
A Proof1

To prove Theorem 1, we introduce the following lemma first.2

Lemma 1. Let C2, C3, C4, C5 > 0 be arbitrary global constants and assume n is large enough
so that 1/n2 + (C4 + 8)1/2/n ≤

(
C5 − (C2 + 3)1/2 − (C3 + 3)1/2

) (
n−3 log n

)1/4
, then for any

neighborhood sets S = {S1, . . . , Sn}, with probability 1− 2n−2C2/3 − 2n−2C3/3 − 2n−C4/2,

1

n2s4

∑
i

∑
j

(∑
i′∈Si

∑
i′∈Si

(Pi′j′ −Ai′j′)

)2

≤ C5

(
log n

n3

)1/4

.

Proof of Lemma 1. The summand satisfies3 ∑
i′∈Si

∑
j′∈Sj

(Pi′j′ −Ai′j′)

2

=
∑
i′∈Si

∑
j′∈Sj

(Pi′j′ −Ai′j′)
2

+

∑
i′∈Si

∑
i′′∈Si,i′′ 6=i′

∑
j′∈Sj

(Pi′j′ −Ai′j′)(Pi′′j′ −Ai′′j′)+∑
i′∈Si

∑
j′∈Sj

∑
j′′∈Sj ,j′′ 6=j′

(Pi′j′ −Ai′j′)(Pi′j′′ −Ai′j′′)+∑
i′∈Si

∑
i′′∈Si,i′′ 6=i′

∑
j′∈Sj

∑
j′′∈Sj ,j′′ 6=j′

(Pi′j′ −Ai′j′)(Pi′′j′′ −Ai′′j′′)

=E1(i, j) + E2(i, j) + E3(i, j) + E4(i, j).

(1)

The first term in (1) satisfies∑
i′∈Si

∑
j′∈Sj

(Pi′j′ −Ai′j′)
2 ≤

∑
i′∈Si

∑
j′∈Sj

1 = s2,

so (n2s2)−1
∑

i

∑
j E1(i, j) ≤ 1/n2. The term (n2s2)−1

∑
i

∑
j E2(i, j) can be bounded by4

1

n2s2i s
2
j

n∑
i=1

n∑
j=1

∑
i′∈Si

∑
i′′∈Si,i′′ 6=i′

∑
j′∈Sj

(Pi′j′ −Ai′j′)(Pi′′j′ −Ai′′j′)

≤ 1

n2s2i sj

n∑
i=1

n∑
j=1

∑
i′,i′′∈Si:i′ 6=i′′

1

sj

∣∣∣∣∣∣
∑
j′∈Sj

(Pi′j′ −Ai′j′)(Pi′′j′ −Ai′′j′)

∣∣∣∣∣∣ .
(2)

Note that we have assume that Pii = 0 for all i ∈ V , so there is no need to consider the cases where
j = i′ of j = i′′. To bound (2), for any i1 6= i2 and 0 < ε < 1, by Bernstein’s inequality we have

Pr

 1

sj

∣∣∣∣∣∣
∑
j′

(Pi1j′ −Ai1j′)(Pi2j′ −Ai2j′)

∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

{
−

1
2sjε

2

1 + 1
3ε

}
≤ 2e−

sjε
2

3 ≤ 2e−
(n log n)1/2ε2

3 ,

due to sj = s > (n log n)1/2. Then, with arbitrary global constants C2 and n > 9 > e2, by taking
ε =

√
(C2 + 3) log n(n−1 log n)1/2 and a union bound over all i1 6= i2, we have

Pr

max
i1,i2

1

sj

∣∣∣∣∣∣
∑
j′

(Pi1j′ −Ai1j′)(Pi1j′ −Ai2j′)

∣∣∣∣∣∣ ≥ ε
 ≤ 2n2 exp

{
− (n log n)1/2ε2

3

}
< 2n−2C2/3.
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Then, with probability 1− 2n−2C2/3, for all (i, j) simultaneously, we have5

1

n2s2i s
2
j

n∑
i=1

n∑
j=1

∑
i′∈Si

∑
i′′∈Si,i′′ 6=i′

∑
j′∈Sj

(Pi′j′ −Ai′j′)(Pi′′j′ −Ai′′j′)

≤ 1

n2s2i sj
n2si(si − 1)

√
(C2 + 3) log n(n−1 log n)1/2

≤
√

(C2 + 3) log n(n−1 log n)1/2

(n log n)1/2
= (C2 + 3)1/2

(
log n

n3

)1/4

.

(3)

The bound of the term (n2s2)−1
∑

i

∑
j E3(i, j) can be derived in the same way. That is, with6

probability 1− 2n−2C3/3, for all (i, j) simultaneously, we have7

1

n2s2i s
2
j

n∑
i=1

n∑
j=1

∑
i′∈Si

∑
j′∈Sj

∑
j′′∈Sj ,j′′ 6=j′

(Pi′j′ −Ai′j′)(Pi′j′′ −Ai′j′′) ≤ (C3 + 3)1/2
(

log n

n3

)1/4

.

(4)
As to the fourth term E4(i, j) which consists of si(si − 1)sj(sj − 1) summands, for any (i1, j1) 6=8

(i2, j2) and 0 < ε < 1, if n > 9 so that (n log n)1/2 > 3 and log n > 2, by Bernstein’s inequality,9

we have10

Pr

 1

si(si − 1)sj(sj − 1)

∣∣∣∣∣∣
∑
i1 6=i2

∑
j1 6=j2

(Pi1j1 −Ai1j1)(Pi2j2 −Ai2j2)

∣∣∣∣∣∣


≤2 exp

{
−

1
2si(si − 1)sj(sj − 1)ε2

1 + 1
3ε

}
≤2 exp

{
−s

4
i ε

2

4

}
≤2 exp

{
−n

2(log n)2ε2

4

}
.

(5)

Then, with arbitrary global constants C4, by taking ε = (C4 + 8)1/2/n and a union bound over all11

(i1, j1) 6= (i2, j2), we have12

Pr

 max
(i1,j1),(i2,j2)

1

si(si − 1)sj(sj − 1)

∣∣∣∣∣∣
∑
i1 6=i2

∑
j1 6=j2

(Pi1j1 −Ai1j1)(Pi2j2 −Ai2j2)

∣∣∣∣∣∣ ≥ ε


≤2n4 exp

{
−n

2(log n)2ε2

4

}
< 2n−C4/2.

(6)

Then, with probability 1− 2n−C4/2, for all (i, j) simultaneously, we have13

1

n2s2i s
2
j

∑
i

∑
j

∑
i′,i′′∈Si:i′ 6=i′′

∑
j′,j′′∈Sj :j′ 6=j′′

(Pi′j′ −Ai′j′)(Pi′′j′′ −Ai′′j′′)

≤ 1

n2

∑
i

∑
j

1

si(si − 1)sj(sj − 1)

∣∣∣∣∣∣
∑

i′,i′′∈Si:i′ 6=i′′

∑
j′,j′′∈Sj :j′ 6=j′′

(Pi′j′ −Ai′j′)(Pi′′j′′ −Ai′′j′′)

∣∣∣∣∣∣
≤ (C4 + 8)1/2

n
.

(7)

2



Then by plugging (3), (4) and (7) into (1), with probability 1− 2n−2C2/3 − 2n−2C3/3 − 2n−C4/2,14

we have15

1

n2s2

∑
i

∑
j

(∑
i′∈Si

∑
i′∈Si

(Pi′j′ −Ai′j′)

)2

≤ 1

n2
+
(

(C2 + 3)1/2 + (C3 + 3)1/2
)( log n

n3

)1/4

+
(C4 + 8)1/2

n

≤C5

(
log n

n3

)1/4

.

(8)

16

Proof of Theorem 1. We begin the proof with the following decomposition of the error term:17

1

n2

n∑
i=1

n∑
j=1

(
P̃ij − Pij

)2
=

1

n2

n∑
i=1

n∑
j=1

(
P̃ij − P ∗ij + P ∗ij − Pij

)2
≤ 2

n2

n∑
i=1

n∑
j=1

(
P̃ij − P ∗ij

)2
+

2

n2

n∑
i=1

n∑
j=1

(
P ∗ij − Pij

)2
,

(9)

where P ∗ij is defined as

P ∗ij =

∑
i′∈S∗i

∑
j′∈S∗j

Pi′j′

sisj
.

For the first term, according to Lemma 1, with probability 1− 2n−2C2/3 − 2n−2C3/3 − 2n−C4/2,18

we have19

2

n2

n∑
i=1

n∑
j=1

(
P̃ij − P ∗ij

)2

=
2

n

n∑
i=1

n∑
j=1

(∑
i′∈S∗i

∑
j′∈S∗j

Ai′j′

|S∗i ||S∗j |
−

∑
i′∈S∗i

∑
j′∈S∗j

Pi′j′

|S∗i ||S∗j |

)2

=
2

n2s4

n∑
i=1

n∑
j=1

∑
i′∈S∗i

∑
j′∈S∗j

(Ai′j′ − Pi′j′)

2

≤2C5

(
log n

n3

)1/4

.

(10)
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For the second term, we have20

2

n2

n∑
i=1

n∑
j=1

(
P ∗ij − Pij

)2
=

2

n2

n∑
i=1

n∑
j=1

(∑
i′∈S∗i

∑
j′∈S∗j

Pi′j′

|S∗i ||S∗j |
−

∑
i′∈S∗i

∑
j′∈S∗j

Pij

|S∗i ||S∗j |

)2

=
2

n2s4

n∑
i=1

n∑
j=1

∑
i′∈S∗i

∑
j′∈S∗j

(Pi′j′ − Pij)

2

≤ 2s2

n2s4

n∑
i=1

n∑
j=1

∑
i′∈S∗i

∑
j′∈S∗j

(Pi′j′ − Pij)
2

≤ 2

n2s2

n∑
i=1

n∑
j=1

∑
i′∈S∗i

∑
j′∈S∗j

4L2∆2
n

=8L2
[
1 + (C1 + 4)

1/2
] log n

n
.

(11)

Then, combining with (10) and (11), with probability 1−2n−C1/4−2n−2C2/3−2n−2C3/3−2n−C4/2,
we have

||P̃−P||2F
n2

≤ C6

(
log n

n3

)1/4

.

21

Proof of Theorem 2. Again, we decompose the error term as follows:22

1

n2

n∑
i=1

n∑
j=1

(
P̂ij − Pij

)2
=

1

n2

n∑
i=1

n∑
j=1

(
P̂ij − PS

ij + PS
ij − Pij

)2
≤ 2

n2

n∑
i=1

n∑
j=1

(
P̂ij − PS

ij

)2
+

2

n2

n∑
i=1

n∑
j=1

(
PS
ij − Pij

)2
,

(12)

where PS
ij here is defined as

PS
ij =

∑
i′∈Si

∑
j′∈Sj

Pi′j′

sisj
.

For the first term, according to Lemma 1, with probability 1− 2n−2C2/3 − 2n−2C3/3 − 2n−C4/2,23

we have24

2

n2

n∑
i=1

n∑
j=1

(
P̂ij − PS

ij

)2
≤ 2C5

(
log n

n3

)1/4

. (13)
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For the second term, we have25

2

n2

n∑
i=1

n∑
j=1

(
PS
ij − Pij

)2

=
2

n2s4

n∑
i=1

n∑
j=1

∑
i′∈Si

∑
j′∈Sj

(Pi′j′ − Pij)

2

=
2

n2s4

n∑
i=1

n∑
j=1

 ∑
i′∈S∗i ,j′∈S∗j

(Pi′j′ − Pij) +
∑

i′ /∈S∗i ∨j′ /∈S∗j

(Pi′j′ − Pij)

2

≤ 4

n2s4

n∑
i=1

n∑
j=1


 ∑

i′∈S∗i ,j′∈S∗j

(Pi′j′ − Pij)

2

+

 ∑
i′ /∈S∗i ∨j′ /∈S∗j

(Pi′j′ − Pij)

2


≤ 4s2

n2s4

n∑
i=1

n∑
j=1

∑
i′∈S∗i ,j′∈S∗j

(Pi′j′ − Pij)
2 +

4e(n)

n2s4

n∑
i=1

n∑
j=1

∑
i′ /∈S∗i ∨j′ /∈S∗j

(Pi′j′ − Pij)
2

≤ 4

n2s2

n∑
i=1

n∑
j=1

∑
i′∈S∗i ,j′∈S∗j

4L2∆2
n +

4e(n)

n2s4

n∑
i=1

n∑
j=1

∑
i′ /∈S∗i ∨j′ /∈S∗j

(b− a)2

≤16L2
[
1 + (C1 + 4)

1/2
] log n

n
+

4e2(n)

s4
(b− a)2

≤16L2
[
1 + (C1 + 4)

1/2
] log n

n
+

4e2(n)

n2(log n)2
(b− a)2

=16L2
[
1 + (C1 + 4)

1/2
] log n

n
+ 4C7

(
log n

n3

)1/4

.

(14)

Then, combining with (13) and (14), with probability 1−2n−C1/4−2n−2C2/3−2n−2C3/3−2n−C4/2,
we have

||P̂−P||2F
n2

≤ C8

(
log n

n3

)1/4

.

26

According to Theorem 2, for each pair (i, j), since |Si × Sj | = s2, the max error rate al-27

lowed is e(n)/s2 ≈ e(n)/n log n =
√
C7(n−3 log n)1/8/(b − a), which is much larger then28

C8(n−3 log n)1/4. That is, we can obtain an estimate with low error rate even with relatively29

high error rate on neighborhood selection. And the smaller b−a is, the larger the error rate is allowed.30

Let C5 = 4, C7 = 1 and C8 = 15, we display the curves of the error rate on neighborhood selection31

against the error rate on estimation with n varying from 1, 000 to 1000, 000 in Figure 1. It is obvious32

that the former is always much larger then the latter. For example, if n = 1000 and b− a = 0.5, to33

achieve an estimate with 0.137 error rate, it allows Si × Sj to include about 20% wrongly assigned34

pairs for each (i, j).35
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Figure 1: The curves of the error rate on neighborhood selection against the error rate on estimation.

Proof of Theorem 3. We first calculate the pairwise distances based on P̂(0). For i′ ∈ S∗i , with36

probability 1− 2n−C1/4 − n−C10 , we have37

d(i, i′) =
1

n

n∑
j=1

(P̂
(0)
ij − P̂

(0)
i′j )2

≤ 4

n

n∑
j=1

(Pij − Pi′j)
2 +

2

n

n∑
j=1

(Pij − P̂ (0)
ij )2 +

4

n

n∑
j=1

(Pi′j − P̂ (0)
i′j )2

≤4L2∆2
n + 6 max

i∈V

1

n

n∑
j=1

(Pij − P̂ (0)
ij )2

≤4L2
[
1 + (C1 + 4)1/2

]2 log n

n
+ 6C9E(n).

(15)

For any i′′ /∈ S∗i , with probability 1− 2n−C1/4, we have38

d(i, i′′) =
1

n

n∑
j=1

(P̂
(0)
ij − P̂

(0)
i′′j)2

≥ 1

2n

n∑
j=1

(Pij − Pi′′j)
2 − 2

n

n∑
j=1

(Pij − P̂ (0)
ij )2 − 2

n

n∑
j=1

(Pi′′j − P̂ (0)
i′′j)2

≥1

2
C2(n)− 4 max

i∈V

1

n

n∑
j=1

(Pij − P̂ (0)
ij )2

≥1

2
C2(n)− 4C9E(n).

(16)

Then, due to C2(n) ≥ 8L2
[
1 + (C1 + 4)1/2

]2
(n−1 log n) + 20C9E(n), we can deduce that

d(i, i′) ≤ d(i, i′′) for any i ∈ V, i′ ∈ S∗i , i′′ /∈ S∗i . That is, with probability 1− 2n−C1/4 − n−C10 ,
one can select all the true neighbors for each vertex i based on P̂. Then, combining with Theorem 1,
with probability 1− 2n−C1/4 − 2n−2C2/3 − 2n−2C3/3 − 2n−C4/2 − n−C10 , we have

||P̂new −P||2F
n2

≤ C6

(
log n

n3

)1/4

.

39

It should be noted that the lower bound C(n) we define is expected to be small. Indeed, if it is40

equal to L∆n, then we are able to differentiate the true neighbors of each vertex i even from all the41

vertexes in V \ S∗i . However, because E(n) is always much greater then n−1 log n, the pairwise42

distances calculated on the estimate is also larger than that defined on P, which leads to a large C(n).43

Nevertheless, the lower bound of C(n) is allowed to go to 0 as n → 0, making C(n) get close to44

L∆n as we expect.45
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Proof of Theorem 4. We begin the proof with the following decomposition of the error term:46

1

n2

n∑
i=1

n∑
j=1

(
P̂

(m)
ij − P̂ (m+1)

ij

)2

=
1

n2

n∑
i=1

n∑
j=1

(
P̂

(m)
ij −

∑
i′∈Si

∑
j′∈Sj

Ai′j′

sisj

)2

=
1

n2s2i s
2
j

n∑
i=1

n∑
j=1

∑
i′∈Si

∑
j′∈Sj

(
P̂

(m)
ij −Ai′j′

)2

=
1

n2s2i s
2
j

n∑
i=1

n∑
j=1

∑
i′∈Si

∑
j′∈Sj

(
P̂

(m)
ij − P̂ (m)

i′j′ + P̂
(m)
i′j′ − Pi′j′ + Pi′j′ −Ai′j′

)2

.

(17)

We can bound the summand by47 ∑
i′∈Si

∑
j′∈Sj

(
P̂

(m)
ij − P̂ (m)

i′j′ + P̂
(m)
i′j′ − Pi′j′ + Pi′j′ −Ai′j′

)2

≤4

∑
i′∈Si

∑
j′∈Sj

(
P̂

(m)
ij − P̂ (m)

i′j′

)
2

+ 2

∑
i′∈Si

∑
j′∈Sj

(
P̂

(m)
i′j′ − Pi′j′

)
2

+ 4

∑
i′∈Si

∑
j′∈Sj

(Pi′j′ −Ai′j′)


2

=4E5(i, j) + 2E6(i, j) + 4E7(i, j).

Our goal is to bound (n3 log n)−1
∑

i

∑
j{4E5(i, j) + 2E6(i, j) + 4E7(i, j)}. For the first term,48

due to |P̂ (m)
ij − P̂ (m)

i′j′ | ≤ 2L∆n, we have49

4

n2s2i s
2
j

n∑
i=1

n∑
j=1

∑
i′∈Si

∑
j′∈Sj

(
P̂

(m)
ij − P̂ (m)

i′j′

)2

≤ 4

n2sisj

n∑
i=1

n∑
j=1

∑
i′∈Si

∑
j′∈Sj

(
P̂

(m)
ij − P̂ (m)

i′j′

)2
≤ 4

n2sisj

n∑
i=1

n∑
j=1

∑
i′∈Si

∑
j′∈Sj

4L2∆2
n

=16L2
[
1 + (C1 + 4)

1/2
]2 log n

n
.

(18)

For the second term, it is obvious that50

2

n2s2i s
2
j

n∑
i=1

n∑
j=1

∑
i′∈Si

∑
j′∈Sj

(
P̂

(m)
i′j′ − Pi′j′

)2

≤ 2

n2sisj

n∑
i=1

n∑
j=1

∑
i′∈Si

∑
j′∈Sj

(
P̂

(m)
i′j′ − Pi′j′

)2
=

2

n2

n∑
i=1

n∑
j=1

(
P̂

(m)
ij − Pij

)2
≤2C11

(
log n

n3

)1/4

.

(19)
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As to the third term, according to Lemma 1, with probability 1− 2n−2C2/3 − 2n−2C3/3 − 2n−C4/2,51

we have52

4

n2s2i s
2
j

∑
i

∑
j

(∑
i′∈Si

∑
i′∈Si

(Pi′j′ −Ai′j′)

)2

≤ 4C5

(
log n

n3

)1/4

. (20)

Finally, plugging (18), (19) and (20) into (17) and combining with Lemma 1, with probability53

1− 2nC1/4 − 2n−2C2/3 − 2n−2C3/3 − 2n−C4/2, we have54

1

n2

n∑
i=1

n∑
j=1

(
P̂

(m)
ij − P̂ (m+1)

ij

)2
≤32L2

[
1 + (C1 + 4)

1/2
]2 log n

n
+ (4C5 + 2C11)

(
log n

n3

)1/4

≤C12

(
log n

n3

)1/4

.

(21)

55

Recall that we define δP = ||P̂(m+1)−P̂(m)||F /||P̂(m)||F in Algorithm 1 of the main paper, assume
that P̂ (m)

ij ≥ â for all (i, j) ∈ V × V , then under the condition of Theorem 4, with high probability,
we have

δ2P =
||P̂(m+1) − P̂(m)||2F

||P̂(m)||2F
≤ C12

â2

(
log n

n3

)1/4

.

B Variations of Our Method56

The Algorithm 1 in the main paper gives the framework of our proposed method but allows many57

variations. In fact, the ways of updating the probability matrix, the pairwise distances and the58

neighborhood sets all can be modified to adapt specific network structure.59

• Weighted Neighborhood Averaging. When estimating Pi· by neighborhood averaging,60

we use all the vertexes in Si with equal weights. However, the vertexes more similar to61

vertex i may be more helpful. Therefore, we could expand Si and let the weights of Ai′j′ be62

proportional to 1/dii′ . In this way, we assign larger weights to those close to vertex i and63

smaller weights to those relatively farther away from it.64

• Distance Measurement. When updating D, besides `2 distance, other distance measure-65

ment can also be considered. Furthermore, because we only care about the vertexes which66

are possible to be the neighbors for a given vertexes, we can only update dij smaller than a67

threshold and speed up the process.68

• Vertex-specific Neighborhood Size. For networks with unknown complicated structure,69

the number of useful neighbors may vary from vertex to vertex. A more natural idea is to70

assign different numbers of neighbors to different vertexes. With unequal neighborhood71

sizes, the only difference in Algorithm 1 is to replace s in Si = {i′ : 0 < dii′ ≤ ds} with si,72

where si is the specific neighborhood size of vertex i.73

Here we focus on the last variation. Consider a network generated by SBM with some blocks in74

different sizes. As is shown in Figure 2, in this SBM network with 1000 vertexes, there are 4 blocks75

whose sizes are 100, 200, 300, 400 respectively. The connecting probability inner a block is set 0.476

while that between two different blocks is in {0.15, 0.20, 0.25}. In this case, it is reasonable to assign77

different numbers of neighbors to vertexes in different blocks. And si, the size of neighbors for vertex78

i, is expected to be equal to the size of its corresponding block, as the blue dashed curve in Figure79

3(a) shows.80

Let S = {s1, . . . , sn} denote the size vector. As the block structure is unknown, we have to estimate S81

first. Since estimating n parameters s1, . . . , sn simultaneously is impracticable, we use a threshold for82

the pairwise distances to get a adaptive size vector. For each vertex i, let Si = {i′ : 0 < dii′ ≤ dthre},83

where dthre is the threshold. In this way, we transform the issue of estimating S into the selection of84

8



Figure 2: Network generated by SBM with blocks in different sizes.

appropriate dthre. Algorithm 1 gives the details of this procedure. A previous connecting probability85

estimate P̂ is required for two reasons. First, the pairwise distances are calculated on P̂. Second, we86

use P̂ to evaluate the performance of a given distance threshold by network bootstrap. A series of87

adjacency matrices are generated with P̂, then for a given distance threshold and its corresponding88

size vector, we average the RMSE on estimating P̂ based on these bootstrap samples to evaluate its89

performance. Finally we select the best threshold and obtain the size vector.90

Algorithm 1 Neighborhood size assignment

Input: connecting probability estimate P̂; a series of distance thresholds {d1, . . . , dT }; number of
bootstrap samples B.

Output: size vector estimate Ŝ = {ŝ1, . . . , ŝn}.
1: For each vertex pair i, j ∈ V , obtain their distance dij = ||P̂i· − P̂j·||22/n.
2: for t = 1; t <= T ; t+ + do
3: For each vertex i ∈ V , obtain its neighborhood set Si = {i′ : 0 < dii′ ≤ dt} and its size
4: si = |Si|.
5: Obtain the size vector St = {s1, . . . , sn} with threshold dt.
6: end for
7: Generate a series of adjacency matrices A1, . . . ,AB with P̂ as expectation.
8: for t = 1; t <= T ; t+ + do
9: for b = 1; b <= B; b+ + do

10: Based on Ab and St, apply Algorithm 1 to obtain P̂tb, estimate of P̂.
11: Calculate RMSEtb = ||P̂tb − P̂||F .
12: end for
13: Let RMSEt =

∑B
b=1 RMSEtb /B.

14: end for
15: Let t∗ = arg mint∈{1,...,T}RMSEt.
16: return Ŝ = St∗ .

In the SBM case discussed above, we use ICE method with equal neighborhood sizes to get P̂. Then91

we estimate the vertex-specific size vector via Algorithm 1. As the red solid curve in Figure 3(a)92

shows, we successfully assign appropriate numbers of neighbors to most of the vertexes according to93

the network structure. Then with the estimated size vector, we apply Algorithm 1 in the main paper94

again, start from random selected neighbors, update the pairwise distances, the neighborhood sets95

and the estimate iteratively until they converge. Figure 3(b) presents the RMSE of ICE with equal96

neighborhood sizes and specific neighborhood sizes in 20 repetitions. It is obvious that using specific97

neighborhood sizes significantly improves the precision.98

Figure 3(b) also implies another phenomenon that the precision of these two versions of ICE method99

are highly correlated. Because both the estimation of the size vectors and the selection procedure in100

Algorithm 1 rely on P̂, the performance of ICE with vertex-specific neighborhood sizes also depends101

on the precision of P̂. Indeed, Algorithm 1 tends to select a size vector that most appropriate for102
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Figure 3: Result on SBM network with unequal block sizes.

estimating P̂, instead of P. Therefore, if P̂ is a good estimate, then the estimated size vector will be103

close to the true size vector and ICE with vertex-specific neighborhood sizes will outperform that104

with equal sizes. However, if P̂ is a poor estimate, it is hard to estimate the size vector well even with105

an appropriate distance threshold. And ICE method that starts from the wrongly selected size vector106

will repeat the mistakes made by P̂ without improvement.107

A vivid instance comes from the simulated network with complicated local structure that we have108

mentioned in the main paper. The blue dashed curve in Figure 4(a) presents the most appropriate109

size vector obtained via Algorithm 1 based on P. It is easily seen that the neighborhood size si is110

proportional to the smoothness of Pi·. Then, based on P̂ estimated by ICE with equal neighborhood111

sizes, we get the estimated size vector, as shown by the red solid curve. These two curves coincide112

well for vertexes indices ranging from 250 to 1000. However, for vertexes corresponding to the113

local structure, whose indices under 250, the neighborhood sizes are heavily overestimated. The114

reason is that the local structure in P is hard to estimate and the corresponding part in P̂ is over-115

smoothing. Consequently, for vertex i, j ∈ {1, . . . , 250}, the pairwise distances dij calculated on P̂116

is much smaller than the true distance on P. Then the estimated size of neighborhood set for vertex117

i ∈ {1, . . . , 250} is much larger because it include more non-neighbors.118

Figure 4 displays the RMSE in 20 repetitions. Again, the RMSE by ICE with equal and vertex-specific119

neighborhood sizes are linearly correlated. As the estimated size vector is far away from the truth,120

ICE with vertex-specific neighborhood sizes shows no advantage. How to deal with this problem is121

worthy of further investigation.122
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C Broader Impact123

This paper provides an iterative method based on neighborhood averaging for estimating the connect-124

ing probabilities between pairs of vertexes in networks. This work may benefit the analysis of the125

relationship between subjects in networks, such as user friendship in social network. Although we126

focus on the task of connecting probability estimation, we believe that the iterative procedure may127

be applied in other learning tasks solved by methods based on neighborhood averaging, like KNN.128

Indeed, if the output (e.g., estimate, prediction) obtained by neighborhood averaging is helpful to129

construct a more reliable distance measurement, it is natural to update the neighbors, thus improving130

the performance of the output. We should also be aware of the unintended usage for our method. For131

instance, advertisers may apply our method to discover potential friends of users in social media and132

recommend products to them, which may cause privacy violations and overflowing of advertising133

information.134

D Code135

Implementation of our proposed method ICE is available online at https://github.com/Siva-47/ICE.136

We have provided the main steps with some necessary details to reproduce the results in our paper. It137

should be noted that we narrow the range of the tuning parameters in grid search to save time for138

reproduction. In practice, one should use a large range first and then narrow it.139
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