^w - D_{N-1}^T P_{K_{N+1},L(K_{N+1})} D_{N-1} = R_{N-1}^w - D_{N-1}^T P_{K_{N+1},L(K_{N+1})} D_{N-1} = R_{N-1}^w - D_{N-1}^T Q_N D_{N-1} > 0.$$

That is, $R_{N-1}^w - D_{N-1}^T P_{K_{N+1},L(K_{N+1})} D_{N-1}$ is invertible and a solution to (B.14) with $t = N - 1$, denoted as $P_{K_{N+1},L(K_{N+1})}$, exists and is both p.s.d. and unique.

Subsequently, we invoke Lemma B.1 to find a stepsize such that a solution to (B.14) with $t = N - 2$ also exists after one-step NPG update (3.17). By (B.14), it suffices to ensure $R_{N-2}^w - D_{N-2}^T P_{K_{N+1},L(K_{N+1})} D_{N-2} > 0$ (thus invertible) in order to guarantee the existence of $P_{K_{N-2},L(K_{N-2})}$. By Lemma B.1 and $P_{K_{N+1},L(K_N)} = P_{K_{N+1},L(K_{N+1})} = Q_N$, we have

$$P_{K_{N-1},L(K_{N-1})} = P_{K_{N-1},L(K_{N-1})} - R_{N-1} = (R_{N-1} - D_{N-1}^T P_{K_{N+1},L(K_{N+1})} D_{N-1})^{-1} \mathbb{E}_{K_{N-1},K_{N-1}} \leq R_{K_{N-1},K_{N-1}},$$

where the last inequality is due to the fact that $R_{N-1}^w - D_{N-1}^T P_{K_{N+1},L(K_{N+1})} D_{N-1} > 0$. Then, we substitute the NPG update rule $K_{t+1}' = K_t - 2 \alpha_{K_{t+1}} F_{K_{t+1},L(K_{t+1})}$ for $t = N - 1$ into (B.13) to get

$$P_{K_{N-1},L(K_{N-1})} = P_{K_{N-1},L(K_{N-1})} - R_{N-1} = (R_{N-1} - D_{N-1}^T P_{K_{N+1},L(K_{N+1})} D_{N-1})^{-1} \mathbb{E}_{K_{N-1},K_{N-1}} \leq R_{K_{N-1},K_{N-1}},$$

where the last inequality comes from $K \in \mathcal{K}$. Therefore, the existence of $P_{K_{N+1},L(K_{N+1})}$ is still guaranteed if $\alpha_{K_{N-1}}$ is small enough. We can apply this argument iteratively backward since for all $t \in \{1, \ldots, N\}$, $P_{K_{t},L(K_{t})} \preceq P_{K_{t+1},L(K_{t+1})}$ implies $R_{t}^w - D_{t}^T P_{K_{t+1},L(K_{t+1})} D_{t} \geq R_{t}^w - D_{t}^T P_{K_{t+1},L(K_{t+1})} D_{t} > 0$ and hence Lemma B.1 can be applied for all t. Moreover, $P_{K_{t},L(K_{t})} \preceq P_{K_{t+1},L(K_{t+1})}$ is guaranteed to hold for all $t \in \{1, \ldots, N\}$ if we require the stepsize of the NPG update to satisfy

$$\alpha_{K_{t}} \in \{0,1\}/|R_{t}^u + B_{t}^T \tilde{P}_{K_{t+1},L(K_{t+1})} B_{t}|], \quad \forall t \in \{0, \ldots, N-1\}.$$

Equivalently, the above conditions can also be represented using the compact forms introduced in §3. In particular, $G_{K_{t},L(K_{t})}$ is a concatenated matrix with blocks of $R_{t}^u + B_{t}^T \tilde{P}_{K_{t+1},L(K_{t+1})} B_{t}, t \in \{0, \ldots, N-1\}$, on the diagonal. Thus, we have $\|G_{K_{t},L(K_{t})}\| \geq \|R_{t}^u + B_{t}^T \tilde{P}_{K_{t+1},L(K_{t+1})} B_{t}\|$, for all $t \in \{0, \ldots, N-1\}$. Adopting the compact notations, we have for any $K \in \mathcal{K}$, if the stepsize $\alpha_{K} \in \{0,1\}/|G_{K_{t},L(K_{t})}|$, then

$$P_{K_{t+1},L(K_{t+1})} - P_{K_{t},L(K_{t})} \leq (K_{t+1}' - K_{t})^T F_{K_{t},L(K_{t})} K_{t+1}' + (K_{t+1}' - K_{t})^T G_{K_{t},L(K_{t})} (K_{t+1}' - K_{t})$$

$$= -4 \alpha_{K} F_{K_{t},L(K_{t})}^T F_{K_{t},L(K_{t})} + 4 \alpha_{K}^2 F_{K_{t},L(K_{t})}^2 G_{K_{t},L(K_{t})} F_{K_{t},L(K_{t})}$$

$$= -4 \alpha_{K} F_{K_{t},L(K_{t})}^T (I - \alpha_{K} (R_{t}^u + B_{t}^T \tilde{P}_{K_{t+1},L(K_{t+1})} B_{t})) F_{K_{t},L(K_{t})} \leq 0.$$

(B.15)

Since we have already shown that $P_{K_{t+1},L(K_{t+1})} \geq 0$ exists for all $t \in \{0, \ldots, N-1\}$ and $P_{K_{t+1},L(K_{t+1})}$ is a concatenation of blocks of $P_{K_{t+1},L(K_{t+1})}$, we can conclude that $K' \in \mathcal{K}$. Applying the above analysis iteratively proves that the sequence $\{P_{K_{t},L(K_{t})}\}_{t \geq 0}$ following the NPG update (3.17) with a
given \(K_0 \in \mathcal{K} \) and a constant stepsize \(\alpha \leq \min_{k \geq 0} \frac{1}{\| G_{K_0} L(K_0) \|} \) is monotonically non-increasing in the p.s.d. sense, and thus \(K_k \in \mathcal{K} \) for all \(k \geq 0 \) given \(K_0 \in \mathcal{K} \). Furthermore, we can choose \(\alpha \leq \min_{k \geq 0} \frac{1}{\| G_{K_0} L(K_0) \|} \) because \(\{ G_{K_0} L(K_1) \} \) is monotonically non-increasing and each \(G_{K_0} L(K_1) \) is symmetric and positive-definite. This completes the proof for the NPG update (3.17).

For the GN update (3.18), all our arguments for the proof above still hold but instead we invoke Lemma B.1 with the recursive update rule being \(K'_t = K_t - 2\alpha K_t (R_t^u + B_t^T \bar{P}_{K_t-1,L(K_t)} B_t)^{-1} F_{K_t,L(K_t)} \), for all \(t \in \{ 0, \ldots, N - 1 \} \). In particular, we have the matrix difference at time \(t = N - 1 \), denoted as \(P_{K_{N-1},L(K_{N-1})} - P_{K_{N-1},L(K_{N-1})} \), being

\[
P_{K_{N-1},L(K_{N-1})} - P_{K_{N-1},L(K_{N-1})} \leq (K'_{N-1} - K_{N-1})^T F_{K_{N-1},L(K_{N-1})} + F_{K_{N-1},L(K_{N-1})}^T (K'_{N-1} - K_{N-1}) + (K'_{N-1} - K_{N-1})^T (R_{N-1}^u + B_{N-1}^T \bar{P}_{K_{N-1},L(K_{N-1})} B_{N-1}) (K'_{N-1} - K_{N-1})^{-1} F_{K_{N-1},L(K_{N-1})}.
\]

Therefore, choosing \(\alpha_{K_{N-1}} \in [0,1] \) suffices to ensure that \(P_{K_{N-1},L(K_{N-1})} \leq P_{K_{N-1},L(K_{N-1})} \). Applying the iterative arguments for the proof of the NPG update and using the compact notations yields that for any fixed \(K \in \mathcal{K} \), if the stepsize satisfies \(\alpha_K \in [0,1] \), then \(P_{K',L(K')} \geq 0 \) exists and

\[
P_{K',L(K')} - P_{K,L(K)} \leq (K' - K)^T F_{K,L(K)} + F_{K,L(K)}^T (K' - K) + (K' - K)^T G_{K,L(K)} (K' - K)
\]

\[
= -4\alpha_K F_{K,L(K)}^T G_{K,L(K)}^{-1} F_{K,L(K)} + 4\alpha_K^2 F_{K,L(K)}^T G_{K,L(K)}^{-1} F_{K,L(K)}
\]

\[
= -4\alpha_K F_{K,L(K)}^T (1 - \alpha_K) G_{K,L(K)}^{-1} F_{K,L(K)} \leq 0.
\]

This proves that \(K' \in \mathcal{K} \). Now, we can apply the above analysis iteratively to prove that the sequence \(\{ P_{K_t,L(K_t)} \}_{k \geq 0} \) following the GN update (3.18) with a given \(K_0 \in \mathcal{K} \) and a constant stepsize \(\alpha \in [0,1] \) is monotonically non-increasing in the p.s.d. sense. Thus, we have \(K_k \in \mathcal{K} \) for all \(k \geq 0 \) given a \(K_0 \in \mathcal{K} \). This completes the proof. □

B.11 Proof of Theorem 3.8

Proof For the NPG update (3.17), let \(\alpha \leq \frac{1}{2\| G_{K_0} L(K_0) \|} \) and suppose \(K_0 \in \mathcal{K} \). Theorem 3.7 suggests that \(P_{K_t,L(K_t)} \geq P_{K',L(K')} \geq 0 \) exists for all \(k \geq 0 \) and the sequence \(\{ P_{K_t,L(K_t)} \}_{k \geq 0} \) is non-increasing in the p.s.d. sense. As a result, we have by (B.15) that

\[
\text{Tr}(P_{K_{k+1},L(K_{k+1})} - P_{K_k,L(K_k)}) \leq -\frac{\phi}{\| G_{K_0} L(K_0) \|} \text{Tr}(F_{K_k,L(K_k)}^T F_{K_k,L(K_k)}) \leq -2\alpha \phi \text{Tr}(F_{K_k,L(K_k)}^T F_{K_k,L(K_k)}).
\]

(B.17)

Therefore, from iterations \(k = 0 \) to \(K - 1 \), summing over both sides of (B.17) and dividing by \(K \) yield,

\[
\frac{1}{K} \sum_{k=0}^{K-1} \text{Tr}(F_{K_k,L(K_k)}^T F_{K_k,L(K_k)}) \leq \frac{\text{Tr}(P_{K_0,L(K_0)} - P_{K',L(K')})}{2\alpha \phi \cdot K}.
\]

(B.18)

Namely, the sequence of natural gradient norm square \(\{ \text{Tr}(F_{K_k,L(K_k)}^T F_{K_k,L(K_k)}) \}_{k \geq 0} \) converges on average with a globally \(O(1/K) \) rate. The convergent stationary point is also the unique Nash equilibrium of the game, by Lemma 3.5. This completes the convergence proof of the NPG update. Similarly, for the GN update with \(\alpha \leq 1/2 \) and suppose \(K_0 \in \mathcal{K} \), we can obtain from (B.16) that

\[
\text{Tr}(P_{K_{k+1},L(K_{k+1})} - P_{K_k,L(K_k)}) \leq -\frac{2\alpha \phi}{\| G_{K_0} L(K_0) \|} \text{Tr}(F_{K_k,L(K_k)}^T F_{K_k,L(K_k)}).
\]

(B.19)

As before, we sum up (B.19) from \(k = 0 \) to \(K - 1 \) and divide both sides by \(K \) to obtain

\[
\frac{1}{K} \sum_{k=0}^{K-1} \text{Tr}(F_{K_k,L(K_k)}^T F_{K_k,L(K_k)}) \leq \frac{\| G_{K_0} L(K_0) \| \text{Tr}(P_{K_0,L(K_0)} - P_{K',L(K')})}{2\alpha \phi \cdot K}.
\]
Then, the gain matrix after applying one step of
This proves that the sequence of natural gradient norm squares, \(|\text{Tr}(F_{K_i,L(i)}^T F_{K_i,L(i)})|_{k \geq 0}\), converges on average with a globally \(O(1/K)\) rate. Also, The convergent stationary point is the unique Nash equilibrium. Finally, faster local rates can be shown by following the techniques presented in Theorem 4.6 of [16].

\[\boxed{\text{B.12 Proof of Theorem 4.1 (PG)}}\]

Proof We first provide a complete version of Theorem 4.1 for the PG update (4.1) and introduce a helper lemma, whose proof is deferred to §C.2.

Theorem B.2 (Inner-Loop Sample Complexity for PG) For a fixed \(K \in \mathcal{K}\) and an arbitrary \(L_0\) that induces a finite \(\mathcal{G}(K, L_0)\), define a superlevel set \(\mathcal{L}_K(a)\) as in (3.12), where \(a \leq \mathcal{G}(K, L_0)\) is an arbitrary constant. Let \(\epsilon_1, \delta_1 \in (0, 1)\) and \(M_1, r_1, \eta > 0\) in Algorithm 1 satisfy

\[
M_1 \geq \frac{d_1}{r_1 \eta} \left(\frac{1}{r_1} \left(\mathcal{G}(K, L(K)) + \frac{1}{\rho K_a} \right) \right)^2 \frac{1024}{\mu K \epsilon_1},
\]

\[
r_1 \leq \min \left\{ \frac{\theta_{K_a} \mu K}{8 \psi_{K_a}} \sqrt{\frac{\epsilon_1}{240}}, \frac{1}{\sqrt{2}} \frac{\epsilon_1 \mu K}{30}, \rho K_a \right\}, \quad \eta \leq \min \left\{ 1, \frac{1}{8 \psi_{K_a} \mu K} \right\},
\]

where \(\theta_{K_a} := \min \left\{ 1/2 \psi_{K_a}, \rho_{K_a} a \right\}\); \(l_{K_a}, \psi_{K_a}, \mu K\) are defined in Lemma 3.4; \(\rho K_a := \min_{L \in \mathcal{L}(a)} \rho K_L > 0\); and \(d_1 = \eta n N\). Then, with probability at least \(1 - \delta_1\) and a total number of iterations \(L = \frac{8}{\eta \mu K} \log \left(\frac{r_1}{\epsilon_1} \right)\), the inner-loop ZO-PG update (4.1) outputs some \(\bar{L}(K) := L\) such that \(\mathcal{G}(K, \bar{L}(K)) \geq \mathcal{G}(K, L(K)) - \epsilon_1\), and \(\|L(K) - \bar{L}(K)\|_F \leq \frac{1 - \min(H_{K,L(K)})}{L} \cdot \epsilon_1\).

Lemma B.3 For a given \(K \in \mathcal{K}\) and a given \(L\), let \(\epsilon_1, \delta_1 \in (0, 1)\) and let the batchsize \(M_{1,L} > 0\) and the smoothing radius \(r_{1,L} > 0\) of a \(M_{1,L}\)-sample one-point minibatch gradient estimator satisfy

\[
M_{1,L} \geq \frac{d_1}{r_{1,L}} \left(\mathcal{G}(K, L) + \frac{l_{K,L}}{\rho K,L} \eta L \right)^2 \frac{1024}{\mu K \epsilon_1}, \quad r_{1,L} \leq \min \left\{ \frac{\theta_{K,L} \mu K}{8 \psi_{K,L}} \sqrt{\frac{\epsilon_1}{240}}, \frac{1}{\sqrt{2}} \frac{\epsilon_1 \mu K}{30}, \rho K_L \right\},
\]

where \(\theta_{K,L} := \min \left\{ 1/2 \psi_{K,L}, \rho_{K,L} a \right\}\); \(l_{K,L}, \psi_{K,L}, \rho K_L\) are the local curvature parameters in Lemma 3.4; and \(d_1 = \eta n N\). Also, let the stepsize \(\eta L > 0\) satisfy

\[
\eta L \leq \min \left\{ 1, \frac{1}{8 \psi_{K,L}} \rho K_L \right\}, \quad \frac{\sqrt{\mu K}}{32} + \psi_{K,L} + l_{K,L} + \frac{\mu K \epsilon_1}{16}.
\]

Then, the gain matrix after applying one step of (4.1) on \(L\), denoted as \(L'\), satisfies with probability at least \(1 - \delta_1\) that \(\mathcal{G}(K, L') \leq \mathcal{G}(K, L)\) and

\[
\mathcal{G}(K, L(K)) - \mathcal{G}(K, L') \leq \left(1 - \frac{\eta L \mu K}{8} \right) \cdot (\mathcal{G}(K, L(K)) - \mathcal{G}(K, L)) + \frac{\eta L \mu K \epsilon_1}{16}.
\]

We now prove the sample complexity result for a given \(L_0 \in \mathcal{L}_K(a)\). First, we use \(\Delta_l := \mathcal{G}(K, L(K)) - \mathcal{G}(K, L_l)\) to denote the optimality gap at iteration \(l\), where \(l \in \{0, \cdots, L\}\). By Lemma B.3, if we require \(\epsilon_1, \delta_1 \in (0, 1)\), the parameters \(M_{1,L_0}, r_{1,L_0}, \eta L_0 > 0\) in Algorithm 1 satisfy

\[
M_{1,L_0} \geq \frac{d_1}{r_{1,L_0}} \left(\mathcal{G}(K, L_0) + \frac{l_{K,L_0}}{\rho K,L_0} \right)^2 \frac{1024}{\mu K \epsilon_1}, \quad r_{1,L_0} \leq \min \left\{ \frac{\theta_{K,L_0} \mu K}{8 \psi_{K,L_0}} \sqrt{\frac{\epsilon_1}{240}}, \frac{1}{\sqrt{2}} \frac{\epsilon_1 \mu K}{30}, \rho K_L \right\}, \quad \eta L_0 \leq \min \left\{ 1, \frac{1}{8 \psi_{K,L_0}} \rho K_L \right\},
\]

then we ensure with probability at least \(1 - \delta_1/L\) that \(\mathcal{G}(K, L_0) \leq \mathcal{G}(K, L_1)\), i.e., \(L_1 \in \mathcal{L}_K(a)\). Moreover, for any \(L_1\), where \(l \in \{0, \cdots, L - 1\}\), there exist \(M_{1,L_1}, r_{1,L_1}, \eta L_1 > 0\) as defined in Lemma B.3 that guarantee \(\mathcal{G}(K, L_1) \leq \mathcal{G}(K, L_{l+1})\) with probability at least \(1 - \delta_1/L\). Now, we choose uniform constants \(M_1, r_1, \eta > 0\) such that

\[
\boxed{37}
\]
where \(\theta_{K,a} = \min \left\{ \frac{1}{2\psi_{K,a}}, \frac{\rho_{K,a}}{l_{K,a}} \right\} \cdot \rho_{K,a} = \min_{L \in \mathcal{L}(a)} \rho_{K,L} > 0 \) is due to the compactness of \(\mathcal{L}(K) \), and \(l_{K,a}, \psi_{K,a} < \infty \) are defined in Lemma 3.4 that satisfy
\[
l_{K,a} \geq \max_{L \in \mathcal{L}(K)} l_{K,L} \quad \psi_{K,a} \geq \max_{L \in \mathcal{L}(K)} \psi_{K,L}.
\]

Then, we can guarantee with probability at least \(1 - \delta_1 \) that the value of the objective function, following the ZO-PG update (4.1), is monotonically non-decreasing. That is, we have with probability at least \(1 - \delta_1 \) that \(l_1 \in \mathcal{L}(a) \), for all \(l \in \{0, \ldots, L\} \), when a \(\mathcal{L}_0 \in \mathcal{L}(a) \) is given. By Lemma B.3 and the above choices of \(M_1, r_1, \eta \), we also ensure with probability at least \(1 - \delta_1 \) that \(\Delta_1 \leq \left(1 - \frac{\eta \mu K}{8} \right) \cdot \Delta_{l-1} + \frac{\eta \mu K \epsilon_1}{16} \), for all \(l \in \{1, \ldots, L-1\} \). Thus, we can show with probability at least \(1 - \delta_1 \) that
\[
\Delta_L \leq \left(1 - \frac{\eta \mu K}{8} \right) \cdot \Delta_{L-1} + \frac{\eta \mu K \epsilon_1}{16} \leq \left(1 - \frac{\eta \mu K}{8} \right)^L \cdot \Delta_0 + \frac{\eta \mu K \epsilon_1}{16}.
\]

As a result, when \(L = \frac{8}{\eta \mu K} \log\left(\frac{2}{\epsilon_1} \right) \), the inequality \(G(K, L) \leq G(K, L(K)) - \epsilon_1 \) holds with probability at least \(1 - \delta_1 \). This proves the convergence of the generated values of the objective function for the ZO-PG update (4.1). Lastly, we demonstrate the convergence of the gain matrix to \(L(K) \) by our results in §B.9. Based on (B.10) and the convergence of the objective function values, we have with probability at least \(1 - \delta_1 \) that
\[
\|L(K) - L_L\|_F \leq \sqrt{\lambda_{\min}^{-1}(H_{K,L(K)})} \cdot \left(G(K, L(K)) - G(K, L_L) \right) \leq \sqrt{\lambda_{\min}^{-1}(H_{K,L(K)})} \cdot \epsilon_1.
\]

This completes the proof.

B.13 Proof of Theorem 4.1 (NPG)

Proof We first provide a complete version of Theorem 4.1 for the NPG update (4.2) and introduce a helper lemma, whose proof is deferred to §C.3.

Theorem B.4 (Inner-Loop Sample Complexity for NPG) For a fixed \(K \in \mathcal{K} \) and an arbitrary \(L_0 \) that induces a finite \(G(K, L_0) \), define a superlevel set \(\mathcal{L}_K(a) \) as in (3.12), where \(a \leq G(K, L_0) \) is an arbitrary constant. Let \(\epsilon_1, \delta_1 \in (0, 1) \), and \(M_1, r_1, \eta > 0 \) in Algorithm 1 satisfy
\[
M_1 \geq \max \left\{ G(K, L(K)) + l_{K,a}^2 \cdot \left(\frac{4L \max\{d_1, d_2\}}{\delta_1} \right)^2 \cdot \frac{4L \max\{d_1, d_2\}}{\delta_1}, \right\}
\]
\[
r_1 \leq \min \left\{ \frac{\phi \sqrt{\mu K \epsilon_1}}{16 \phi \sqrt{\psi_{K,a} \epsilon_1}}, \frac{\phi \mu K \theta_{a} \sqrt{\epsilon_1}}{32 \phi \sqrt{\psi_{K,a} \epsilon_1}}, \frac{\rho_{K,a}}{l_{K,a}} \right\},
\]
\[
\eta \leq \min \left\{ \frac{\phi^2}{32 \phi \sqrt{\psi_{K,a} \epsilon_1}}, \frac{1}{2 \psi_{K,a}}, \frac{\rho_{K,a} \sqrt{\frac{\phi}{4(\phi^{2} + 1)}}}{2}, \frac{2 \psi_{K,a} + l_{K,a} + \phi l_{K,a}}{2} \right\},
\]
where \(\theta_{K,a} = \min \left\{ \frac{1}{2\psi_{K,a}}, \frac{1}{l_{K,a}} \right\} \cdot l_{K,a}, \psi_{K,a}, \mu_{K} \) are defined in Lemma 3.4: \(\rho_{K,a}, \psi_{K,a}, \mu_{K} \) are uniform constants over \(\mathcal{L}(K) \) defined in §B.13: \(d_2 = m^2(N + 1) \); and \(d_1 = mnN \). Then, with probability at least \(1 - \delta_1 \) and a total number of iterations \(L = \frac{8\eta \mu K \log\left(\frac{2}{\epsilon_1} \right)}{\eta \mu K} \), the inner-loop ZO-NPG update (4.2) outputs some \(\tilde{L}(K) := L_L \) such that \(G(K, \tilde{L}(K)) \geq G(K, L(K)) - \epsilon_1 \), and
\[
\|L(K) - \tilde{L}(K)\|_F \leq \sqrt{\lambda_{\min}^{-1}(H_{K,L(K)})} \cdot \epsilon_1.
\]
Lemma B.5 For a given $K \in \mathcal{K}$ and a given L, let $\epsilon_1, \delta_1 \in (0, 1)$ and let the batchsize $M_{1,L} > 0$ and the smoothing radius $r_{1,L} > 0$ of a $M_{1,L}$-sample one-point minibatch gradient estimator satisfy

$$M_{1,L} \geq \max \left\{ \left(\mathcal{G}(K, L(K)) + \frac{l_{K,L}}{\rho_{K,L}} \right)^2, \left(\frac{64d_1^2(\kappa + 1)^2}{\phi^2 r^2_{L,M} h_{K,L}} \right)^2, \frac{2\kappa^2}{d_1^2} \right\} \cdot \log \left(\frac{4 \max \{d_1, d_2 \}}{\delta_1} \right),$$

$$r_{1,L} \leq \min \left\{ \frac{\phi^2}{32 \psi_{K,L} \delta_1}, \frac{1}{2 \psi_{K,L}}, \frac{\sqrt{\frac{\mu_{K,L}^2}{4(\kappa + 1)}} + 2\psi_{K,L}}{\phi + l_{K,L} + \frac{\phi}{2} \left(\frac{1}{2} \right)^{-1}} \right\},$$

where $\theta_{K,L} = \min \left\{ 1/\left(2 \psi_{K,L} \rho_{K,L} / l_{K,L} \right) \right\}$, $l_{K,L}, \psi_{K,L}, \rho_{K,L}$ are the local curvature parameters in Lemma 3.4: $d_1 = \min \mathcal{N}$; $d_2 = \max \mathcal{N}$; $\kappa := c_{\mathcal{K},L} + \frac{\phi}{2}$, and $c_{\mathcal{K},L}$ is a polynomial of $||A||_F, ||B||_F, ||D||_F, ||K||_F, ||L||_F$ that is linear in c_0, defined in Lemma C.1. Also, let the stepsize $\eta > 0$ satisfy

$$\eta \leq \min \left\{ \frac{\phi^2}{32 \psi_{K,L} \delta_1}, \frac{1}{2 \psi_{K,L}}, \frac{\sqrt{\frac{\mu_{K,L}^2}{4(\kappa + 1)}} + 2\psi_{K,L}}{\phi + l_{K,L} + \frac{\phi}{2} \left(\frac{1}{2} \right)^{-1}} \right\},$$

Then, the gain matrix after applying one step of (4.2) on L, denoted as L', satisfies with probability at least $1 - \delta_1$ that $\mathcal{G}(K, L') \leq \mathcal{G}(K, L)$ and

$$\mathcal{G}(K, L(K)) - \mathcal{G}(K, L') \leq \left(1 - \frac{\eta \mu_{K,L}}{8 \kappa} \right) \cdot \left(\mathcal{G}(K, L(K)) - \mathcal{G}(K, L) \right) + \frac{\eta \mu_{K,L} \epsilon_1}{16 \kappa}.$$

Based on Lemma B.5, the rest of the proof mostly follows the proof of Theorem 4.1 in §B.12. Specifically, we can choose uniform constants $M_1, r_1, \eta > 0$ such that

$$M_1 \geq \max \left\{ \left(\mathcal{G}(K, L(K)) + \frac{l_{K,a}}{\rho_{K,a}} \right)^2, \left(\frac{64d_1^2(\kappa + 1)^2}{\phi^2 r^2_{L,M} h_{K,a}} \right)^2, \frac{2\kappa^2}{d_1^2} \right\} \cdot \log \left(\frac{4 \max \{d_1, d_2 \}}{\delta_1} \right) \geq \max_{l \in \{0, \cdots, L-1\}} M_{1,L},$$

$$r_1 \leq \min \left\{ \frac{\phi^2}{32 \psi_{K,a} \delta_1}, \frac{1}{2 \psi_{K,a}}, \frac{\sqrt{\frac{\mu_{K,a}^2}{4(\kappa + 1)}} + 2\psi_{K,a}}{\phi + l_{K,a} + \frac{\phi}{2} \left(\frac{1}{2} \right)^{-1}} \right\} \leq \min_{l \in \{0, \cdots, L-1\}} r_{1,L},$$

$$\eta \leq \min \left\{ \frac{\phi^2}{32 \psi_{K,a} \delta_1}, \frac{1}{2 \psi_{K,a}}, \frac{\sqrt{\frac{\mu_{K,a}^2}{4(\kappa + 1)}} + 2\psi_{K,a}}{\phi + l_{K,a} + \frac{\phi}{2} \left(\frac{1}{2} \right)^{-1}} \right\} \leq \min_{l \in \{0, \cdots, L-1\}} \eta_{1,L},$$

where $\theta_{K,a} = \min \left\{ 1/\left(2 \psi_{K,a} \rho_{K,a} / l_{K,a} \right) \right\}$ and $\overline{\kappa}_a := \max_{L \in \mathcal{K}(a)} \kappa < \infty$, $\underline{\kappa}_a := \min_{L \in \mathcal{K}(a)} \kappa > 0$, $\rho_{K,a} = \min_{L \in \mathcal{K}(a)} \rho_{K,L} > 0$, $l_{K,a} \geq \max_{L \in \mathcal{K}(a)} l_{K,L}$, $\psi_{K,a} \geq \max_{L \in \mathcal{K}(a)} \psi_{K,L}$.

Then, we can guarantee with probability at least $1 - \delta_1$ that the value of the objective function, following the ZO-NPG update (4.2), is monotonically non-decreasing. That is, we have with probability at least $1 - \delta_1$ that $L_l \in \mathcal{L}_K(a)$, for all $l \in \{0, \cdots, L-1\}$, when an $L_0 \in \mathcal{L}_K(a)$ is given. By Lemma B.3 and the above choices of M_1, r_1, η, we also ensure with probability at least $1 - \delta_1$ that $\Delta_l \leq \left(1 - \frac{\eta \mu_{K,a}}{8 \kappa_a} \right) \cdot \Delta_{l-1} + \frac{\eta \mu_{K,a} \epsilon_1}{16 \kappa_a},$ for all $l \in \{1, \cdots, L-1\}$. Thus, we can show with probability at least $1 - \delta_1$ that

$$\Delta_L \leq \left(1 - \frac{\eta \mu_{K,a}}{8 \kappa_a} \right) \cdot \Delta_{L-1} + \frac{\eta \mu_{K,a} \epsilon_1}{16 \kappa_a} \leq \left(1 - \frac{\eta \mu_{K,a}}{8 \kappa_a} \right) \cdot \Delta_0 + \sum_{l=1}^{L-1} \left(1 - \frac{\eta \mu_{K,a}}{8 \kappa_a} \right) \cdot \frac{\eta \mu_{K,a} \epsilon_1}{16 \kappa_a} \leq \left(1 - \frac{\eta \mu_{K,a}}{8 \kappa_a} \right) \cdot \Delta_0 + \frac{\epsilon_1}{2}.$$

As a result, when $L = \frac{8 \overline{\kappa} \log(\frac{2}{\epsilon_1})}{\eta \mu_{K,a}}$, the inequality $\mathcal{G}(K, L_L) \leq \mathcal{G}(K, L(K)) - \epsilon_1$ holds with probability at least $1 - \delta_1$. This proves the convergence of the generated values of the objective function for the ZO-NPG update (4.2). The convergence of the gain matrix to $L(K)$ follows from the proof of Theorem 4.1 in §B.12. This completes the proof.

B.14 Proof of Theorem 4.2

Proof We first present a complete version of Theorem 4.2 and a few useful lemmas, whose proofs are deferred to §C.4–§C.8.
Theorem B.6 (IR: Derivative-Free Setting) For any $\mathbf{K}_0 \in \mathcal{K}$ and defining $\zeta := \lambda_{\min}(H_{\mathbf{K}_0,L(\mathbf{K}_0)}) > 0$, introduce the following set $\widehat{\mathcal{K}}$:

$$
\widehat{\mathcal{K}} := \left\{ \mathbf{K} : (3.8) \text{ admits a solution } P_{\mathbf{K},L(\mathbf{K})} \geq 0, \text{ and } P_{\mathbf{K},L(\mathbf{K})} \leq P_{0,L(\mathbf{K})} + \frac{\zeta}{2\|D\|^2} I \right\} \subset \mathcal{K}.
$$

(B.21)

Let $\delta_2 \in (0, 1)$ and other parameters in Algorithm 2 satisfy $\delta_1 \leq \delta_2/[6M_2K]$ and

$$
M_2 \geq \max\left\{ \frac{128 d_2^2 \alpha^2 G(K,L(\mathbf{K}))^2}{r_2^2 \phi^2 \alpha^2}, \left(8 \frac{c_5(\mathbf{K})^2}{\phi^2} \right)^2 \right\}

\cdot \log\left(\frac{12K \max\{d_2, d_3\}}{\delta_2} \right),

\epsilon_1 \leq \min\left\{ \frac{\phi \omega_2}{16 \alpha d_2}, \frac{\phi \omega_2}{128 \alpha^2 (c_5(K))^2 B_2^2 \Sigma, L(\mathbf{K})}, \frac{\phi^2 \zeta}{32 B_2^2 \Sigma, L(\mathbf{K})} \right\}

r_2 \leq \min\left\{ \frac{\phi \omega}{64 \alpha c_5(\mathbf{K}) (\Sigma, L(\mathbf{K})) + B_2 \Sigma, K}, \frac{\phi \omega}{64 \alpha c_2(\mathbf{K}) B_2 \Sigma, K} \right\}.
$$

(B.22)

where $G(K,L(\mathbf{K}))$, $c_2, c_5, c_5, L(\mathbf{K}), B_2 \Sigma, K$, $\omega > 0$ are uniform constants over $\widehat{\mathcal{K}}$ defined in §B.14. Then, it holds with probability at least $1 - \delta_2$ that $K_k \in \widehat{\mathcal{K}} \subset \mathcal{K}$ for all $k \in \{1, \ldots, K\}$.

Lemma B.7 For any $\mathbf{K}, \mathbf{K}' \in \mathcal{K}$, there exist some $B_1, B_{P,K}, B_{L,K}, B_{\Sigma,K} > 0$ that are continuous functions of \mathbf{K} such that all \mathbf{K}' satisfying $\|\mathbf{K}' - \mathbf{K}\|_F \leq B_1 \mathbf{K}$ satisfy

$$
\|P_{\mathbf{K'},L(\mathbf{K})} - B_{P,K}\|_F \leq B_{P,K} \cdot \|\mathbf{K}' - \mathbf{K}\|_F
$$

(B.23)

$$
\|L(\mathbf{K}) - L(\mathbf{K}')\|_F \leq B_{L,K} \|\mathbf{K}' - \mathbf{K}\|_F
$$

(B.24)

$$
\|\Sigma_{\mathbf{K},L(\mathbf{K})} - \Sigma_{\mathbf{K}',L(\mathbf{K})}\|_F \leq B_{\Sigma,K} \|\mathbf{K}' - \mathbf{K}\|_F
$$

(B.25)

Lemma B.8 For any $\mathbf{K}, \mathbf{K}' \in \mathcal{K}$, there exist some $B_1, B_{\Sigma,K} > 0$ as defined in Lemma B.7 such that if \mathbf{K}' satisfies

$$
\|\mathbf{K}' - \mathbf{K}\|_F \leq \left\{ \frac{e_2}{4 c_5(K)(\Sigma, L(\mathbf{K})) + B_2 \Sigma, K}, \frac{e_2}{4 c_2(\mathbf{K}) B_2 \Sigma, K} \right\},
$$

where $c_5(K)$ is a polynomial of $\|A\|_F$, $\|B\|_F$, $\|D\|_F$, $\|\mathbf{K}\|_F$, ϵ_0, and c_2, c_5, K are defined in §C.9, then it holds that $\|\nabla K \mathbb{G}(\mathbf{K}'), L(\mathbf{K}') - \nabla_K \mathbb{G}(\mathbf{K}, L(\mathbf{K}))\|_F \leq \epsilon_2$.

Lemma B.9 For any $\mathbf{K} \in \mathcal{K}$, there exists some $B_{2,K} > 0$ such that all \mathbf{K}' satisfying $\|\mathbf{K}' - \mathbf{K}\|_F \leq B_{2,K}$ satisfy $\mathbf{K}' \in \mathcal{K}$.

Lemma B.10 For any $\mathbf{K} \in \mathcal{K}$, let the batchsize M_2, smoothing radius r_2, inner-loop parameters ϵ_1 and $\delta_1 \in (0, 1)$ satisfy

$$
M_2 \geq \max\left\{ \frac{8d_2^2 c_2^2 G(K,L(\mathbf{K}))^2}{r_2^2 \phi^2 \alpha^2}, \frac{32d_2^2 (\mathbb{G}(K,L(\mathbf{K}))) + r_2 B_{P,K} c_0^2}{r_2^2 \phi^2 \alpha^2} \right\} \cdot \log\left(\frac{6d_2}{\delta_2} \right),

\epsilon_1 \leq \frac{\epsilon_2 r_2}{4d_2},

r_2 \leq \min\left\{ \frac{B_{1,K} + B_{2,K}}{16 c_5(K)(\Sigma, L(\mathbf{K})) + B_2 \Sigma, K}, \frac{B_{2,K}}{16 c_2(\mathbf{K}) B_2 \Sigma, K} \right\},

\delta_1 \leq \frac{\delta_2}{3M_2},
$$

where $B_{1,K}, B_{2,K}, B_{\Sigma,K}, c_5(K) > 0$ are defined in Lemmas B.7, B.8, and B.9, and $d_2 = dmN$. Then, we have with probability at least $1 - \delta_2$ that $\|\nabla K \mathbb{G}(\mathbf{K}, L(\mathbf{K}')) - \nabla_K \mathbb{G}(\mathbf{K}, L(\mathbf{K}))\|_F \leq \epsilon_2$, where $\nabla K \mathbb{G}(\mathbf{K}, L(\mathbf{K}))$ is the estimated PG from Algorithm 2.

Lemma B.11 For any $\mathbf{K} \in \mathcal{K}$, let the batchsize M_2, inner-loop parameters ϵ_1 and $\delta_1 \in (0, 1)$ satisfy

$$
M_2 \geq \frac{2c_2^2_{\Sigma, L(\mathbf{K})}}{\epsilon_2^2} \cdot \log\left(\frac{4d_2}{\delta_2} \right),

\epsilon_1 \leq \min\left\{ \frac{B_{1,L(\mathbf{K})} \lambda_{\min}(H_{\mathbf{K},L(\mathbf{K}))}}{4 B_{2,L(\mathbf{K})}}, \frac{\epsilon_2^2 \lambda_{\min}(H_{\mathbf{K},L(\mathbf{K}))}}{4 B_{2,L(\mathbf{K})}} \right\},

\delta_1 \leq \frac{\delta_2}{2},
$$

(B.26)
where $B_{1,L(k)}, B_{2,L(k)}$ are defined in Lemma C.2 and $c_{x_{k,L(k)}}$ is a polynomial of $\|A\|_{F}$, $\|B\|_{F}$, $\|D\|_{F}$, $\|M\|_{F}$, and c_0. Then, we have with probability at least $1 - \delta_2$ that $\|\Sigma_{x_{k,L(k)}} - \Sigma_{k,L(k)}\|_{F} \leq \epsilon_2$, with $\Sigma_{k,L(k)}$ being the estimated correlation matrix from Algorithm 2. Moreover, it holds with probability at least $1 - \delta_2$ that $\lambda_{min}(\Sigma_{x_{k,L(k)}}) \geq \phi/2$ if $\epsilon_2 \leq \phi/2$.

Based on the above lemmas, we prove the implicit regularization property of the outer-loop ZO-NPG update (4.3). Define $\Phi(z) := \lambda_{min}(H_{k,L(k)}) > 0$ and the following set $\hat{\mathcal{K}}$:

$$
\hat{\mathcal{K}} := \left\{ \mathbf{K} \mid (3.8) \text{ admits a solution } P_{k,L(k)} \geq 0, \text{ and } P_{k,L(k)} \leq P_{0,L(K_0)} + \frac{\Phi}{2\|D\|^2} \cdot I \right\} \subset \mathcal{K}.
$$

It is a strict subset of \mathcal{K} as all $\mathbf{K} \in \hat{\mathcal{K}}$ satisfy $\lambda_{min}(H_{k,L(k)}) \geq \frac{\Phi}{2} > 0$. Then, we prove the compactness of $\hat{\mathcal{K}}$ by first proving its boundedness. Specifically, for any $\mathbf{K} \in \hat{\mathcal{K}}$, we have by (3.8) that $P_{k,L(k)} \geq 0$ solves

$$
P_{k,L(k)} = Q + \mathbf{K}^T R^u \mathbf{K} + (A - B \mathbf{K})^T (P_{k,L(k)} + P_{k,L(k)} D^T (R^u - D^T P_{k,L(k)} D)^{-1} D^T P_{k,L(k)}) (A - B \mathbf{K}),
$$

(2.26)

where the second term on the RHS of (2.26) is p.s.d. and thus $Q + \mathbf{K}^T R^u \mathbf{K} \leq P_{k,L(k)}$ with $Q \geq 0$ and $R^u > 0$. Since $P_{k,L(k)}$, $P_{0,L(K_0)}$ are symmetric and p.s.d., all $\mathbf{K} \in \hat{\mathcal{K}}$ satisfy $\|P_{k,L(k)}\|_{F} \leq \|P_{0,L(K_0)} + \frac{\Phi}{2\|D\|^2} \cdot I\|_{F}$. These arguments together imply that for all $\mathbf{K} \in \hat{\mathcal{K}}$,

$$
\|\mathbf{K}\|_{F} \leq \sqrt{\|P_{0,L(K_0)} + \frac{\Phi}{2\|D\|^2} \cdot I\|_{F} / \lambda_{min}(R^u)},
$$

proving the boundedness of $\hat{\mathcal{K}}$.

Next, we take an arbitrary sequence $\{K_n\} \in \hat{\mathcal{K}}$ and note that $\|K_n\|_{F}$ is bounded for all n. Applying Bolzano-Weierstrass theorem implies that the set of limit points of $\{K_n\}$, denoted as $\hat{\mathcal{K}}_{lim}$, is nonempty. Then, for any $K_{lim} \in \hat{\mathcal{K}}_{lim}$, we can find a subsequence $\{K_{n}\} \in \hat{\mathcal{K}}$ that converges to K_{lim}. We denote the corresponding sequence of solutions to (2.26) as $\{P_{k_{n},L(k_{n})}\}$, where $0 \leq P_{k_{n},L(k_{n})} \leq P_{0,L(K_0)} + \frac{\Phi}{2\|D\|^2} \cdot I$ for all n. By Bolzano-Weierstrass theorem, the boundedness of $\{P_{k_{n},L(k_{n})}\}$, and the continuity of (2.26) with respect to \mathbf{K}, we have the set of limit points of $\{P_{k_{n},L(k_{n})}\}$, denoted as $\hat{\mathcal{K}}_{lim}$, is nonempty. Then, for any $P_{lim} \in \hat{\mathcal{K}}_{lim}$, we can again find a subsequence $\{P_{k_{n},L(k_{n})}\}$ that converges to P_{lim}. Since $P_{k_{n},L(k_{n})}$ is a p.s.d. solution to (2.26) satisfying $0 \leq P_{k_{n},L(k_{n})} \leq P_{0,L(K_0)} + \frac{\Phi}{2\|D\|^2} \cdot I$ for all n and (2.26) is continuous in \mathbf{K}, P_{lim} must solve (2.26) and satisfy $0 \leq P_{lim} \leq P_{0,L(K_0)} + \frac{\Phi}{2\|D\|^2} \cdot I$, which implies $K_{lim} \in \hat{\mathcal{K}}$. Note that the above arguments work for any sequence $\{K_n\} \in \hat{\mathcal{K}}$ and any limit points K_{lim} and P_{lim}, which proves the closedness of $\hat{\mathcal{K}}$. Together with the boundedness, $\hat{\mathcal{K}}$ is thus compact.

Now, denote the iterates after one-step of the outer-loop ZO-NPG update (4.3) and the exact NPG update (3.17) from K_k as K_{k+1} and \hat{K}_{k+1}, respectively, for $k \in [0, \cdots, K - 1]$. Clearly, it holds that $K_0 \in \mathcal{K}$. Additionally, we require the stepsize $\alpha > 0$ to satisfy

$$
\alpha \leq \frac{1}{2} \|R^u + B(\bar{P} + \bar{PD}(R^u - D^T \bar{PD})^{-1} D^T \bar{P})B\|^{-1}, \quad \text{where} \quad \bar{P} := P_{0,L(K_0)} + \frac{\Phi}{2\|D\|^2} \cdot I,
$$

(2.27)

which is stricter than the requirement in Theorem 3.7. Given our stepsize choice, Theorem 3.7 guarantees that $P_{k,L(k)} \geq 0$ exists and satisfies $P_{k,L(k)} \leq P_{k,L(K_0)}$ almost surely. By requiring $\|K_1 - \bar{K}_1\|_{F} \leq \min\{B_{1,K_1}, B_{2,K_1}, \frac{\Phi}{2\|D\|^2}\}$ with probability at least $1 - \frac{\delta_2}{2}$, we have by Lemma B.9 that $K_1 \in \mathcal{K}$ with probability at least $1 - \frac{\delta_2}{2}$. Thus, we invoke the recursive arguments in the proof of Theorem 3.7 (see §B.10) to show that $P_{k,L(K_1)} \geq 0$ exists and invoke Lemma B.7 to obtain that

$$
\|P_{k,L(K_1)} - P_{k,L(\bar{K}_1)}\| \leq \frac{\Phi}{2\|D\|^2} \Rightarrow P_{k,L(K_1)} \leq P_{k,L(\bar{K}_1)} + \frac{\Phi}{2\|D\|^2} \cdot I \leq P_{0,L(K_0)} + \frac{\Phi}{2\|D\|^2} \cdot I.
$$

(2.28)
In other words, it holds that $K_1 \in \hat{\mathcal{K}}$ with probability at least $1 - \frac{\delta_2}{\xi}$.

Subsequently, we can invoke Theorem 3.7 again to get that taking another step of the exact outer-loop NPG update starting from K_1, the updated gain matrix, denoted as \hat{K}_2, satisfies $P_{K_2,L(K_2)} \leq P_{K_1,L(K_1)}$. Similarly, by requiring $\|K_2 - \hat{K}_2\|_F \leq \min \left\{ B_{1,\hat{K}_1}, B_{2,\hat{K}_1}, \frac{\zeta}{2B_{P,\hat{K}_1}K\|D\|^2} \right\}$, we can guarantee with probability at least $1 - \frac{\delta_2}{\xi}$ that $K_2 \in \mathcal{K}$, conditioned on $K_1 \in \hat{\mathcal{K}}$. Conditioning on (B.28), we apply Theorem 3.7 and Lemma B.7 again to get with probability at least $1 - \frac{\delta_2}{\xi}$ that $P_{K_2,L(K_2)} \geq 0$ exists and satisfies

$$
P_{K_2,L(K_2)} \leq P_{K_2,L(K_2)} + \frac{\zeta}{2K\|D\|^2} I \leq P_{K_1,L(K_1)} + \frac{\zeta}{2K\|D\|^2} I \leq P_{0,0} + \frac{\zeta}{K\|D\|^2} I.$$

That is, $K_2 \in \hat{\mathcal{K}}$ with probability at least $1 - \frac{\delta_2}{\xi}$. Applying above arguments iteratively for all iterations and taking a union bound yield that if the estimation accuracy, for all $k \in \{1, \cdots, K\}$, satisfies with probability at least $1 - \frac{\delta_2}{\xi}$ that

$$
\|K_k - \hat{K}_k\|_F \leq \min \left\{ B_{1,\hat{K}_k}, B_{2,\hat{K}_k}, \frac{\zeta}{2B_{P,\hat{K}_1}K\|D\|^2} \right\},
$$

(B.29)

then it holds with probability at least $1 - \frac{\delta_2}{\xi}$ that $K_K \in \hat{\mathcal{K}} \subset \mathcal{K}$, where K_K is the gain matrix after K steps of the ZO-NPG update (4.3) starting from K_0 and with a constant stepsize α satisfying (B.27).

Lastly, we provide precise choices of the parameters for Algorithm 2 such that (B.29) can be satisfied.

Since $\hat{\mathcal{K}}$ is compact, there exist some uniform constants over $\hat{\mathcal{K}}$

$$
B_1 := \min_{K \in \mathcal{K}} B_{1,K} > 0, \ B_2 := \max_{K \in \mathcal{K}} B_{P,K} < \infty.
$$

Moreover, let us denote the closure of the complement of \mathcal{K} as $\overline{\mathcal{K}}^c$. Since $\hat{\mathcal{K}} \subset \mathcal{K}$ is compact and all $K \in \mathcal{K}$ satisfy: i) $P_{K,L(K)} \geq 0$ exists; and ii) $\lambda_{\min}(H_{K,L(K)}) \geq \frac{1}{2} > 0$, $\overline{\mathcal{K}}^c$ is disjoint from $\overline{\mathcal{K}}^c$, i.e., $\overline{\mathcal{K}} \cap \overline{\mathcal{K}}^c = \emptyset$. Hence, one can deduce (see for example Lemma A.1 of [75]) that, there exists a distance $B_2 > 0$ between $\overline{\mathcal{K}}$ and $\overline{\mathcal{K}}^c$ such that $B_2 \leq \min_{K \in \mathcal{K}} B_{2,K}$. As a result, we now aim to enforce for all $k \in \{1, \cdots, K\}$, that the following inequality holds with probability at least $1 - \frac{\delta_2}{\xi}$:

$$
\|K_k - \hat{K}_k\|_F \leq \omega := \min \left\{ B_{1,\hat{K}_k}, B_{2,\hat{K}_k}, \frac{\zeta}{2B_{P,\hat{K}_1}K\|D\|^2} \right\}, \quad (B.30)
$$

Note that compared to (B.29), (B.30) is independent of the iteration index k, and is more stringent.

Thus, (B.30) also ensures $K_k \in \hat{\mathcal{K}}$ for all $k \in \{1, \cdots, K\}$ with probability at least $1 - \frac{\delta_2}{\xi}$, as (B.29) does.

Condition (B.30) can be achieved by Lemmas B.10 and B.11. Specifically, we start from any gain matrix K from the set of $\{K_0, \cdots, K_{K-1}\}$ and use K' and K' to denote the gain matrices after one step of the ZO-NPG (4.3) and the exact NPG (3.17) updates, respectively. Now, suppose that the parameters of Algorithm 2 satisfy $\delta_1 \leq \delta_3 / [6M_2\alpha]$ and

$$
M_2 \geq \max \left\{ \frac{128d_2^3\alpha^2c_0^2G(K,L(K))^2}{\phi^4\omega^2}, \frac{512d_2^2\alpha^2(G(K,L(K))+r_2B_Pc_0)^2}{\phi^4\omega^2}, \frac{32\alpha^2(c_5K)^2(c_{\Sigma,K,L(K)})^2}{\phi^4\omega^2}, \frac{8(c_{\Sigma,K,L(K)})^2}{\phi^4\omega^2} \right\}
$$

$$
\cdot \log \left(\frac{12K \max[d_2,d_3]}{\delta_2} \right) \hspace{1cm} \epsilon_1 \leq \min \left\{ \frac{\phi\omega r_1}{16d_2^2}, \frac{\phi^2\omega^2 \xi}{128\alpha^2(c_5K)^2B_{2,L(K)}^2}, \frac{\phi \omega \xi}{64\alpha c_{2,K}B_{2,L(K)}^2} \right\},
$$

$$
r_2 \leq \min \left\{ \phi \omega \xi, \frac{64\alpha c_{3,K}B_{2,L(K)}^2}{64\alpha c_{2,K}B_{2,L(K)}^2} \right\},
$$

with the requirement on ϵ_1 uses the fact that all $K \in \hat{\mathcal{K}}$ satisfy $\lambda_{\min}(H_{K,L(K)}) \geq \frac{1}{2}$. Also, $\hat{G}(K,L(K)), \ c_2,K, \ c_5,K, \ c_{\Sigma,K,L(K)}, \ B_{2,L(K)}, \ B_{2,L(K)} > 0$ are uniform constants over $\hat{\mathcal{K}}$ such that

$$
\hat{G}(K,L(K)) := \max_{K \in \hat{\mathcal{K}}} G(K,L(K)), \ B_{2,L(K)} := \max_{K \in \hat{\mathcal{K}}} B_{2,L(K)}, \ B_{2,L(K)} := \min_{K \in \hat{\mathcal{K}}} B_{1,L(K)},
$$

$$
B_{2,L(K)} := \max_{K \in \hat{\mathcal{K}}} B_{2,L(K)}, \ c_2,K := \max_{K \in \hat{\mathcal{K}}} c_2,K, \ c_5,K := \max_{K \in \hat{\mathcal{K}}} c_5,K, \ c_{\Sigma,K,L(K)} := \max_{K \in \hat{\mathcal{K}}} c_{\Sigma,K,L(K)}.
$$
where $B_{c,K}$ is from Lemma B.7, $B_{1,L(K)}$, $B_{\Sigma,L(K)}$ are from Lemma C.2, $c_{2,K}$, $c_{5,K}$ are defined in §C.9, and $c_{5,K}$ is from Lemma B.8. Then, Lemma B.10 proves that the following inequality holds with probability at least $1 - \frac{\delta_2}{2K}$:

$$\|\nabla_K G(K, \bar{L}(K)) - \nabla_K G(K, L(K))\| \leq \frac{\phi \delta}{4\alpha}.$$ \hfill (B.31)

Moreover, we invoke Lemma B.11 to get with probability at least $1 - \frac{\delta_2}{2K}$ that

$$\|\Sigma_{K,L(K)} - \Sigma_{K,L(K)}\| \leq \min \left\{ \frac{\phi \delta}{4\alpha c_{5,K}}, \frac{\phi}{2} \right\} \leq \min \left\{ \frac{\phi \delta}{4\alpha c_{5,K}}, \frac{\phi}{2} \right\}.$$ \hfill (B.32)

By matrix perturbation theory (see for example Theorem 35 of [11]) and noting that $\Sigma_{K,L(K)} = \Sigma_{K,L(K)} + (\Sigma_{K,L(K)} - \Sigma_{K,L(K)})$, since $\Sigma_{K,L(K)} \geq \Sigma_0$ and $\|\Sigma_{K,L(K)} - \Sigma_{K,L(K)}\| \leq \frac{\phi}{2}$, we have with probability at least $1 - \frac{\delta_2}{2K}$ that

$$\|\Sigma_{K,L(K)}^{-1} - \Sigma_{K,L(K)}^{-1}\| \leq \frac{2\|\Sigma_{K,L(K)} - \Sigma_{K,L(K)}\|}{\phi} \leq \frac{\alpha}{2\alpha c_{5,K}}.$$ \hfill (B.32)

Lastly, by Lemma B.11 and $\|\Sigma_{K,L(K)} - \Sigma_{K,L(K)}\| \leq \frac{\phi}{2}$, we can ensure that $\lambda_{\min}(\Sigma_{K,L(K)}) \geq \frac{\phi}{2}$ and thus $\|\Sigma_{K,L(K)}^{-1}\| \leq \frac{\phi}{2}$, all with probability at least $1 - \frac{\delta_2}{2K}$. Then, we combine (B.31) and (B.32) to show that with probability at least $1 - \frac{\delta_2}{K}$,

$$\|\tilde{K} - K'\| \leq \alpha \|\nabla_K G(K, \bar{L}(K))\| \Sigma_{K,L(K)}^{-1} - \Sigma_{K,L(K)}^{-1}\|_F \leq \alpha \|\nabla_K G(K, \bar{L}(K))\| \Sigma_{K,L(K)}^{-1} - \Sigma_{K,L(K)}^{-1}\|_F \leq \frac{\alpha}{\phi} \|\nabla_K G(K, \bar{L}(K))\| \Sigma_{K,L(K)}^{-1} - \Sigma_{K,L(K)}^{-1}\|_F \leq \alpha c_{5,K} \cdot \|\Sigma_{K,L(K)}^{-1} - \Sigma_{K,L(K)}^{-1}\|_F \leq \alpha,$$

where the second inequality uses (C.16). Therefore, the above choices of parameters fulfill the requirements in (B.30), and thus guarantee $K_k \in \mathcal{K}^*$ for all $k \in \{1, \ldots, K\}$ with probability at least $1 - \delta_2$. This completes the proof. \hfill \Box

B.15 Proof of Theorem 4.3

Proof We provide a complete version of Theorem 4.3 as follows.

Theorem B.12 (Outer-Loop Sample Complexity) For any $K_0 \in \mathcal{K}$, let $\epsilon_2 \leq \phi / 2$, δ_2, δ_1, M_2, r_2, α in Algorithm 2 satisfy the requirements in Theorem B.6, but with ω therein replaced by $\phi := \min \left\{ \omega, \alpha \phi \epsilon / [\sqrt{\log} B_p] \right\}$. Then, it holds with probability at least $1 - \delta_2$ that the sequence $\{K_k\}$, $k \in \{0, \ldots, K\}$, converges with $O(1 / K)$ rate in the sense that $K^{-1} \sum_{k=0}^{K-1} \|F_{K_k,L(K_k)}\|_F^2 \leq \epsilon_2$ with $K = \text{Tr}(P_{K_0,L(K_0)} - P_{K_0,L(K)}') / [\alpha \phi \epsilon_2]$, which is also towards the unique Nash equilibrium.

Then, we focus on proving Theorem B.12. First, we require the parameters in Algorithm 2 to satisfy (B.22). Then, Theorem 4.2 proves with probability at least $1 - \delta_2$ that $K_k \in \mathcal{K}^*$, for all $k \in \{1, \ldots, K\}$. Subsequently, we characterize the convergence rate of the outer-loop ZO-NPG update (4.3), conditioned on $K_k \in \mathcal{K}^*$, for all $k \in \{1, \ldots, K\}$. Once again, we start from K_0 and characterize the one-step progress of (4.3) from K_0 to K_1. In addition to the requirement in (B.29), we now require $\|K_1 - \bar{K}_1\| \leq \frac{\alpha \phi \epsilon_2}{\sqrt{s} B_{P,K}}$ with probability at least $1 - \frac{\delta_2}{K}$, where \bar{K}_1 is the gain matrix after one step of (3.17) starting from K_0 and with a constant stepsize α satisfying (B.27). Invoking Lemma B.7 yields with probability at least $1 - \frac{\delta_2}{K}$ that

$$\text{Tr}(P_{K_1,L(K_1)} - P_{K_1,L(\bar{K}_1)}) \leq \sqrt{s} \|P_{K_1,L(K_1)} - P_{K_1,L(\bar{K}_1)}\|_F \leq \sqrt{s} B_{P,K} \cdot \|K_1 - \bar{K}_1\|_F \leq \frac{\alpha \phi \epsilon_2}{\epsilon_0},$$ \hfill (B.33)
where $P_{K_i,L(K_i)} - P_{K_i,L(\tilde{K_i})} \in \mathbb{R}^{S \times S}$ is symmetric. By (B.17), we have with probability at least $1 - \frac{\delta_2}{K}$ that

$$\text{Tr}((P_{K_i,L(K_i)} - P_{K_i,L(\tilde{K_i})})\Sigma_0) = \text{Tr}(P_{K_i,L(K_i)}\Sigma_0) + \text{Tr}(P_{K_i,L(\tilde{K_i})}\Sigma_0) \leq -\alpha \phi \epsilon_2 + c_0 - 2\alpha \phi \text{Tr}(F_{K_0,L(K_0)}^T F_{K_0,L(K_0)}) \leq -\alpha \phi \text{Tr}(F_{K_0,L(K_0)}^T F_{K_0,L(K_0)}),$$

where the first inequality is due to $||\Sigma_0||_F \leq c_0$ almost surely and the last inequality follows from our assumption that $\text{Tr}(F_{K_0,L(K_0)}^T F_{K_0,L(K_0)}) \geq \epsilon_2$. Similarly, for all future iterations $k \in \{2, \ldots, K\}$, we can require $||K_k - \tilde{K}_k||_F \leq \frac{\alpha \phi \epsilon_2}{\sqrt{c_0}B_{p,K_k}}$ with probability at least $1 - \frac{\delta_2}{K}$ to obtain

$$\text{Tr}((P_{K_k,L(K_k)} - P_{K_{k-1},L(K_{k-1})})\Sigma_0) \leq -\alpha \phi \text{Tr}(F_{K_{k-1},L(K_{k-1})}^T F_{K_{k-1},L(K_{k-1})})$$

until the update converges to the ϵ_2-stationary point of the outer-loop, which is also the unique Nash equilibrium. Summing up all iterations and taking a union bound yield with probability at least $1 - \delta_2$, the sublinear convergence rate, in that

$$\frac{1}{K} \sum_{k=0}^{K-1} \text{Tr}(F_{K_k,L(K_k)}^T F_{K_k,L(K_k)}) \leq \frac{\text{Tr}(P_{K_0,L(K_0)} - P_{\bar{K}_c,L(\bar{K}_c)})}{\alpha \phi - K}.$$ \hspace{1cm} (B.34)

That is, when $K = \text{Tr}(P_{K_0,L(K_0)} - P_{\bar{K}_c,L(\bar{K}_c)})/\alpha \phi - K$, it satisfies with probability at least $1 - \delta_2$ that $K^{-1} \sum_{k=0}^{K-1} ||F_{K_k,L(K_k)}||_F^2 \leq \epsilon_2$.

Lastly, the precise choices of the parameters for Algorithm 2 such that the above requirements on the estimation accuracy can be satisfied follow from the proof of Theorem 4.2 in §B.14, with additionally $\epsilon_2 \leq \phi/2$, and ω in (B.30) replaced by

$$\omega := \min \left\{ \frac{\alpha \phi \epsilon_2}{\sqrt{c_0}B_p}, \omega \right\},$$

where $B_p = \max_{K \in \mathbb{K}} B_{p,K}$ is a uniform constant. Note that (B.35) is again independent of the iteration index k, and is more stringent than (B.30). Thus, (B.35) also ensures $K_k \in \tilde{\mathbb{K}}$ for all $k \in \{1, \ldots, K\}$ with probability at least $1 - \delta_2$, as (B.30) does. By Lemmas B.10 and B.11, requirements on the parameters in (B.22) with ω replaced by ω suffice to guarantee that $K_k \in \tilde{\mathbb{K}}$ for all $k \in \{1, \ldots, K\}$ with probability at least $1 - \delta_2$. Also, it ensures with probability at least $1 - \delta_2$ that the convergence in (B.34) holds. This completes the proof.

C Supplementary Results

C.1 Proof of Lemma B.1

Proof Firstly, we have $R_t^w - D_t^T P_{K_{t+1},L(K_{t+1})} D_t$, $R_t^w - D_t^T P_{K_t^*,L(K_t^*)} D_t$ invertible since the conditions

$$R_t^w - D_t^T P_{K_{t+1},L(K_{t+1})} D_t > 0, \quad R_t^w - D_t^T P_{K_t^*,L(K_t^*)} D_t > 0$$

44
are satisfied. Then, by the definition of $P_{K,L}$ in (3.3) and the definition of $L(K)$, we can derive
\[
P_{K,L}(K_i) - P_{K,L}(K) = -A_{K,L}^T (P_{K,L}(K_i) - P_{K,L}(K)) A_{K,L}
\]
\[
= -A_{K,L}^T (P_{K,L}(K_i) - P_{K,L}(K)) + P_{K,L}(K_i) - A_{K,L}^T (P_{K,L}(K_i) - P_{K,L}(K)) A_{K,L}
\]
\[
= (A - B_i K)^T P_{K,L}(K_i) (A - B_i K) - L(K_i)^T D^T P_{K,L}(K_i) (A - B_i K) - (A - B_i K)^T P_{K,L}(K_i) D_L L(K_i)
\]
\[
- P_{K,L}(K) + Q_i + (K_i)^T R_i^T (K_i) - L(K_i)^T (R_i^T - D^T P_{K,L}(K_i) D_L) L(K_i)
\]
\[
= (A - B_i K)^T \bar{P}_{K,L}(K_i) (A - B_i K) - L(K_i)^T D^T \bar{P}_{K,L}(K_i) (A - B_i K) - (A - B_i K)^T \bar{P}_{K,L}(K_i) D_L L(K_i)
\]
\[
- R_{K_i} - (A - B_i K)^T \bar{P}_{K,L}(K_i) (A - B_i K) - (A - B_i K)^T \bar{P}_{K,L}(K_i) D_L L(K_i)
\]
\[
= R_{K_i} - \left((R_i^T - D^T \bar{P}_{K,L}(K_i) D_L) L(K_i) - D^T \bar{P}_{K,L}(K_i) (A - B_i K) \right)^T (R_i^T - D^T \bar{P}_{K,L}(K_i) D_L) - 1
\]
\[
= R_{K_i} - \left(R_i^T - D^T \bar{P}_{K,L}(K_i) D_L \right) L(K_i) - D^T \bar{P}_{K,L}(K_i) (A - B_i K)
\]
This completes the proof of (B.11). Further, we invoke (3.3) to represent R_{K_i} as
\[
R_{K_i} = (A - B_i K)^T \bar{P}_{K,L}(K_i) (A - B_i K) - P_{K,L}(K) + Q_i + (K_i)^T R_i^T (K_i)
\]
\[
= (K_i - K)^T \left((R_i^T + B_i^T \bar{P}_{K,L}(K_i) B_i) K_i - B_i^T \bar{P}_{K,L}(K_i) A_i \right)
\]
\[
+ (K_i - K)^T \left((R_i^T + B_i^T \bar{P}_{K,L}(K_i) B_i) (K_i - K) \right)
\]
\[
= (K_i - K)^T F_{K,L}(K_i) + F_i^T (K_i - K)^T (R_i^T + B_i^T \bar{P}_{K,L}(K_i) B_i) (K_i - K)
\]
This completes the proof.

C.2 Proof of Lemma B.3

Proof Firstly, for a fixed $K \in K$ and a given L, we require $r_{1,L} \leq \rho_{K,L}$ to ensure that the “size” of the perturbation added to the gain matrix L is smaller than the radius within which the local Lipschitz continuity and the local smoothness properties in Lemma 3.4 hold. In other words, we have $\|r_{1,L} U\|_F \leq \rho_{K,L}$, where U is drawn uniformly from $\mathcal{S}(m, m, N)$ and has $\|U\|_F = 1$. Then, we invoke Lemma 23 of [19] to obtain that with probability at least $1 - \delta_1$, the concentration of gradient estimates around its mean is
\[
\left\| \nabla_L G(K,L) - \nabla_L G_{r_{1,L}}(K,L) \right\|_F \leq \frac{d_1}{r_{1,L} \sqrt{M_{1,L}}} \left(G(K,L) + \frac{k_L}{\rho_{K,L}} \right) \sqrt{\log \left(\frac{2d_1}{\delta_1} \right)},
\]
where $\nabla_L G(K,L)$ is the gradient estimate obtained from an $M_{1,L}$-sample one-point minibatch estimator, $\nabla_L G_{r_{1,L}}(K,L) := \frac{1}{M_{1,L}} \mathbb{E}[G(K,L + r_{1,L} U)]$ is the gradient of the smoothed version of $G(K,L)$, and $d_1 = mnN$ is the degrees of freedom of $\mathcal{S}(m, m, N)$. Therefore, it suffices to require the batchsize $M_{1,L} > 0$ to satisfy $M_{1,L} \geq \left(\frac{d_1}{r_{1,L}} G(K,L) + \frac{k_L}{\rho_{K,L}} \right) \sqrt{\log \left(\frac{2d_1}{\delta_1} \right)} \frac{1024}{\rho_{K,L}}$ in order to ensure that with probability at least $1 - \delta_1$ that
\[
\left\| \nabla_L G(K,L) - \nabla_L G_{r_{1,L}}(K,L) \right\|_F \leq \frac{\sqrt{\rho_{K,L}}}{32}.
\]
Then, we can bound, with probability at least $1 - \delta_1$, the “size” of the one-step ZO-PG update (4.1) by

$$
\|L' - L\|_F = \|\eta_L \nabla_L G(K, L)\|_F \\
\leq \eta_L \|\nabla_L G(K, L) - \nabla_L G_{r_1,L}(K, L)\|_F + \eta_L \|\nabla_L G_{r_1,L}(K, L) - \nabla_L G(K, L)\|_F + \eta_L \|\nabla_L G(K, L)\|_F \\
\leq \eta_L \left(\frac{\sqrt{\mu_K} \epsilon_1}{32} + \psi_{k,L} \sqrt{r_1} + l_{k,L}\right) \leq \eta_L \left(\frac{\sqrt{\mu_K} \epsilon_1}{32} + \psi_{k,L} + l_{k,L}\right),
$$

where the second to last inequality follows from (C.1), Lemma 14(b) of [19], Lemma 3.4, and $r_1,L \sim \Theta(\sqrt{\epsilon_1})$. The last inequality follows from our requirement that $\epsilon_1 < 1$. Therefore, it suffices to require $\eta_L \leq \rho_{k,L} \cdot \left(\frac{\sqrt{\mu_K}}{32} + \psi_{k,L} + l_{k,L}\right)^{-1}$ to ensure that L' lies within the radius that the local Lipschitz continuity and the local smoothness properties hold with probability at least $1 - \delta_1$. Now, we exploit the local smoothness property to derive that

$$
G(K, L) - G(K, L') \leq -\eta_L \langle \nabla_L G(K, L), \nabla_L G(K, L) \rangle + \frac{\psi_{k,L} \eta_L^2}{2} \|\nabla_L G(K, L)\|_F^2 \\
= -\eta_L \langle \nabla_L G(K, L), \nabla_L G(K, L) \rangle - \eta_L \langle \nabla_L G_{r_1,L}(K, L), \nabla_L G_{r_1,L}(K, L) \rangle + \frac{\psi_{k,L} \eta_L^2}{2} \|\nabla_L G(K, L)\|_F^2 \\
\leq \eta_L \|\nabla_L G(K, L)\|_F \|\nabla_L G(K, L) - \nabla_L G_{r_1,L}(K, L)\|_F + \eta_L \|\nabla_L G_{r_1,L}(K, L)\|_F \\
+ \eta_L \psi_{k,L} r_{1,L} \|\nabla_L G_{r_1,L}(K, L)\|_F + \psi_{k,L} \eta_L^2 \|\nabla_L G(K, L)\|_F^2 \\
\leq -\frac{\eta_L}{2} \|\nabla_L G(K, L)\|_F^2 + \frac{\eta_L}{2} \|\nabla_L G_{r_1,L}(K, L)\|_F^2 \\
+ \frac{\psi_{k,L} \eta_L^2}{2} \|\nabla_L G(K, L)\|_F^2.
$$

(C.2)

Moreover, we can bound the last term of (C.2) as

$$
\frac{\psi_{k,L} \eta_L^2}{2} \|\nabla_L G(K, L)\|_F^2 \leq \psi_{k,L} \eta_L^2 \|\nabla_L G(K, L) - \nabla_L G_{r_1,L}(K, L)\|_F^2 + 2 \psi_{k,L} \eta_L^2 (\psi_{k,L}^2 r_{1,L}^2 + \|\nabla_L G(K, L)\|_F^2).
$$

(C.3)

Substituting (C.3) into (C.2) yields that the following inequality holds almost surely:

$$
G(K, L) - G(K, L') \leq \left(-\frac{\eta_L}{2} + 2 \psi_{k,L} \eta_L^2\right) \|\nabla_L G(K, L)\|_F^2 + \left(\frac{\eta_L}{2} + \psi_{k,L} \eta_L^2\right) \|\nabla_L G(K, L) - \nabla_L G_{r_1,L}(K, L)\|_F^2 \\
+ \eta_L \psi_{k,L} r_{1,L} \|\nabla_L G_{r_1,L}(K, L)\|_F + 2 \psi_{k,L} \eta_L^2 r_{1,L}^2.
$$

Next, recalling the definition that $\theta_{K,L} = \min \left\{\frac{1}{2 \psi_{k,L}}, \rho_{K,L}\right\}$, we invoke the local smoothness property to obtain

$$
\left(\theta_{K,L} - \frac{\theta_{k,L}^2 \psi_{k,L}}{2}\right) \|\nabla_L G(K, L)\|_F^2 \leq G(K, L + \theta_{K,L} \nabla_L G(K, L)) - G(K, L) \leq G(K, L(K)) - G(K, L).
$$

Define $\Delta := G(K, L(K)) - G(K, L)$ and $\Delta' := G(K, L(K)) - G(K, L')$, then it holds almost surely that

$$
\Delta' - \Delta \leq \left(-\frac{\eta_L}{2} + 2 \psi_{k,L} \eta_L^2\right) \|\nabla_L G(K, L)\|_F^2 + \left(\frac{2 \eta_L \psi_{k,L} r_{1,L}}{\theta_{K,L}}\right) \|\nabla_L G(K, L)\|_F^2 \\
+ \left(\frac{2 \eta_L \psi_{k,L} r_{1,L}}{\theta_{K,L}}\right) \|\nabla_L G(K, L) - \nabla_L G_{r_1,L}(K, L)\|_F^2 + 2 \psi_{k,L} \eta_L^2 r_{1,L}^2 \\
\leq -\frac{\eta_L \mu_K}{4} \Delta + \frac{2 \eta_L \psi_{k,L} r_{1,L}}{\theta_{K,L}} \|\nabla_L G(K, L) - \nabla_L G_{r_1,L}(K, L)\|_F^2 + 2 \psi_{k,L} \eta_L^2 r_{1,L}^2 \\
\leq -\frac{\eta_L \mu_K}{8} \Delta + \frac{8 \eta_L \psi_{k,L} r_{1,L}^2}{\mu_K \theta_{K,L}^2} + \eta_L \|\nabla_L G(K, L) - \nabla_L G_{r_1,L}(K, L)\|_F^2 + 2 \psi_{k,L} \eta_L^2 r_{1,L}^2
$$

where the last two inequalities utilize $\eta_L \leq \frac{1}{\psi_{k,L}}$ and the μ_K-PL condition in Lemma 3.4. Thus, if the stepsize η_L of the one-step ZO-PG update (4.1) and the smoothing radius $r_{1,L}$ for the minibatch
where the last inequality follows from (C.1). Lastly, by (C.4), we have
\[\mathcal{G}(K, L) - \mathcal{G}(K, L') = \Delta' - \Delta \leq -\eta_L L \Delta + \eta_L E_1 \|
abla L \mathcal{G}(K, L) - \nabla L \mathcal{G}(r_{1,L}(K, L))\|_F^2 + \frac{\eta_L E_1}{60} \Rightarrow \Delta' \leq \left(1 - \frac{\eta_L L K}{8}\right) \Delta + \eta_L L K E_1 \Rightarrow \nabla L \mathcal{G}(K, L) - \nabla L \mathcal{G}(K, L') \leq 0 \] with probability at least 1 - \delta_1 since by the implicit assumption that \(E_1 \leq \Delta\). This completes the proof. \hfill \blacksquare

C.3 Proof of Lemma B.5

Proof First we introduce the following lemma and defer its proof to the end of this subsection.

Lemma C.1 (\(\Sigma_{K,L}\) Estimation) For any \(K \in \mathcal{K}\) and any \(L \in \mathcal{S}(n,m,N)\), let the batchsize \(M_1\) in Algorithm 1 satisfy
\[M_1 \geq \frac{1}{2} c_{\Sigma_{K,L}}^2 e_i^{-2} \log \left(\frac{2d \epsilon}{\delta_1}\right), \]
where \(c_{\Sigma_{K,L}}\) is a polynomial of \(|A|_F, |B|_F, |D|_F, |K|_F, |L|_F\), and is linear in \(e_0\). Then, it holds with probability at least 1 - \delta_1 that
\[\|\nabla L \mathcal{G}(K, L) - \nabla L \mathcal{G}(r_{1,L}(K, L))\|_F \leq \phi \sqrt{\epsilon K} E_1 \Rightarrow \nabla L \mathcal{G}(K, L) - \nabla L \mathcal{G}(r_{1,L}(K, L)) \leq 0 \]. By the standard matrix perturbation theory (see for example Theorem 35 of [11]), we have
\[\|\Sigma_{K,L}^{-1} - \Sigma_{K,L}^{-1}\|_F \leq \frac{2\|\Sigma_{K,L}^{-1} - \Sigma_{K,L}\|_F}{\phi} \leq 1. \]

Furthermore, by Lemma C.1 and the condition that \(\|\nabla L \mathcal{G}(K, L) - \nabla L \mathcal{G}(r_{1,L}(K, L))\|_F \leq \phi \sqrt{\epsilon K} E_1\), we can ensure that \(\lambda_{\min}(\Sigma_{K,L}) \geq \phi / 2\) and thus \(\|\Sigma_{K,L}^{-1}\| \leq 2 / \phi\). Combining (C.5) and (C.6) yields that with probability at least 1 - \delta_1, the “size” of the one-step inner-loop ZO-NPG update (4.2) can be bounded by
\[\|L' - L\|_F = \eta_L \|\nabla L \mathcal{G}(K, L)\|_F \leq \|\nabla L \mathcal{G}(K, L)\|_F \leq \|\Sigma_{K,L}^{-1} - \Sigma_{K,L}^{-1}\|_F + \|\nabla L \mathcal{G}(K, L)\|_F \leq \|\nabla L \mathcal{G}(K, L)\|_F \leq \|\Sigma_{K,L}^{-1} - \Sigma_{K,L}^{-1}\|_F \leq 1. \]

where the last inequality follows from (C.5), Lemma 14 of [19], \(\epsilon_1 < 1\) and \(r_{1,L} \sim \Theta(\sqrt{\epsilon_1})\). Therefore, it suffices to require
\[\eta_L \leq \rho_{K,L} \left[\frac{\sqrt{\epsilon K}}{4(\epsilon K + 1)} + \frac{2\psi_{K,L}}{\phi} + l_{K,L} + \frac{\phi l_{K,L}}{2} \right]^{-1} \] to ensure that \(L'\) lies within the
radius that the Lipschitz and smoothness properties hold. Now, we exploit the smoothness property to derive that

\[
\mathcal{G}(K, L) - \mathcal{G}(K, L') \leq -\eta_L \left(\nabla_L \mathcal{G}(K, L), \nabla_L^2 \mathcal{G}(K, L) \right) + \frac{\psi_{K,L} \eta_L^2}{2} \left\| \nabla_L^2 \mathcal{G}(K, L) \right\|_F^2
\]

where the second to last inequality utilizes Lemma 14 of [19] and

\[
\eta_L \left\| \nabla_L^2 \mathcal{G}(K, L) \right\|_F \left\| \nabla_L \mathcal{G}(K, L) \right\|_F \left\| \nabla_L^2 \mathcal{G}(K, L) \right\|_F \leq \frac{\eta_L \lambda_{\min}(\Sigma_{KL}^{-1})}{2} \left\| \nabla_L^2 \mathcal{G}(K, L) \right\|_F^2
\]

Further, recalling the definition that

\[
\lambda_{\min}(\Sigma_{KL}^{-1}) = \left(\left\| \Sigma_{KL} \right\|_F + \left\| \Sigma_{KL} - \Sigma_{KL} \right\|_F \right)^{-1}
\]

The last inequality in (C.7) uses \(\lambda_{\min}(\Sigma_{KL}^{-1}) \). Moreover, we can bound the last term in (C.7) as

\[
\frac{2\psi_{K,L} \eta_L^2}{\phi^2} \left\| \nabla_L \mathcal{G}(K, L) \right\|_F^2 \leq \frac{4\psi_{K,L} \eta_L^2}{\phi^2} \left\| \nabla_L \mathcal{G}(K, L) - \nabla_L \mathcal{G}_r(L, K) \right\|_F^2 + \frac{8\psi_{K,L} \eta_L^2}{\phi^2} \left(\psi_{K,L} \eta_L^2 + \left\| \nabla_L \mathcal{G}(K, L) \right\|_F^2 \right).
\]
where the second to last inequality uses \(\eta_L \leq \phi^2/[32\psi_{KL}^2] \) and the PL condition. The last inequality uses \(2ab \leq a^2 + b^2 \). Thus, if the stepsize \(\eta_L \) of the one-step ZO-NPG update (4.2) and the smoothing radius \(r_{1, L} \) for the minibatch estimator satisfy

\[
\eta_L \leq \min \left\{ \frac{\phi^2}{32\psi_{KL}^2}, \frac{1}{2\psi_{KL}} \right\}, \quad r_{1, L} \leq \frac{\phi}{16\chi_\psi_{KL}} \min \left\{ \sqrt{\mu_{KL}^2}, \mu_K \theta_{KL} \sqrt{\epsilon_1} \right\},
\]

then with probability at least \(1 - \delta_1 \), we can bound the one-step ascent as

\[
\Delta' - \Delta \leq \frac{-\eta_L \mu_{KL} \Delta}{8\chi_\psi} + \sum_{i=0}^{K-1} \eta_L \mu_{KL} \epsilon_i \leq \Delta' \leq \left(1 - \frac{\eta_L \mu_{KL}}{8\chi_\psi} \right) \Delta + \frac{\eta_L \mu_{KL} \epsilon_1}{16\chi_\psi},
\]

where the last inequality uses (C.5). By (C.9), we have \(\mathcal{G}(K, L) - \mathcal{G}(K, L') = \Delta' - \Delta \leq -\frac{\eta_L \mu_{KL}}{8\chi_\psi} \Delta + \frac{\eta_L \mu_{KL} \epsilon_1}{16\chi_\psi}. \) Therefore, it holds that \(\mathcal{G}(K, L) - \mathcal{G}(K, L') \leq 0 \) with probability at least \(1 - \delta_1 \) because \(\epsilon_1 \leq \Delta \).

Lastly, we prove Lemma C.1. Due to the modification to sample state trajectories using unperturbed gain matrix, we avoid the bias induced by the perturbation on the gain matrix compared to the results presented in [11]. As a result, the only bias between the estimated correlation matrix and the exact one, denoted as \(\| \Sigma_{KL} - \Sigma_{KL} \|_F \), where \(\Sigma_{KL}(K) = \frac{1}{M_1} \sum_{i=0}^{M_1-1} diag(\chi_{L}^i(\xi_{0}^i)\top, \cdots, \chi_{L}^i(\xi_{N}^i)\top) \) and \(\Sigma_{KL} = \mathbb{E}_x[\Sigma_{KL}] \), is induced by \(\Sigma \). Since

\[
\| diag(\chi_{L}^0(\xi_{0}^0)\top, \cdots, \chi_{L}^{N-1}(\xi_{N-1}^{N-1})\top) \|_F \leq c_0
\]

holds almost surely, and

\[
diag(\chi_{L}^0(\xi_{0}^0)\top, \cdots, \chi_{L}^{N-1}(\xi_{N-1}^{N-1})\top) = \sum_{i=0}^{N-1} \langle A_{KL}^i \rangle_i \cdot diag(\chi_{L}^0(\xi_{0}^0)\top, \cdots, \chi_{L}^{N-1}(\xi_{N-1}^{N-1})\top) \cdot (A_{KL}^i)^{\top},
\]

there exists a \(c_{\Sigma_{KL}} \) that is a polynomial of \(\| A \|_F, \| B \|_F, \| D \|_F, \| K \|_F, \| L \|_F \), and is linear in \(c_0 \) such that \(\| diag(\chi_{L}^0(\xi_{0}^0)\top, \cdots, \chi_{L}^{N-1}(\xi_{N-1}^{N-1})\top) \|_F \leq c_{\Sigma_{KL}} \) almost surely. Then, we apply Hoeffding’s inequality to get with probability at least \(1 - \delta_1 \) that \(\| \Sigma_{KL} - \Sigma_{KL} \|_F \leq \sqrt{c_{\Sigma_{KL}}^2 \log(d_f/\delta_1)/[2M_1]} \). Therefore, it suffices to choose \(M_1 \geq \frac{1}{2} \epsilon_1^2 \log(2d_f/\delta_1) \) to ensure that \(\| \Sigma_{KL} - \Sigma_{KL} \|_F \leq \epsilon_1 \) with probability at least \(1 - \delta_1 \). Lastly, by Weyl’s theorem, we can bound \(\lambda_{\min}(\Sigma_{KL}) \geq \phi/2 \) by requiring \(\epsilon_1 \leq \phi/2 \). This completes the proof.

C.4 Proof of Lemma B.7

Proof We note that (B.23) follows from Proposition B.1 of [15], but with the inner- and outer-loop players being interchanged. That is, our \(B, D, K, L, R^v, R^w \) correspond to \(C, B, L, K, R^v, R^w \) in [15]. Following (B.31) and (B.32) of [15], we can prove (B.23). We note that the constants in Proposition B.1 of [15] are uniform over the compact set \(\Omega \) therein. However, it is hard to construct such a compact set in our setting without posing additional constraints. Therefore, \(B_{1,K} \) and \(B_{P,K} \) are only continuous functions of \(K \) rather than being absolute constants, due to the quotient of two continuous functions being a continuous function provided that the denominator is not zero. Equations (B.24) and (B.25) follow from Lemmas C.2 and B.8, respectively, in the supplementary material of [15], with the same notational correspondences introduced above. Similarly, we do not have uniform constants but instead \(B_{L(K),K}, B_{Y,K} \) are continuous functions of \(K \). This completes the proof.

C.5 Proof of Lemma B.8

Proof By the definition that \(\nabla_K \mathcal{G}(K, L(K)) = 2F_{KL}(K) \Sigma_{KL}(K) \), we have

\[
\| \nabla_K \mathcal{G}(K', L(K')) - \nabla_K \mathcal{G}(K, L(K)) \|_F \leq 2\| F_{KL}(K') - F_{KL}(K) \|_F \| \Sigma_{KL}(K') - \Sigma_{KL}(K) \|_F

+ 2\| F_{KL}(K) \|_F \| \Sigma_{KL}(K') - \Sigma_{KL}(K) \|_F.
\]
From Lemma C.4 and let $K, K' \in \mathcal{K}$ be sufficiently close to each other such that $\|K' - K\|_f \leq B_{1,K}$, we have $\|F_{K',L(K')}' - F_{K,L(K)}\|_F \leq c_{5,K} \cdot \|K' - K\|_F$, where $c_{5,K}$ is defined in §C.9. Next, the term $\|\Lambda_{K',L(K')}\|_F$ can be separated into $\|\Lambda_{K',L(K')}\|_F \leq \|\Lambda_{K,L(K)}\|_F + \|\Lambda_{K',L(K') - \Lambda_{K,L(K)}}\|_F$. To bound $\|\Lambda_{K,L(K)}\|_F$, we note that because $\|x_0\|, \|\xi_t\| \leq \delta$ almost surely for all t, there exists a finite $c_{5,K,L(K)}$ that is a polynomial of $\|A\|_F, \|B\|_F, \|D\|_F, \|K\|_F$, and c_0 such that $\|\Lambda_{K,L(K)}\|_F \leq c_{5,K,L(K)}$ almost surely.

By Lemma B.7 and the condition that $\|K' - K\|_F \leq B_{1,K}$, we have $\|\Lambda_{K',L(K') - \Lambda_{K,L(K)}}\|_F \leq c_{5,K,L(K)} + B_{2,K}$, which leads to

$$2\|F_{K',L(K')}' - F_{K,L(K)}\|_F \|\Lambda_{K',L(K') - \Lambda_{K,L(K)}}\|_F \leq 2c_{5,K}(c_{5,K,L(K)} + B_{2,K}) \cdot \|K' - K\|_F.$$

Therefore, if we require $\|K' - K\|_F \leq \epsilon_2/(4c_{5,K}(c_{5,K,L(K)} + B_{2,K}))$, then $2\|F_{K',L(K')}' - F_{K,L(K)}\|_F \|\Lambda_{K',L(K') - \Lambda_{K,L(K)}}\|_F \leq \epsilon_2$ holds almost surely. Subsequently, we combine (C.15) with (B.25) to get

$$2\|F_{K,L(K)}\|_F \|\Lambda_{K',L(K') - \Lambda_{K,L(K)}}\|_F \leq 2c_{2,K}B_{2,K} \cdot \|K' - K\|_F.$$

By requiring $\|K' - K\|_F \leq \frac{\epsilon_2}{4c_{2,K}B_{2,K}}$, it holds almost surely that $2\|F_{K,L(K)}\|_F \|\Lambda_{K',L(K') - \Lambda_{K,L(K)}}\|_F \leq \frac{\epsilon_2}{4}$. Therefore, we can almost surely bound $\|V_L(\mathcal{G}(K', L(K')) - \mathcal{G}(K, L(K)))\|_F \leq \epsilon_2$ by enforcing the above requirements on $\|K' - K\|_F$. This completes the proof.

C.6 Proof of Lemma B.9

Proof For any $K \in \mathcal{K}$, we can define the following set:

$$\mathcal{K}_o := \left\{ K \mid (3.8) \text{ admits a solution } P_{K,L(K)} \geq 0, \text{ and } P_{K,L(K)} \leq P_{K,L(K)} \right\}.$$

(C.10)

Clearly, it holds that $K \in \mathcal{K}_o$. Then, we first prove that \mathcal{K}_o is bounded. Recall that $P_{K,L(K)} \geq 0$ is the solution to (3.8), such that

$$P_{K,L(K)} = Q + K^T R^u K + (A - BK)^T (P_{K,L(K)} + P_{K,L(K)}D(R^w - D^TP_{K,L(K)}D)^{-1}D^TP_{K,L(K)})(A - BK).$$

(C.11)

Since $K \in \mathcal{K}$, any $K \in \mathcal{K}_o$ also satisfies $K \in \mathcal{K}$, due to that $P_{K,L(K)} \leq P_{K,L(K)}$ implies $R^w - D^TP_{K,L(K)}D > 0$. As a result, the second term on the RHS of (C.11) is p.s.d. and we can obtain $Q + K^T R^u K \leq P_{K,L(K)}$, where $Q \succeq 0$ and $R^u > 0$. Then, from the definition of \mathcal{K}_o and $K \in \mathcal{K}_o$, $P_{K,L(K)}$ are symmetric and p.s.d., we have $\|P_{K,L(K)}\|_F \leq \|P_{K,L(K)}\|_F$. These arguments together imply that for any $K \in \mathcal{K}_o$, $\|K\|_F \leq \sqrt{\|P_{K,L(K)}\|_F}/\min(R^u)$, proving the boundedness of \mathcal{K}_o.

Next, we take an arbitrary sequence $[K_n] \in \mathcal{K}_o$ and note that $\|K_n\|_F$ is bounded for all n. Applying Bolzano-Weierstrass theorem implies that the set of limit points of $[K_n]$, denoted as \mathcal{K}_{lim}, is nonempty. Then, for any $K_{lim} \in \mathcal{K}_{lim}$, we can find a subsequence $[K_{n_j}] \in \mathcal{K}_o$ that converges to K_{lim}. We denote the corresponding sequence of solutions to (C.11) as $[P_{K_{n_j},L(K_{n_j})}]$, where $0 \leq P_{K_{n_j},L(K_{n_j})} \leq P_{K,L(K)}$ for all n. By Bolzano-Weierstrass theorem, the boundedness of $[P_{K_{n_j},L(K_{n_j})}]$, and the continuity of (C.11) with respect to K, we have the set of limit points of $[P_{K_{lim},L(K_{lim})}]$, denoted as P_{lim}, is nonempty. Then, for any $P_{lim} \in P_{lim}$, we can again find a subsequence $[P_{K_{n_j},L(K_{n_j})}]$ that converges to P_{lim}. Since $P_{K_{n_j},L(K_{n_j})}$ is a p.s.d. solution to (C.11) satisfying $0 \leq P_{K_{n_j},L(K_{n_j})} \leq P_{K,L(K)}$ for all n and (C.11) is continuous in K, P_{lim} must solve (C.11) and satisfy $0 \leq P_{lim} \leq P_{K,L(K)}$, which implies $K_{lim} \in \mathcal{K}_o$. Note that the above arguments work for any sequence $[K_n] \in \mathcal{K}_o$ and any limit points K_{lim} and P_{lim}, which proves the closure of \mathcal{K}_o. Together with the boundedness, \mathcal{K}_o is thus compact.

Finally, let us denote the closure of the complement of \mathcal{K} as $\overline{\mathcal{K}}$. By $K \in \mathcal{K} \subset \mathcal{K}$ and (C.10), any $K \in \mathcal{K}$ satisfies: i) $P_{K,L(K)} \geq 0$ exists; ii) $R^w - D^TP_{K,L(K)}D \geq 0$.

This implies that \mathcal{K} is disjoint with $\overline{\mathcal{K}}$, i.e., $\mathcal{K} \cap \overline{\mathcal{K}} = \emptyset$. Then, there exists a distance $B_{2,K} > 0$ between \mathcal{K} and $\overline{\mathcal{K}}$ such that for a given $K \in \mathcal{K}$, all K' satisfying $\|K' - K\|_F \leq B_{2,K}$ also satisfy $K' \in \mathcal{K}$ (see for example Lemma A.1 of [75]). This completes the proof.
C.7 Proof of Lemma B.10

Proof To simplify the notations, we first define
\[
\tilde{V} := \nabla_K G(K, \tilde{L}(K)) = 1 \frac{M}{M_2} \sum_{j=0}^{M_2-1} \frac{d_2}{r_2} \sum_{i=0}^{N} c_i^{j} V_i, \quad \tilde{V} := \nabla_K G(K, L(K)), \quad \tilde{V} := \mathbb{E}_\xi [\tilde{V}],
\]
\[
\tilde{V} := \nabla_K G_r (K, L(K)), \quad \tilde{V} := \nabla_K G(K, L(K)),
\]
where \(\tilde{L}(K)\) is the approximate inner-loop solution obtained from Algorithm 1. Our goal is to quantify \(\|\tilde{V} - \tilde{V}\|_F\), which can be separated into four terms \(\|\tilde{V} - \tilde{V}\|_F \leq \|\tilde{V} - \tilde{V}\|_F + \|\tilde{V} - \tilde{V}\|_F + \|\tilde{V} - \tilde{V}\|_F\).

According to Theorem 4.1, \(G(K + r_2 V, \tilde{L}(K + r_2 V)) \geq G(K + r_2 V, L(K + r_2 V)) - \epsilon_1\) holds with probability at least \(1 - \delta_1\). Applying union bound and triangle inequality yield that \(\|\tilde{V} - \tilde{V}\|_F \leq d_2 \epsilon_1 / r_2\) holds with probability at least \(1 - M_2 \delta_1\). Therefore, we can bound \(\|\tilde{V} - \tilde{V}\|_F\) by \(\epsilon_2/4\) with probability at least \(1 - \delta_2/3\) by requiring \(\epsilon_1 \leq \epsilon_2 r_2/[4 d_2]\), and \(\delta_1 \leq \delta_2/[3 M_2]\).

Subsequently, we consider the bias induced by \(\xi\). By definition in (3.2), we have \(\sum_{i=0}^{N} c_i^{j}\) driven by \((K, L(K))\) and \(x_0, \xi_0 \sim D\) for all \(t\) can also be represented as \(\text{Tr} \left[P_{K, L(K)} \cdot \text{diag}(x_0 x_0^T, \xi_0 \xi_0^T, \cdots, \xi_{N-1} \xi_{N-1}^T) \right] \|_F \leq c_0\) almost surely. Then, we apply Hoeffding’s inequality and (C.13) to get with probability at least \(1 - 2 \delta_2\) that \(\|\tilde{V} - \tilde{V}\|_F \leq d_2 c_0 G(K, L(K)) / [r_2 M] \cdot \sqrt{\log(d_2 / \delta_2)} / [2 M_2]\). Then, it suffices to choose \(M_2 \geq 8 d_2^2 c_0^2 G(K, L(K))^2 / [r_2^2 M^2] \cdot \log(6 d_2 / \delta_2)\) to ensure that \(\|\tilde{V} - \tilde{V}\|_F \leq \epsilon_2 / 4\) with probability at least \(1 - \delta_2 / 3\).

For the third term, we can apply standard results in zeroth-order optimization [77], which leads to \(\tilde{V} = d_2 r_2 \cdot \mathbb{E}_V G(K + r_2 V, L(K + r_2 V)) V\). Then, we invoke Lemma B.7 and Hoeffding’s inequality to get with probability at least \(1 - 2 \delta_2\) that \(\|\tilde{V} - \tilde{V}\|_F \leq d_2 r_2 \cdot \|G(K, L(K)) + r_2 B_{P,K} c_0\| \cdot \sqrt{2 \log(d_2 / \delta_2)} / [M_2]\), where we require \(r_2 \leq B_{1,K}\). Thus, it suffices to choose \(M_2 \geq 32 d_2^2 G(K, L(K)) + r_2 B_{P,K} c_0^2 / [r_2^2 M^2] \cdot \log(6 d_2 / \delta_2)\) to ensure that \(\|\tilde{V} - \tilde{V}\|_F \leq \epsilon_2 / 4\) with probability at least \(1 - \delta_2 / 3\).

Lastly, by Lemma B.8, we can bound the last term \(\|\tilde{V} - \tilde{V}\|_F\) almost surely by \(\epsilon_2 / 4\) if requiring
\[
r_2 = \|K' - K\|_F \leq \min \left\{ B_{1,K}, B_{2,K} + \frac{r_2}{16 c_0^2 (c_{\Sigma,K,L}(K)) + B_{2,K} + 16 c_0^2 (K, L(K))} \right\}
\]
where \(B_{1,K}, B_{2,K}\) are defined in Lemma B.7, \(c_{\Sigma,K,L}(K)\) is defined in §C.5, and \(r_2 \leq B_{2,K}\) ensures the perturbed gain matrices \(K + r_2 V_i\), for all \(j\), lie within \(\mathcal{K}\), as proved in Lemma B.9. Thus, we have \(\|\tilde{V} - \tilde{V}\|_F \leq \epsilon_2\) with probability at least \(1 - \delta_2\), which completes the proof.

C.8 Proof of Lemma B.11

Proof We first introduce a lemma similar to Lemma 16 of [11] and defer its proof to the end of this subsection.

Lemma C.2 (\(\Sigma_{K,L}\) Perturbation) For a fixed \(K \in \mathcal{K}\), there exist some continuous functions \(B_{1,L}, B_{2,L} \geq 0\) such that if \(\|L' - L\|_F \leq B_{1,L}\), then it holds that \(\|\Sigma_{K,L} - \Sigma_{K,L}(K)\|_F \leq B_{2,L} \cdot \|L' - L\|_F\).

The estimation bias, \(\|\hat{\Sigma}_{K,L}(K) - \Sigma_{K,L}(K)\|_F\), can be separated into two terms, such that
\[
\|\hat{\Sigma}_{K,L}(K) - \Sigma_{K,L}(K)\|_F \leq \|\hat{\Sigma}_{K,L}(K) - \Sigma_{K,L}(K)\|_F + \|\Sigma_{K,L}(K) - \Sigma_{K,L}(K)\|_F.
\]
where \(\hat{\Sigma}_{K,L}(K) = \frac{1}{M} \sum_{j=0}^{M-1} \text{diag}(x_j^T x_j^T, \cdots, x_N^T x_N^T)\), \(\Sigma_{K,L}(K) = \mathbb{E}_\xi [\hat{\Sigma}_{K,L}(K)]\), and \(\{x_t\}\) is the sequence of noisy states driven by the independently sampled noises \(x_0, \xi_0 \sim D\), for all \(t\), and the pair of control gain matrix \((K, \tilde{L}(K))\), where \(\tilde{L}(K)\) is the approximate inner-loop solution. Recall that
Define the following polynomials of \(K, K' \):

\[
c_{1, K} := \frac{G(K, L(K))}{\phi} + \frac{\|D\|^2 G(K, L(K))}{\phi^2 \cdot \lambda_{\min}(H_{K,L}(K))}, \quad c_{2, K} := \frac{\|G_{K,L}(K)\|}{\phi^2} \cdot (G(\hat{K}, L(\hat{K}))) - G(K', L(K))
\]

\[
c_{3, K} := \frac{c_{2, K} + [B]_F \|A\|_F c_{1, K}}{\lambda_{\min}(R^u)}, \quad c_{4, K} := \frac{[D]_F G(K, L(K))}{\phi} \cdot \lambda_{\min}(H_{K,L}(K)) \cdot ([\|A\|_F + [B]_F c_{3, K})
\]

\[
c_{5, K} := 2 \left[[R^u]_F + [B]_F G(K, L(K)) + [B]_F [D]_F G(K, L(K)) B_{L(K), K} + B_{L(K), K} \right]
\]

where \(B_{1, K} \), \(B_{P, K} \), and \(B_{L(K), K} \) follow from Lemma B.7. Then, we present the following lemmas.

Lemma C.3 For \(K, K' \in K \), the following inequalities hold
\[\|P_{K,L}(K)\|_F \leq \mathcal{G}(K, L(K))/\phi, \quad (C.13) \]
\[\|\nabla_K \mathcal{G}(K, L(K))\|_F \leq 2\|\Sigma_{K,L}(K)\|c_{2,K}, \quad (C.16) \]
\[\|P_{K,L}(K)\|_F \leq c_{1,K}, \quad (C.14) \]
\[\|K\|_F \leq c_{3,K}, \quad (C.17) \]
\[\|L(K)\|_F \leq c_{4,K}. \quad (C.18) \]

Proof To start with, we note that for any \(K \in \mathcal{K} \), the solution to the Riccati equation (3.8) satisfies \(P_{K,L}(K) \geq 0 \). Thus, (C.13) can be proved by \(\mathcal{G}(K, L(K)) = \text{Tr}(P_{K,L}(K)\Sigma_0) \geq \phi ||P_{K,L}(K)||_F \), where the inequality follows from \(\phi = \min(\Sigma_0) > 0 \) and \(\text{Tr}(M) \geq ||M||_F \) for any matrix \(M \geq 0 \). Then, for any \(K \in \mathcal{K} \), we have by (C.13) and the definition of \(P_{K,L}(K) \) in (3.7) that
\[\|P_{K,L}(K)\|_F \leq \|P_{K,L}(K)\|_F + \|P_{K,L}(K)D^{-1}_{K,L}(K)D^{\top}P_{K,L}(K)\|_F \leq \frac{\mathcal{G}(K, L(K))}{\phi} + \frac{||D||^2_F \mathcal{G}(K, L(K))^2}{\phi^2 \cdot \lambda_{\min}(H_{K,L}(K))} = c_{1,K}. \]
This completes the proof of (C.14). Subsequently, for any \(K, K' \in \mathcal{K} \), we invoke Lemma 11 of [11] to get
\[\mathcal{G}(K, L(K)) - \mathcal{G}(K', L'(K)) \geq \mathcal{G}(K, L(K)) - \mathcal{G}(K', L(K')) \geq \frac{\phi}{||G_{K,L}(K)||} \cdot \text{Tr}(F_{K,L}(K)^{\top}F_{K,L}(K)). \]
As a result, we have \(||F_{K,L}(K)||^2_F = \text{Tr}(F_{K,L}(K)^{\top}F_{K,L}(K)) \leq \frac{||G_{K,L}(K)||}{\phi} \cdot (\mathcal{G}(K, L(K)) - \mathcal{G}(K', L(K')) \), and taking a square root of both sides yields (C.15). Moreover, we can prove (C.16) such that
\[\|\nabla_K \mathcal{G}(K, L(K))\|_F \leq 4\|\Sigma_{K,L}(K)\|^2 \cdot \text{Tr}(F_{K,L}(K)^{\top}F_{K,L}(K)) \leq \frac{4\|\Sigma_{K,L}(K)\|^2 \cdot ||G_{K,L}(K)||}{\phi} \cdot (\mathcal{G}(K, L(K)) - \mathcal{G}(K', L(K'))). \]
Next, we invoke Lemma 25 of [11] and (C.14) to get
\[\|K\|_F \leq \frac{c_{2,K}}{\lambda_{\min}(R^u)} + \frac{||B^{\top}P_{K,L}(K)A||_F}{\lambda_{\min}(R^u)} \leq \frac{c_{2,K} + ||B||_F ||A||_F c_{1,K}}{\lambda_{\min}(R^u)} = c_{3,K}, \]
which proves (C.17). Lastly, for any \(K \in \mathcal{K} \) and recall the definition of \(L(K) \) from (3.10)
\[\|L(K)\|_F = ||D^{-1}_{K,L}(K)D^{\top}P_{K,L}(K)(A - BK)||_F \leq \frac{||D||_F \mathcal{G}(K, L(K))}{\phi \cdot \lambda_{\min}(H_{K,L}(K))} (||A||_F + ||B||_F c_{3,K}) = c_{4,K}, \]
which proves (C.18).

Lemma C.4 For \(K, K' \in \mathcal{K} \) satisfying \(\|K' - K\|_F \leq B_{1,K} \), where \(B_{1,K} \) is as defined in Lemma B.7, it holds that
\[\|F_{K',L(K')} - F_{K,L}(K)\|_F \leq c_{5,K} \cdot \|K' - K\|_F. \quad (C.19) \]

Proof For \(K, K' \in \mathcal{K} \) and recalling the definition of \(F_{K,L} \) in (3.6), we have
\[\|F_{K',L(K')} - F_{K,L}(K)\|_F \]
\[= 2\|\text{Tr} (R^u + B^{\top}P_{K',L(K')}(B'K') - B^{\top}P_{K,L}(K)(A - DL(K')) - (R^u + B^{\top}P_{K,L}(K)B)K - B^{\top}P_{K,L}(K)(A - DL(K)))\|_F \]
\[\leq 2\|\text{Tr} (R^u ||K' - K||_F + 2\|B||_F ||K' - K||_F \cdot ||P_{K',L(K')} - P_{K,L}(K)||_F + 2\|B||_F ||P_{K',L(K')} - P_{K,L}(K)||_F \cdot ||L(K') - L(K)||_F \]
\[+ 2\|B||_F ||P_{K',L(K')} - P_{K,L}(K)||_F \cdot ||D||_F ||L(K') - L(K)||_F \]
\[= 2\|\text{Tr} (R^u ||K' - K||_F + 2\|B||_F ||P_{K',L(K')} - P_{K,L}(K)||_F \cdot ||D||_F \cdot ||L(K') - L(K)||_F \]
\[+ 2\|B||_F ||K' - K||_F + 2\|B||_F ||P_{K,L}(K)||_F \cdot ||D||_F \cdot ||L(K') - L(K)||_F \]
\[+ 2\|B||_F \cdot ||K' - K||_F + 2\|B||_F ||P_{K,L}(K)||_F \cdot ||D||_F \cdot ||L(K') - L(K)||_F \cdot ||P_{K',L(K')} - P_{K,L}(K)||_F. \]
Applying (C.13), (C.17), (C.18), (B.23), and (B.24) proves (C.19), such that
\[
\|F_{K^*;L(K^*)} - F_{K;L(K)}\|_F \\
\leq 2(\|R^u\|_F + \|B\|_F G(K, L(K))) \cdot \|K' - K\|_F + 2(\|B\|_F D \|G(K, L(K))\|_F + \|L(K') - L(K)\|_F) \\
+ 2(\|B\|_F (c_{3,K} + B_{1,K}) + \|B\|_F |A|_F + |D|_F (c_{4,K} + B_{L(K),K})) \cdot \|B_{K';L(K')} - B_{K,L(K)}\|_F \\
\leq 2(R^u |F|_F + |B|_F G(K, L(K)) + |B|_F |D|_F G(K, L(K)))B_{L(K),K} \\
+ E_{P,K} |B|_F \left(|B|_F (c_{3,K} + B_{1,K}) + |A|_F + |D|_F (c_{4,K} + B_{L(K),K}) \right) \cdot \|K' - K\|_F.
\]
This completes the proof.

\(\blacksquare\)

D Simulation Results

In this section, we provide simulation results to complement our theories. In particular, we present convergence (divergence) results in the following four scenarios where we apply PG updates in Algorithms 1 and 2 to solve a finite-horizon zero-sum LQ dynamic game with time-invariant system parameters: (i) double-loop update scheme with both the inner- and outer-loop solved exactly; (ii) double-loop scheme with the inner-loop solved in the derivative-free scheme by sampling system trajectories while the outer-loop solved exactly; (iii) double-loop scheme with the inner-loop solved exactly while the outer-loop solved in the derivative-free scheme by sampling system trajectories; (iv) descent-multi-step-ascent/AGDA/τ-GDA with exact gradient accesses diverge. Subsequently, we extend our numerical experiments to a setting with \textit{time-varying} system parameters in §D.5, and demonstrate the convergence results of double-loop PG updates.

Simulation Setup. All the experiments are executed on a desktop computer equipped with a 3.7 GHz Hexa-Core Intel Core i7-8700K processor with Matlab R2019b. The device also has two 8GB 3000MHz DDR4 memories and a NVIDIA GeForce GTX 1080 8GB GDDR5X graphic card. In all settings except the one used in §D.5, we set the horizon of the problem to \(N = 5\) and test a linear time-invariant system with the set of system matrices being \(A_t = A, B_t = B, D_t = D, Q_t = Q, R_t^u = R^u\), and \(R_t^w = R^w\), where \(R^w = 5 \cdot I\) and

\[
A = \begin{bmatrix} 1 & 0 & -5 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -10 & 0 \\ 0 & 3 & 1 \\ -1 & 0 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.2 & 0 \\ 0 & 0 & 0.2 \end{bmatrix}, \\
Q = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, \quad R^u = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 4 & -2 \\ 0 & -2 & 3 \end{bmatrix}. \tag{D.1}
\]

D.1 Exact Double-Loop Updates

We set \(\Sigma_0 = I\). Then, we present the convergence result following two different initializations, denoted as \(K_0^i\) and \(K_0^2\), where \(K_0^2\) is closer to the boundary of \(K\). Specifically, \(K_0^i = diag((K_0^i)^2) \cdot 0_{15\times3}\), for \(i \in \{1, 2\}\), where \(K_0^1 = \begin{bmatrix} -0.12 & -0.01 & 0.62 \\ -0.21 & 0.14 & 0.15 \\ -0.06 & 0.05 & 0.42 \end{bmatrix}\) and \(K_0^2 = \begin{bmatrix} -0.14 & -0.04 & 0.62 \\ -0.21 & 0.14 & 0.15 \\ -0.06 & 0.05 & 0.42 \end{bmatrix}\). Then, we can verify that \(\lambda_{\text{min}}(H_{K_0^i;L(K_0^i)}) = 0.5041\) and \(\lambda_{\text{min}}(H_{K_0^2;L(K_0^2)}) = 0.01999\). Moreover, we initialize \(L = 0\) in both cases.

Case 1: We demonstrate in Figure 4 the convergence of three update combinations, namely PG-NPG, NPG-NPG, and GN-GN, for the inner and outer loop, respectively. The stepsizes are chosen to be \((\eta, \alpha) = (1 \times 10^{-4}, 3 \times 10^{-6})\) for PG-NPG, \((\eta, \alpha) = (0.0635, 3 \times 10^{-6})\) for NPG-NPG, and \((\eta, \alpha) = (0.5, 5 \times 10^{-4})\) for GN-GN. Also, we require the approximate inner-loop solution to have the accuracy of \(\epsilon_1 = 0.001\). As shown in the top of Figure 4, the double-loop algorithm with all
three update combinations successfully converges to the unique Nash equilibrium of the game. Also, the sequence \(\{\lambda_{\text{min}}(H_{L_k}L_1)\}_{k \geq 0}\) is monotonically non-decreasing, which matches the implicit regularization property we introduced in Theorem 3.7 for the outer-loop NPG and GN updates. As \(K_1^1 \in K\), we can guarantee that all future iterates will stay inside \(K\). The convergences of the average gradient norms with respect to both \(L\) and \(K\) are also presented in the bottom of Figure 4.

Case 2: When the initial gain matrix \(K_0^2\) is closer to the boundary of \(K\), one non-judicious update could easily drive the gain matrix outside of \(K\). In this case, we present two combinations of updates, namely NPG-NPG and GN-GN, for the inner and outer loop, respectively. We use the stepsizes \((\eta, \alpha) = (0.0635, 2.48 \times 10^{-7})\) for NPG-NPG and \((\eta, \alpha) = (0.5, 2.5 \times 10^{-4})\) for GN-GN. Similarly, we set \(\epsilon_1 = 0.001\). The convergence patterns presented in Figure 5 are similar to those of Case 1.

D.2 Derivative-Free Inner-Loop Oracles

We provide two sets of experiments to validate Theorems 4.1 and B.4. We consider the same example as the one in §D.1, but using derivative-free updates (4.1)-(4.2) by sampling system trajectories to approximately solve the inner-loop subproblem, as proposed in §4.1. Note that the inner-loop subproblem is essentially an indefinite LQR, as introduced in §3. The outer-loop problem is solved using the exact NPG update (3.17). Note that according to Theorem 4.3, one can also use the
We set (i) the exact solution as computed by K^3_0. \(\text{Left:}\) The inner loop follows the ZO-PG update (4.1) and the outer loop follows the exact NPG update (3.17). \(\text{Right:}\) The inner loop follows the ZO-NPG update (4.2) and the outer loop follows the exact NPG update (3.17).

![Figure 6: Convergence of $G(K, L)$ and $\lambda_{\text{min}}(H_{KL}(K))$ with the initial gain matrix being K^3_0. \(\text{Left:}\) The inner loop follows the ZO-PG update (4.1) and the outer loop follows the exact NPG update (3.17). \(\text{Right:}\) The inner loop follows the ZO-NPG update (4.2) and the outer loop follows the exact NPG update (3.17).](image)

![Figure 7: Convergence of $G(K, L)$ and $\lambda_{\text{min}}(H_{KL}(K))$ when the outer loop follows the ZO-NPG update (4.3). \(\text{Left:}\) The inner-loop solutions are computed by (3.10). \(\text{Right:}\) The inner-loop solutions are approximated by the exact NPG update (3.14) with an accuracy level of $\epsilon_1 = 10^{-4}$.](image)

outer-loop ZO-NPG (4.3) together with the inner-loop derivative-free updates to achieve the same convergence pattern. However, we use an exact outer-loop update, as it suffices to illustrate our idea here and also has better computational efficiency. In contrast to the example in §D.1, we set $\Sigma_0 = 0.1 \cdot I$ and initialize $K^3_0 = \begin{bmatrix} \text{diag}((K^3_0)^5) & 0_{1 \times 3} \end{bmatrix}$ with $K^3_0 = \begin{bmatrix} -0.04 & -0.01 & 0.61 \\ -0.21 & 0.15 & 0.15 \\ -0.06 & 0.05 & 0.42 \end{bmatrix}$, where one can verify that $\lambda_{\text{min}}(H_{K^3_0L(K^3_0)}) = 1.8673 > 0$. That is, $K^3_0 \in \mathcal{K}$.

Inner-Loop ZO-PG: When we use the inner-loop ZO-PG update (4.1) in Algorithm 1, we choose $M_1 = 10^6$ and $r_1 = 1$. Moreover, we set the stepsizes of the inner-loop ZO-PG and the outer-loop exact NPG to be $(\eta, \alpha) = (8 \times 10^{-3}, 4.5756 \times 10^{-4})$, respectively. The desired accuracy level of the double-loop algorithm is picked to be $(\epsilon_1, \epsilon_2) = (0.8, 0.5)$. As shown in the left of Figure 6, the inner-loop ZO-PG (4.2) successfully converges for every fixed outer-loop update, validating our results in Theorem 4.1. Also, the double-loop algorithm converges to the unique Nash equilibrium of the game.

Inner-Loop ZO-NPG: When the inner-loop subproblem is solved via the ZO-NPG update (4.2), we choose the same $M_1, r_1, \alpha, \epsilon_1, \epsilon_2$ as the ones used in the inner-loop ZO-PG update but in contrast we set $\eta = 5 \times 10^{-2}$. Similar convergence patterns can be observed in the right of Figure 6.

D.3 Derivative-Free Outer-Loop NPG

We set $\Sigma_0 = 0.05 \cdot I$. We present convergence results following the initial gain matrix $K_0 = \begin{bmatrix} \text{diag}(K^5) & 0_{1 \times 3} \end{bmatrix}$, where $K = \begin{bmatrix} -0.08 & 0.35 & 0.62 \\ -0.21 & 0.19 & 0.32 \\ -0.06 & 0.10 & 0.41 \end{bmatrix}$ and $\lambda_{\text{min}}(H_{K_0L(K_0)}) = 3.2325$. The convergence of Algorithm 2 is implemented for two cases, with the inner-loop oracle being implemented using (i) the exact solution as computed by (3.10); and (ii) the approximate inner-loop solution following
Figure 8: Divergence of $G(K, L)$, $\|\sum_{i=0}^{l-1} V_{KL}(K, L)\|_{L_2} \geq 1$, and $\|\sum_{i=0}^{k-1} \nabla_{KL} G(K, L)\|_{L_2} \geq 1$.

Top: ANGDA with stepsizes $\eta = \alpha = 1.7319 \times 10^{-11}$. **Middle:** τ-NGDA with stepsizes $\alpha = 1.7319 \times 10^{-11}$ and $\eta = 10^3 \cdot \alpha$. **Bottom:** Descent-multi-step-ascent with update rules (3.14) and (3.17) and stepsizes $\eta = \alpha = 1.7319 \times 10^{-9}$. For each iteration of the outer-loop update (3.17), we run 10 iterations of the inner-loop update (3.14).

the exact NPG update (3.14). As proved by Theorems 4.1 and B.4, the inner loop can also be solved approximately using either ZO-PG or ZO-NPG updates, which has been verified via the simulation results presented in §D.2. The parameters of Algorithm 2 in both cases are set to $M_2 = 5 \times 10^3$, $r_2 = 0.08$, $(\eta_2, \alpha) = (0.1, 4.67 \times 10^{-5})$, and $(e_1, e_2) = (10^{-4}, 0.8)$. Figure 7 illustrates the behaviors of the objective function and the smallest eigenvalue of H_{KL} following the double-loop update scheme. It is shown that iterates of the outer-loop gain matrix $[K_k]_{k \geq 0}$ stay within the feasible set K along with the double-loop update, which preserves a certain disturbance attenuation level in the view of Remark A.8. Moreover, in both cases, we have Algorithm 2 converging sublinearly to the unique Nash equilibrium.

D.4 Divergent Cases

As noted in Remark A.7, it is unclear yet if descent-multi-step-ascent, AGDA, or τ-GDA, where $\tau = \eta/\alpha$, can converge globally to the Nash equilibrium in our setting. In this section, we present some scenarios where descent-multi-step-ascent, AGDA, and τ-GDA diverges even with infinitesimal stepsizes. We use the same example as §D.1 and initialize K_0^4, L_0^4 to be time-invariant such that

$$K_0^4 = K_0^4 = \begin{bmatrix} -0.1362 & 0.0934 & 0.6458 \\ -0.2717 & -0.1134 & -0.4534 \\ -0.6961 & -0.9279 & -0.0662 \end{bmatrix}$$

and

$$L_0^4 = \begin{bmatrix} 0.2887 & -0.2286 & 0.4588 \\ -0.7849 & -0.1089 & -0.3755 \\ -0.2935 & 0.9541 & 0.7895 \end{bmatrix}$$

Note that in descent-multi-step-ascent/AGDA/\(\tau\)-GDA, the maximizing problem with respect to L for a fixed K is no longer solved to a high accuracy for each iteration of the updates on K. Thus, we can relax the constraint $K \in K$ since the maximizing player will not drive the cost to ∞ in such iterates under descent-multi-step-ascent/AGDA/\(\tau\)-GDA. Figure 8 illustrates the behaviors of
We demonstrate in Figure 9 the convergence of the exact double-loop NPG updates with initial gain matrix being \(K_0^5 \).

Top: Convergence of \(G(K, L) \) and \(\lambda_{\text{min}}(H_{K,L}) \). **Bottom:** Convergence of \(\|k^{-1}\sum_{k=1}^{K-1} \nabla_K G(K_k, I(K_k))\|_{\|F\|_{\infty}} \) and \(\|t^{-1}\sum_{l=0}^{l-1} \nabla_L (K, L_l)\|_{\|F\|_{\infty}} \). The stepsizes of the inner-loop and the outer-loop NPG updates are chosen to be 0.0097 and \(3.0372 \times 10^{-3} \), respectively. For each iteration of the outer-loop NPG update, we solve the inner-loop subproblem to the accuracy of \(\epsilon_1 = 0.001 \).

the objective and the gradient norms with respect to \(K \) and \(L \) when applying alternating natural GDA (ANGDA), \(\tau \)-natural GDA (\(\tau \)-NGDA), and descent-multi-step-ascent with updates (3.14) and (3.17) to our problem. The stepsizes for the ANGDA are chosen to be infinitesimal such that \(\eta = \alpha = 1.7319 \times 10^{-11} \). However, we can still observe the diverging patterns from the top row of Figure 8, even with such tiny stepsizes. Further, we test the same example with the same initialization but use \(\tau \)-NGDA with \(\tau = 10^5 \). That is, \(\eta = 10^5 \cdot \alpha \). In such case, it is shown in the middle row of Figure 8 that diverging behaviors still appear. Whether there exists a finite timescale separation \(\tau^* \), similar to the one proved in [74], such that \(\tau \)-GDA type algorithms with \(\tau \in (\tau^*, \infty) \) provably converge to the unique Nash equilibrium in our setting requires further investigation, and is left as our future work. Lastly, we present a case where descent-multi-step-ascent with updates following (3.14) and (3.17) diverges. The stepsizes of the inner-loop and the outer-loop updates are chosen to be \(\eta = \alpha = 1.7319 \times 10^{-9} \) and we run 10 iterations of (3.14) for each iteration of (3.17). The bottom row of Figure 8 demonstrates the diverging behaviors of this update scheme.

D.5 Time-Varying Systems

Instead of setting \(A_t = A, B_t = B, \) and \(D_t = D \) for all \(t \), we now choose

\[
A_t = A + \frac{(-1)^t A}{10}, \quad B_t = B + \frac{(-1)^t B}{10}, \quad D_t = D + \frac{(-1)^t D}{10},
\]

and set \(R^w = 10 \cdot I \). Rest of the parameters are set to the same as in (D.1). The horizon of the problem is again set to \(N = 5 \) and we initialize our algorithm using \(K_0^5 = K_0^5 = \begin{bmatrix} -0.0984 & -0.7158 & -0.1460 \\ -0.1405 & 0.0039 & 0.4544 \\ -0.1559 & -0.7595 & 0.7403 \end{bmatrix} \).

We demonstrate in Figure 9 the convergence of exact double-loop NPG updates. The stepsizes of the inner-loop and the outer-loop updates are chosen to be \((\eta, \alpha) = (0.0097, 3.0372 \times 10^{-3}) \). Also, we require the approximate inner-loop solution to have the accuracy of \(\epsilon_1 = 0.001 \). As shown at the top of Figure 9, the double-loop NPG updates successfully converge to the unique Nash equilibrium of the game. Also, the minimum eigenvalue of \(R^w - D^T P_{KL} D \) is monotonically non-decreasing along the iterations of the outer-loop NPG update, which matches the implicit regularization property we introduced in Theorem 3.7. This guarantees that all future iterates of \(K \) will stay in the interior of \(K \) given that the initial \(K \) does. The convergences of the average gradient norms with respect to both \(L \) and \(K \) are also presented at the bottom of Figure 9.