Learning to See by Looking at Noise
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Abstract

Current vision systems are trained on huge datasets, and these datasets come with
costs: curation is expensive, they inherit human biases, and there are concerns over
privacy and usage rights. To counter these costs, interest has surged in learning
from cheaper data sources, such as unlabeled images. In this paper, we go a step
further and ask if we can do away with real image datasets entirely, by learning
from procedural noise processes. We investigate a suite of image generation models
that produce images from simple random processes. These are then used as training
data for a visual representation learner with a contrastive loss. In particular, we
study statistical image models, randomly initialized deep generative models, and
procedural graphics models. Our findings show that it is important for the noise to
capture certain structural properties of real data but that good performance can be
achieved even with processes that are far from realistic. We also find that diversity
is a key property for learning good representations.

1 Introduction

The importance of data in modern computer vision is hard to overstate. Time and again we have
seen that better models are empowered by bigger data. The ImageNet dataset [[1]], with its 1.4 million
labeled images, is widely thought to have spurred the era of deep learning, and since then the scale of
vision datasets has been increasing at a rapid pace; current models are trained on up to one billion
images [2]]. In this paper, we question the necessity of such massive training sets of real images.

Instead, we investigate a suite of procedural noise models that generate images from simple random
processes. These are then used as training data for a visual representation learner.

We identify two key properties that make for good synthetic data for training vision systems: 1)
naturalism, 2) diversity. Interestingly, the most naturalistic data is not always the best, since naturalism
can come at the cost of diversity. The fact that naturalistic data help may not be surprising, and it
suggests that indeed, large-scale real data has value. However, we find that what is crucial is not that
the data be real but that it be naturalistic, i.e. it must capture certain structural properties of real data.
Many of these properties can be captured in simple noise models (Fig. [I).

The implications of our work are severalfold. First, our results call into question the true complexity
of the problem of vision — if very short programs can generate and train a high-performing vision
system, then vision may be simpler than we thought, and might not require huge data-driven systems
to achieve adequate performance. Second, our methods open the door to training vision systems
without reliance on datasets. The value in this is that datasets are encumbered by numerous costs:
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Figure 1: Which of these image crops come from real photos and which are noise? See footnote for answersﬂ
These crops are examples of what MoCo v2 [3]] sees as input in our experiments.

they may be expensive, biased, private, or simply intractable to collect. We do not argue for removing
datasets from computer vision entirely (as real data might be required for evaluation), but rather
reconsidering what can be done in their absence.

2 Related work

2.1 A short history of image generative models

Out of the R3"* dimensional space spanned by 3 n? color images, natural images occupy a small
part of that space, the rest is mostly filled by noise. During the last decades, researchers have
studied the space of natural images to build models capable of compressing, denoising and generating
images. The result of this research is a sequence of generative image models of increasing complexity

narrowing down the space occupied by natural images within R3"’,

One surprising finding is that natural images follow a power law on the magnitude of their Fourier
transform [4} [5]]. This is the basis of Wiener image denoising [6] and scale-invariant models of natural
images [[7,[8]]. Dead leaves model [8][9] was an attempt at generating images that explained the power
law found in natural images and inspired the Retinex algorithm [10]. The multiscale and self-similar
nature of natural images inspired the use of fractals as image models.

Coding research for TV [5] and image modeling [6} (14}, (15 [16] showed another remarkable property
of natural images: the output values of zero mean wavelets to natural images are sparse and follow
a generalized Laplacian distribution [6]. Color and intensity distributions in natural images have
also been studied and found to follow rules that deviate from random noise [T7]]. Research in
texture synthesis showed how these statistical image models produced more realistic-looking textures
[T9]]. Those required fitting the image model parameters to specific images to sample more "like
it". Recently, GANSs [20] have shown remarkable image synthesis results [21]]. Although GANs need
real images to learn the network parameters, we show in this paper that they introduce a structural
prior useful to encode image properties without requiring any training.

2.2 Training without real data and training with synthetic data

Through the above progression, generative models have become increasingly complex, with more
parameters and more training data needed to fit these parameters. The same has happened with vision
systems in general: state-of-the-art systems like BiT [22]], CLIP [23]], and SEER [2]] obtain their best
results on 300 million, 400 million, and 1 billion images respectively. These papers further show that
such large data is critical to getting the best performance.

While this may be true, other work has shown that much smaller data is sufficient to already get
decent performance. A single image can be enough to train, from scratch, a compelling generative
model 23] or visual representation [26]], and, even with no training data at all, deep architectures
already encode useful image priors that can be exploited for low-level vision tasks [27] or for
measuring perceptual similarity [28]]. Our results, using an untrained StyleGANV2 [29] to generate
training data, further affirm the utility of the structural priors in neural net architectures.

An alternative to training with real data is to train on synthetic data. This approach has been widely
used in low-level tasks like depth, stereo, or optical flow estimation [30), [33]], where 3D
rendering engines can provide densely annotated data to learn from. Interestingly, for this class of
tasks diversity is more important than realism [34]], making procedurally generated scenes an effective
alternative to renderings designed by professional 3D artists [33}[36].

2Answers: 1,3,4,5,6,8,14 are from ImageNet images.



Recent work has also investigated using deep generative models as a source of synthetic data to train
classi ers [37,138] and visual representatiori89], or to generate synthetic annotated data for other
downstream task<p, 41, 42]. However, these generative models are still t to real image datasets
and produce realistic-looking images as samples.

In this paper we push even further away from realism, generating synthetic data from simple noise
processes. The closest prior work in this direction is the pioneering work3jf ywhich used
automatically generated fractals to pre-train neural networks that converge faster than their randomly
initialized counterparts. While they demonstrated that fractals can be effective for pre-training, there
is still a large gap compared to pre-training on real data. We explore a much broader range of noise
processes, including many classic models from the image coding and texture synthesis literature.

The use of randomized training data has also been explored under the heading of domain randomiza-
tion [44], where 3D synthetic data is rendered under a variety of lighting conditions to transfer to real
environments where the lighting may be unknown. Our approach can be viewed as an extreme form
of domain randomization that does away with the simulation engine entirely: make the training data
so diverse that a natural image will just look like a sample from the noise process.

There is some evidence that biology takes a similar approach during the prenatal development of the
vision system. “Retinal waves" — spontaneous, semi-random activations of the retina — are thought to
entrain edge detectors and other simple structures in the developing mammalian brain [45].

3 A progression of image generative models

Here we provide the details for the image models we will use in this paper. We test a suite of
generative models of the form : z! X, wherez are stochastic latent variables ané an image.
We will treat image generation as a hierarchical process in which rst the parameters of a model,

, are sampled, and then the image is sampled given these parameters and stochastic noise. The
parameters de ne properties of the distribution from which we will sample images, for example, the
mean color of the image. The sampling process is as followsp( ),z p(z), andx = g (2),
which corresponds to sampling images from the distributioctt ) = p(xj )p( ). The parameters
that de ne the model may be tto real data or not. We will explore the case where the parameters
are not t to real data but instead sampled from simple prior distributions. Next, we describe the
generative image models that we will evaluate in this paper (Fig. 2).

3.1 Procedural image models

The rst class of models belong to the family of procedural image models. Procedural models are
capable of generating very realistic-looking images in speci c image domains. We include in this set
also fractals, although they could make a class on their own.

Fractals: Fractals have been shown to capture geometric properties of elements found in nature
[46]. Consequently, image models consisting of renderings of human-designed shapes with fractal
structure [43] are likely to reproduce patterns found in natural images.

CG: Simulators and game engines rely on a mixture of human-driven design and procedural methods
to generate environments simulating real-world properties such as illumination, 3D, and semantics.
Here we include three CG models popular in computer vision with available datasets: CUEVR [
DMLab [48] and MineRL [49].

3.2 Dead leaves image models

The second family of models is Dead leaves, one of the simplest image models. We consider simple
shapes (leaves) like circles, triangles and squares, which are positioned uniformly at random in the
image canvas until it is covered. To produce each shape, we circumscribe it in a circle with a radius
following an exponential distribution of parameter This procedure has been shown to produce
images that have similar statistics to natural images, such as hati#fja power spectrumd] and
non-gaussian distribution of derivatives and wavelet coef cients [50].

In this study we will consider four dead leaves modé&lead leaves - SquaresOnly uses squares
axis-aligned Dead leaves - Oriented Squares are randomly rotatddead leaves - Shaped:eaves



Figure 2:Samples from our synthetic datasets: a-d) CG synthetic images, e-h) Dead-leave models, i-l) Statistical
image models, m-p) StyleGAN-based models with different weight initializations, and g-r) Feature visualizations.

can be circles, triangles and rectanglBgad leaves - Textured:uses square leaves lled with a
texture sampled from the statistical image models described in the next section.

3.3 Statistical image models

The third family of models is statistical image models with increasing complexity. Several generative
models can be composed by using different combinations of properties.

Spectrum: The magnitude of the Fourier transform of many natural images follows a power law,
15fj , where is a constant close to 4] In this generative model, we will sample random noise
images constrained to have FT magnitude followdsgjf «j2 + jf yjb) with a andb being two random
numbers uniformly sampled in the rane5; 3:5]. This model introduces a bias towards horizontal

and vertical image orientations typical of natural imadgeH.[ To generate color images we rst
sample three random orthogonal color directions and then generate power-law-noise on each channel
independently. Samples from this model are shown in Fig. 2(i).

Wavelet-marginal model (WMM): Following [52], we generate textures by modeling their his-
tograms of wavelet coef cients. To produce a texture, we create marginal histograms for the coef -
cientsc; atN scalesi(2 f 0:::N  1g) and 4 orientations following a Generalized normal distribution
centered at zero, thyci) / exp((j cj= i) '). Each scalé represents the image down-scaled by

a factor of2', and the parameters and ; for each scale are; = 42 and ;  0:4 + U(0; 0:4).

In practice we us®& = 3 andN = 4 for generatingl28 128and256 256resolution images
respectively. Once we have sampled a marginal distribution of wavelet coef cients for each of the
three channels, we do histogram matching iteratively starting from a Gaussian noise image following
[53]. Fig. 2(j) shows samples from this model.



Color histograms: Here we take a generative model that follows the color distribution of the
dead-leaves model. First we sample a number of redibns 3 + bU(0; 20)c, their relative sizes
S 0:001 + U(0; 1) and color at uniform. This results in a color distribution different from uniform.

Combining all these different models allows capturing color distributions, spectral components, and
wavelet distributions that mimic those typical from natural images. Fig. 2(k) shows the result of
sampling from a model that enforces random white noise to have the power-law spectrum and the
color histogram according to this model. Fig. 2(I) shows samples from a model incorporating all of
those properties (spectrum, color and WMM). Those models produce intriguing images but fail to
capture the full richness of natural images as shown in Fig. 2(i-l).

3.4 Generative adversarial networks

The fourth family of models is based on the architecture of GANs. Commonly, the parameters of
GANs are trained to generate realistic samples of a given training distribution. Wkt not use
adversarial training or any training datanstead, we explore different types of initializations, study

the usefulness of the GAN architecture as a prior for image generation, and show that effective data
generators can be formed by sampling the model parameters from simple prior distributions. We
use an untrained StyleGANv29], and modify its initialization procedure to obtain images with
different characteristics. This results in four classes of StyleGAN initializations:

StyleGAN-Randomis the default initialization. Fig. 2(m) shows samples from this model. They
lack high-frequency image content since the noise maps are not applied at initialization.

StyleGAN-High-freq. In this model, we increase high-frequency image content by sampling the
noise maps a$=f noise with U (0:5; 2), which models the statistics of natural imagék [
Additionally, the convolutional Iters on all layers are randomly sampled from a bargk o8 wavelet

Iters, and each sampled wavelet is multiplied by a random amplitidie (0; 1). Note that using
Wavelets as spatial Iters is a common practice when hand-designing netvietksy and seems to

well capture the underlying general structure of visual data. The samples in Fig. 2(n) show that this
model generates high-frequency structures which are fairly uniformly distributed across the image.

StyleGAN-Sparse.Natural images exhibit a high degree of sparsity. In this model, we increase the
sparsity of the images through two modi cations. First, we modulatd#fie noise maps using a
Laplacian envelope. We samplda 4 grid of i.i.d. Laplacian noise, resize it to the desired noise
map resolution using bicubic upsampling and multiply this envelope with the original satsdfled

noise. Second, at each convolution, we add a random klag 0:2; 0:2), which, in conjunction

with the nonlinearities, further increases sparsity. Fig. 2(0) shows that the images created by this
model indeed appear sparser. Yet, they are still lacking discernible image structures.

StyleGAN-Oriented. Oriented structures are a crucial component of natural images. We found that
an effective way to introduce such structures to the previous models is to tie the wavelets, i.e. to use
the sgme wavelet for all output channels. Under tied wavelets, the standard convolution becomes
yk = [ak (X1 ?f))]+ be; whereyy, denotes output channle] x; denotes input channglb is

a bias termagy,,; N (0;1) is a random amplitude multiplier and the wavdlgetiepends only on

the input channel, but is shared across all output channels. As can be seen in Fig. 2(p), this creates
visible, oriented structures in the output images.

3.5 Feature visualizations

The nal class of models we study is feature visualizatid®®.| CNN's can be used to produce novel
images by optimizing the output of single or multiple units with respect to the input image, which
is initialized with noise. Although these methods are commonly used to interpret and visualize the
internal representation of a network, here we can use it as an image generative process. Following
the procedure inq7], we obtain feature visualizations by optimizing the value of a single or a
combination of two units of a neural network. We select those units from the layer that is typically
used as feature extractor (i.e. the output of the penultimate linear layer), as we have empirically found
this to yield more image-like visualizations compared to shallower layers. We create two datasets
using this techniqueFeature vis. - Random: ResNet50 with the default random initialization,
shown in Fig. 2(q) and, 2reature vis. - Dead leavesResNet50 trained with dead leaves with
diverse shapes, using MoCo v2 [3] and 1.3M sampled images. Samples are shown in Fig. 2(r).



Figure 3:Top-1 accuracy for the different models proposed and baselines for Imagened©.0DHe horizontal

axis shows generative models sorted by performance. The two dashed lines represent approximated upper and
lower bounds in performance that one can expect from a system trained from samples of a generic generative
image model.

Figure 4: Average top-1 accuracy across the tasks in each of the three groups of tasks in 8JABHe
horizontal axis shows the different image generative models sorted by the average performance across all tasks.
DMLab and CLEVR trained networks are not tested, as these datasets are present on some VTAB tasks.

4 Experiments

To study the proposed image generation processes, we train an AlexNet-based encoder using the
Alignment and Uniformity loss proposed i6§], which is a form of contrastive loss theoretically
equivalent to the popular InfoNCE loss9. We generate 105k samples using the proposed image
models atl28 128resolution, which are then downsampled®® 96 and cropped at random to

64 64 before being fed to the encoder. After unsupervised training, we evaluate linear training
performance (without netuning) on the representation right before the projection layer, following
standard practicébB, 59. We x a common set of hyperparameters for all the methods under test to

the values found to perform well by the authors ]| Further details of the training are provided in

the Sup.Mat.

We evaluate performance using Imagenet-180 fnd the Visual Task Adaptation Benchmark

[61]. VTAB consists of 19 classi cation tasks which are grouped into three categories: a) Natural,
consisting of images of the world taken with consumer cameras b) Specialized, consisting in images of
specialized domains, such as medical or aerial photography and c) Structured, where the classi cation
tasks require understanding speci c properties like shapes or distances. For each of the datasets in
VTAB, we X the number of training and validation samples to 20k at random for the datasets where
there are more samples available.

As an upper-bound for the maximum expected performance with synthetic images, we consider the
same training procedure but using the following real datasets: 1) Placeg3&®fsisting of a wide

set of classes, but a different domain 2) STL-&8][ consisting of only 10 classes of natural images

and 3) Imagenetlkl], a superset of Imagenetl00. As baselines we use mean image colors, raw
pixels and features obtained by an untrained Alexnet (denoted CNN - Random).
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