The Complexity of Bayesian Network Learning: Revisiting the Superstructure (Full Version)

Anonymous Author(s)
Affiliation
Address
e-mail

Abstract

We investigate the parameterized complexity of Bayesian Network Structure Learning (BNSL), a classical problem that has received significant attention in empirical but also purely theoretical studies. We follow up on previous works that have analyzed the complexity of BNSL w.r.t. the so-called superstructure of the input.

While known results imply that BNSL is unlikely to be fixed-parameter tractable even when parameterized by the size of a vertex cover in the superstructure, here we show that a different kind of parameterization—notably by the size of a feedback edge set—yields fixed-parameter tractability. We proceed by showing that this result can be strengthened to a localized version of the feedback edge set, and provide corresponding lower bounds that complement previous results to provide a complexity classification of BNSL w.r.t. virtually all well-studied graph parameters.

We then analyze how the complexity of BNSL depends on the representation of the input. In particular, while the bulk of past theoretical work on the topic assumed the use of the so-called non-zero representation, here we prove that if an additive representation can be used instead then BNSL becomes fixed-parameter tractable even under significantly milder restrictions to the superstructure, notably when parameterized by the treewidth alone. Last but not least, we show how our results can be extended to the closely related problem of Polytree Learning.

1 Introduction

Bayesian networks are among the most prominent graphical models for probability distributions. The key feature of Bayesian networks is that they represent conditional dependencies between random variables via a directed acyclic graph; the vertices of this graph are the variables, and an arc ab means that the distribution of variable b depends on the value of a. One beneficial property of Bayesian networks is that they can be used to infer the distribution of random variables in the network based on the values of the remaining variables.

The problem of constructing a Bayesian network with an optimal network structure is NP-hard, and remains NP-hard even on highly restricted instances \cite{5}. This initial negative result has prompted an extensive investigation of the problem’s complexity, with the aim of identifying new tractable fragments as well as the boundaries of its intractability \cite{29,36,30,25,14,9,22}. The problem—which we simply call $\text{BAYESIAN NETWORK STRUCTURE LEARNING (BNSL)}$—can be stated as follows: given a set of V of variables (represented as vertices), a family \mathcal{F} of score functions which assign each variable $v \in V$ a score based on its parents, and a target value ℓ, determine if there exists a directed acyclic graph over V that achieves a total score of at least ℓ.\footnote{Formal definitions are provided in Section 2. We consider the decision version of BNSL for complexity-theoretic reasons only; all of the provided algorithms are constructive and can output a network as a witness.}

To obtain a more refined understanding of the complexity of BNSL, past works have analyzed the problem not only in terms of classical complexity but also from the perspective of parameterized complexity [12, 8]. In parameterized complexity analysis, the tractability of problems is measured with respect to the input size \(n \) and additionally with respect to a specified numerical parameter \(k \). In particular, a problem that is \(\text{NP}-\text{hard} \) in the classical sense may—depending on the parameterization used—be \(\text{fixed-parameter tractable} \) (FPT), which is the parameterized analogue of polynomial-time tractability and means that a solution can be found in time \(f(k) \cdot n^{O(1)} \) for some computable function \(f \), or \(\text{W}[1] \)-hard, which rules out fixed-parameter tractability under standard complexity assumptions.

The use of parameterized complexity as a refinement of classical complexity is becoming increasingly common and has been employed not only for BNSL [29, 36, 30], but also for numerous other problems arising in the context of neural networks and artificial intelligence [16, 41, 13, 19].

Unfortunately, past complexity-theoretic works have shown that BNSL is a surprisingly difficult problem. In particular, not only is the problem \(\text{NP}-\text{hard} \), but it remains \(\text{NP}-\text{hard} \) even when asking for the existence of extremely simple networks such as directed paths [33] and is \(\text{W}[1] \)-hard when parameterized by the vertex cover number of the network [30]. In an effort to circumvent these lower bounds, several works have proposed to instead consider restrictions to the so-called superstructure, which is a graph that, informally speaking, captures all potential dependencies between variables [45, 38]. Ordyniak and Szeider [36] studied the complexity of BNSL when parameterized by the structural properties of the superstructure, and showed that parameterizing by the treewidth [39] of the superstructure is sufficient to achieve a weaker notion of tractability called XP-tractability. However, they also proved that BNSL remains \(\text{W}[1] \)-hard when parameterized by the treewidth of the superstructure [36, Theorem 3].

Contribution. Up to now, no “implicit” restrictions of the superstructure were known to lead to a fixed-parameter algorithm for BNSL alone. More precisely, the only known fixed-parameter algorithms for the problem require that we place explicit restrictions on either the sought-after network or the parent sets on the input: BNSL is known to be fixed-parameter tractable when parameterized by the number of arcs in the target network [25], the treewidth of an “extended superstructure graph” which also bounds the maximum number of parents a variable can have [29], or the number of parent set candidates plus the treewidth of the superstructure [36]. Moreover, a closer analysis of the reduction given by Ordyniak and Szeider [36, Theorem 3] reveals that BNSL is also \(\text{W}[1] \)-hard when parameterized by the treedepth, pathwidth, and even the vertex cover number of the superstructure alone. The vertex cover number is equal to the vertex deletion distance to an edgeless graph, and hence their result essentially rules out the use of the vast majority of graph parameters; among others, any structural parameter based on vertex deletion distance.

As our first conceptual contribution, we show that a different kind of graph parameters—notably, parameters that are based on edge deletion distance—give rise to fixed-parameter algorithms for BNSL in its full generality, without requiring any further explicit restrictions on the target network or parent sets. Our first result in this direction concerns the feedback edge number (fen), which is the minimum number of edges that need to be deleted to achieve acyclicity. In Theorem 1 we show not only that BNSL is fixed-parameter tractable when parameterized by the fen of the superstructure, but also provide a polynomial-time preprocessing algorithm that reduces any instance of BNSL to an equivalent one whose number of variables is linear in the fen (i.e., a kernelization [12, 8]).

Since fen is a highly “restrictive” parameter—its value can be large even on simple superstructures such as collections of disjoint cycles—we proceed by asking whether it is possible to lift fixed-parameter tractability to a more relaxed way of measuring distance to acyclicity. For our second result, we introduce the local feedback edge number (lfen), which intuitively measures the maximum edge deletion distance to acyclicity for cycles intersecting any particular vertex in the superstructure. In Theorem 6 we show that BNSL is also fixed-parameter tractable when parameterized by lfen; we also show that this comes at the cost of BNSL not admitting any polynomial-time preprocessing procedure akin to Theorem 1 when parameterized by lfen. We conclude our investigation in the direction of parameters based on edge deletion distance by showing that BNSL parameterized by treecut width [32, 48, 17], a recently discovered edge-cut based counterpart to treewidth, remains \(\text{W}[1] \)-hard (Theorem 10). An overview of these complexity-theoretic results is provided in Figure 1.

As our second conceptual contribution, we show that BNSL becomes significantly easier when one can use an additive representation of the scores rather than the non-zero representation that was considered in the vast majority of complexity-theoretic works on BNSL to date [29, 36, 30, 25, 14, 22].
When comparing two numerical parameters \(\alpha, \beta \) of graphs, we say that \(\alpha \) is more restrictive than \(\beta \) if there exists a function \(f \) such that \(\beta(G) \leq f(\alpha(G)) \) holds for every graph \(G \). In other words, \(\alpha \) is
As before, in the additive representation we will also only store scores for parents of \(v\) which yield a non-zero score; formally, \(\Gamma_f(v) \neq \emptyset\). This model has been used in a large number of works studying the complexity of BNSL and PL \([29, 36, 30, 25, 22, 24]\) and is known to be strictly more general than, e.g., the bounded-arity representation where one only considers parent sets of arity bounded by a constant \([36, \text{Section 3}]\). Let \(\Gamma_f(v)\) be the set of candidate parents of \(v\) which yield a non-zero score; formally, \(\Gamma_f(v) = \{ Z \mid f_v(Z) \neq 0 \}\), and the input size \(|I|\) of an instance \(I = (V, F, \ell)\) is simply defined as \(|V| + \ell + \sum_{v \in V, P \in \Gamma_f(v)} |P|\).

Let \(P_\rightarrow(v)\) be the set of all parents which appear in \(\Gamma_f(v)\), i.e., \(a \in P_\rightarrow(v)\) if and only if \(\exists Z \in \Gamma_f(v): a \in Z\). A natural way to think about and exploit the structure of inter-variable dependencies laid bare by the non-zero representation is to consider the superstructure graph \(G_T = (V, E)\) of a BNSL (or PL) instance \(I = (V, F, \ell)\), where \(ab \in E\) if and only if either \(a \in P_\rightarrow(b)\), or \(b \in P_\rightarrow(a)\), or both.

Naturally, families of local score functions may be exponentially larger than \(|V|\) even when stored using the non-zero representation. In this paper, we also consider a second representation of \(F\) which is guaranteed to be polynomial in \(|V|\): the additive representation, we require that for every vertex \(v \in V\) and set \(Q = \{q_1, \ldots, q_m\} \subseteq V \setminus \{v\}\), \(f_v(Q) = f_v(q_1) + \cdots + f_v(q_m)\). Hence, each cost function \(f_v\) can be fully characterized by storing at most \(|V|\)-many entries of the form \(f_v(x) := f_v(x)\) for each \(x \in V \setminus \{v\}\). To avoid overfitting, one may optionally impose an additional constraint: an upper bound \(q\) on the size of any parent set in the solution (or, equivalently, \(q\) is a maximum upper-bound on the in-degree of the sought-after acyclic digraph \(D\)).

While not every family of local score functions admits an additive representation, the additive model is similar in spirit to the models used by some practical algorithms for BNSL. For instance, the algorithms of Scanagatta, de Campos, Corani and Zaffalon \([43, 42]\), which can process BNSL instances with up to thousands of variables, approximate the real score functions by adding up the known score functions for two parts of the parent set and applying a small, logarithmic correction. Both of these algorithms also use the aforementioned bound \(q\) for the parent set size. In spite of this connection to practice and the representation’s streamlined nature, we are not aware of any prior works that considered the additive representation in complexity-theoretic studies of BNSL and PL.

As before, in the additive representation we will also only store scores for parents of \(v\) which yield a non-zero score, and can thus define \(P_\rightarrow(v) = \{ z \mid f_v(z) \neq 0 \}\), as for the non-zero representation. This in turn allows us to define the superstructure graphs in an analogous way as before: \(G_T = (V, E)\) where \(ab \in E\) if and only if \(a \in P_\rightarrow(b)\), \(b \in P_\rightarrow(a)\), or both.

To distinguish between these models, we use BNSL\(^\mathbb{a}\), BNSL\(^+\), and BNSL\(^\mathbb{a}\)\(^+\) to denote BAYESIAN NETWORK STRUCTURE LEARNING with the non-zero representation, the additive representation, and the additive representation and the parent set size bound \(q\), respectively. The same notation will also be used for POLYTREE LEARNING—for example, an instance of PL\(^\mathbb{a}\)\(^+\) will consist of \(V\), a family
The parameter of choice for the latter is \(\chi \) (see Definition 3.2) which has been successfully used to tackle some problems that remained intractable when traditional, tree-like restricted input instances are considered. In parameterized algorithmics \([1,8,12,35]\) the running-time of an algorithm is studied with respect to a parameter \(k \in \mathbb{N}_0 \) and input size \(n \). The basic idea is to find a parameter that describes the structure of the instance such that the combinatorial explosion can be confined to this parameter. In this respect, the most favorable complexity class is \(\text{FPT} \) (fixed-parameter tractable) which contains all problems that can be decided by an algorithm running in time \(f(k) \cdot n^{O(1)} \), where \(f \) is a computable function. Algorithms with this running-time are called fixed-parameter algorithms. A less favorable outcome is an \(\text{XP} \) algorithm, which is an algorithm running in time \(O(n^{f(k)}) \); problems admitting such algorithms belong to the class \(\text{XP} \).

Showing that a problem is \(W[1] \)-hard rules out the existence of a fixed-parameter algorithm under the well-established assumption that \(W[1] \neq \text{FPT} \). This is usually done via a parameterized reduction \([8,12]\) to some known \(W[1] \)-hard problem. A parameterized reduction from a parameterized problem \(P \) to a parameterized problem \(Q \) is a function:

- which maps \(\text{Yes} \)-instances to \(\text{Yes} \)-instances and \(\text{No} \)-instances to \(\text{No} \)-instances,
- which can be computed in time \(f(k) \cdot n^{O(1)} \), where \(f \) is a computable function, and
- where the parameter of the output instance can be upper-bounded by some function of the parameter of the input instance.

Treewidth. A nice tree-decomposition \(T \) of a graph \(G = (V, E) \) is a pair \((T, \chi)\), where \(T \) is a tree (whose vertices we call nodes) rooted at a node \(r \) and \(\chi \) is a function that assigns each node \(t \) a set \(\chi(t) \subseteq V \) such that the following holds:

- For every \(uv \in E \) there is a node \(t \) such that \(u, v \in \chi(t) \).
- For every vertex \(v \in V \), the set of nodes \(t \) satisfying \(v \in \chi(t) \) forms a subtree of \(T \).
- \(|\chi(t)| = 1 \) for every leaf \(t \) of \(T \) and \(|\chi(r)| = 0 \).
- There are only three kinds of non-leaf nodes in \(T \):
 - **Introduce node**: a node \(t \) with exactly one child \(t' \) such that \(\chi(t) = \chi(t') \cup \{v\} \) for some vertex \(v \notin \chi(t') \).
 - **Forget node**: a node \(t \) with exactly one child \(t' \) such that \(\chi(t) = \chi(t') \setminus \{v\} \) for some vertex \(v \in \chi(t') \).
 - **Join node**: a node \(t \) with two children \(t_1, t_2 \) such that \(\chi(t) = \chi(t_1) = \chi(t_2) \).

The width of a nice tree-decomposition \((T, \chi)\) is the size of a largest set \(\chi(t) \) minus 1, and the treewidth of the graph \(G \), denoted \(\text{tw}(G) \), is the minimum width of a nice tree-decomposition of \(G \). Fixed-parameter algorithms are known for computing a nice tree-decomposition of optimal width \([4,27]\). For \(t \in V(T) \) we denote by \(T_t \) the subtree of \(T \) rooted at \(t \).

Graph Parameters Based on Edge Cuts. Traditionally, the bulk of graph-theoretic research on structural parameters has focused on parameters that guarantee the existence of small vertex separators in the graph; these are inherently tied to the theory of graph minors \([40,59]\) and the vertex deletion distance. This approach gives rise not only to the classical notion of treewidth, but also to its well-known restrictions and refinements such as pathwidth \([40]\), treedepth \([34]\) and the vertex cover number \([15,28]\). The vertex cover number is the most restrictive parameter in this hierarchy.

However, there are numerous problems of interest that remain intractable even when parameterized by the vertex cover number. A recent approach developed for attacking such problems has been to consider parameters that guarantee the existence of small edge cuts in the graph; these are typically based on the edge deletion distance or, more broadly, tied to the theory of graph immersions \([48,32]\). The parameter of choice for the latter is treedepth \((\text{tcp})\) \([48,32,17,18]\), a counterpart to treewidth which has been successfully used to tackle some problems that remained intractable when...
parameterized by the vertex cover number [20]. For the purposes of this manuscript, it will be useful to note that graphs containing a vertex cover X such that every vertex outside of X has degree at most 2 have treecut width at most $|X|$ [20, Section 3].

On the other hand, the by far most prominent parameter based on edge deletion distance is the feedback edge number of a connected graph $G=(V,E)$, which is the minimum cardinality of a set $F \subseteq E$ of edges (called the feedback edge set) such that $G-F$ is acyclic. The feedback edge number can be computed in quadratic time and has primarily been used to obtain fixed-parameter algorithms and polynomial kernels for problems where other parameterizations failed [20, 2, 47].

Up to now, these were the only two edge-cut based graph parameters that have been considered in the broader context of algorithm design. This situation could be seen as rather unsatisfactory in view of the large gap between the complexity of the richer class of graphs of bounded treecut width, and the significantly simpler class of graphs of bounded feedback edge number—for instance, the latter class is not even closed under disjoint union. Here, we propose a new parameter that lies “between” the feedback edge number and treecut width, and which can be seen as a localized relaxation of the feedback edge number: instead of measuring the total size of the feedback edge set, it only measures how many feedback edges can “locally interfere with” any particular part of the graph.

Formally, for a connected graph $G=(V,E)$ and a spanning tree T of G, let the local feedback edge set at $v \in V$ be

$$E^*_\text{loc}(v) = \{uw \in E \setminus E(T) \mid \text{the unique path between } u \text{ and } w \text{ in } T \text{ contains } v\}.$$

The local feedback edge number of (G,T) (denoted $\text{lfen}(G,T)$) is then equal to $\max_{v \in V} |E^*_\text{loc}(v)|$, and the local feedback edge number of G is simply the smallest local feedback edge number among all possible spanning trees of G, i.e., $\text{lfen}(G) = \min_T \text{lfen}(G,T)$.

It is not difficult to show that the local feedback edge number is “sandwiched” between the feedback edge number and treecut width. We also show that computing it is FPT.

Proposition 1. For every graph G, $\text{tcw}(G) \leq \text{lfen}(G) + 1$ and $\text{lfen}(G) \leq \text{fen}(G)$.

Proof. Let us begin with the second inequality. Consider an arbitrary spanning tree T of G. Then for every $v \in V(G)$, $E^*_\text{loc}(v)$ is a subset of a feedback edge set corresponding to the spanning tree T, so $|E^*_\text{loc}(v)| \leq \text{fen}(G)$ and the claim follows.

To establish the first inequality, we will use the notation and definition of treecut width from previous work [18, Subsection 2.4]. Let T be the spanning tree of G with $\text{lfen}(G,T) = \text{lfen}(G)$. We construct a treecut decomposition (T,\mathcal{X}) where each bag contains precisely one vertex, notably by setting $X_t = \{t\}$ for each $t \in V(T)$. Fix any node t in T other than root, let u be the parent of t in T. All the edges in $G \setminus \{t\}$ that connect to the root are placed into the subtree T_t and another outside of T_t belong to $E^*_\text{loc}(t)$, so $\text{adh}_T(t) = |\text{cut}(t)| \leq |E^*_\text{loc}(t)| \leq \text{lfen}(G)$.

Let H_t be the torso of (T,\mathcal{X}) in t, then $V(H_t) = \{t,z_1 \ldots z_i\}$ where z_i correspond to connected components of $T \setminus t$, $i \in [i]$. In $\tilde{H}(t)$, only z_i with degree at least 3 are preserved. But all such z_i are the endpoints of at least 2 edges in $|E^*_\text{loc}(t)|$, so $\text{tor}(t) = |V(H_t)| \leq 1 + |E^*_\text{loc}(t)| \leq 1 + \text{lfen}(G)$. Thus $\text{tcw}(G) \leq \text{lfen}(G) + 1$. \hfill \Box

Theorem 2. The problem of determining whether $\text{lfen}(G) \leq k$ for an input graph G parameterized by an integer k is fixed-parameter tractable. Moreover, if the answer is positive, we may also output a spanning tree T such that $\text{lfen}(G,T) \leq k$ as a witness.

Proof. Observe that since $\text{tcw}(G) \leq \text{lfen}(G) + 1$ by Proposition 1 and $\text{tw}(G) \leq 2\text{tw}(G)^2 + 3\text{tcw}(G)$ [1], we immediately see that no graph of treewidth greater than $k' = 2k^2 + 5k + 3$ can have a local feedback edge set of at most k. Hence, let us begin by checking that $\text{tw}(G) \leq k'$ using the classical fixed-parameter algorithm for computing treewidth [4]; if not, we can safely reject the instance.

Next, we use the fact that $\text{tw}(G) \leq k'$ to invoke Courcelle’s Theorem [6,12], which provides a fixed-parameter algorithm for model-checking any Monadic Second-Order Logic formula on G when parameterized by the size of the formula and the treewidth of G. We refer interested readers to the appropriate books [7,12] for a definition of Monadic Second Order Logic; intuitively, the logic
allows one to make statements about graphs using variables for vertices and edges as well as their
sets, standard logical connectives, set inclusions, and atoms that check whether an edge is incident to
a vertex. If the formula contains a free set variable \(X \) and admits a model on \(G \), Courcelle’s Theorem
allows us to also output an interpretation of \(X \) on \(G \) that satisfies the formula.

The formula \(\phi \) we will use to check whether \(\text{fen}(G) \leq k \) will be constructed as follows. \(\phi \) contains
a single free edge set variable \(X \) (which will correspond to the sought-after feedback edge set). \(\phi \)
then consists of a conjunction of two parts, where the first part simply ensures that \(X \) is a minimal
feedback edge set using a well-known folklore construction [31]. This also ensures that \(G - X \) is a
spanning tree. In the second part, \(\phi \) quantifies over all vertices in \(G \), and for each such vertex \(v \) it
says there exist edges \(e_1, \ldots, e_k \) in \(X \) such that for every edge \(ab \in X \) distinct from all of \(e_1, \ldots, e_k \),
there exists a path \(P \) between \(a \) and \(b \) in \(G - X \) which is disjoint from \(v \). (Note that since the path \(P \)
is unique in \(G - X \), one could also quantify \(P \) universally and achieve the same result.)

It is easy to verify that \(\phi(X) \) is satisfied in \(G \) if and only if \(\text{fen}(G, G - X) \leq k \), and so the
proof follows. Finally, we remark that—as with every algorithmic result arising from Courcelle’s
Theorem—one could also use the formula as a template to build an explicit dynamic programming
algorithm that proceeds along a tree-decomposition of \(G \).

3 Solving BNSL\(^{\neq 0} \) with Parameters Based on Edge Cuts.

In this section we provide tractability and lower-bound results for BNSL\(^{\neq 0} \) from the viewpoint of
superstructure parameters based on edge cuts. Together with the previous lower bound that rules
out fixed-parameter algorithms based on all vertex-separator parameters [36] Theorem 3), the results
presented here provide a comprehensive picture of the complexity of BNSL\(^{\neq 0} \) with respect to
superstructure parameterizations.

3.1 Using the Feedback Edge Number for BNSL\(^{\neq 0} \)

We say that two instances \(I, I' \) of BNSL are equivalent if (1) they are either both \(\text{Yes} \)-instances or
both \(\text{No} \)-instances, and furthermore (2) a solution to one instance can be transformed into a solution
to the other instance in polynomial time. Our aim here is to prove the following theorem:

Theorem 3. There is an algorithm which takes as input an instance \(I \) of BNSL\(^{\neq 0} \) whose super-
structure has \(\text{fen} \) \(k \), runs in time \(O(|I|^2) \), and outputs an equivalent instance \(I' = (V', \mathcal{F}', \ell') \) of
BNSL\(^{\neq 0} \) such that \(|V'| \leq 16k \).

In parameterized complexity theory, such data reduction algorithms, which use performance guarantees are
called kernelization algorithms [12] [3]. These may be applied as a polynomial-time preprocessed
step before, e.g., more computationally expensive methods are used. The fixed-parameter tractability
of BNSL\(^{\neq 0} \) when parameterized by the \(\text{fen} \) of the superstructure follows as an immediate corollary
of Theorem 3 (one may solve \(I \) by, e.g., exhaustively looping over all possible DAGs on \(V' \) via a
brute-force procedure). We also note that even though the number of variables of the output instance
is polynomial in the parameter \(k \), the instance \(I' \) need not have size polynomial in \(k \).

We begin our path towards a proof of Theorem 3 by computing a feedback edge set \(E_F \) of \(G \) of size \(k \)
in time \(O(|I|^2) \) by, e.g., Prim’s algorithm. Let \(T \) be the spanning tree of \(G, E_F = E(G) \setminus E(T) \). The
algorithm will proceed by the recursive application of certain reduction rules, which are polynomial-
time operations that alter (“simplify”) the input instance in a certain way. A reduction rule is safe if it
outputs an instance which is equivalent to the input instance. We start by describing a rule that will
be used to prune \(T \) until all leaves are incident to at least one edge in \(E_F \).

Reduction Rule 1. Let \(v \in V \) be a vertex and let \(Q \) be the set of neighbors of \(v \) with degree \(1 \) in \(G \). We construct a new instance \(I' = (V', \mathcal{F}', \ell) \) by setting: \(1. \) \(V' := V \setminus Q \); \(2. \) \(\Gamma_{F'}(v) := \{\emptyset\} \cup \{(P \setminus Q) \mid P \in \Gamma_{F}(v)\} \); \(3. \) for all \(w \in V' \setminus \{v\}, f'_{uw} = f_{uw} \); \(4. \) for every \(P' \in \Gamma_{F'}(v) \):

\[
f'_{v}(P') := \max_{P,P' \cap Q = P'} \left(f_{v}(P) + \sum_{v_{u} \in P \cap Q} f_{vu}(\emptyset) + \sum_{v_{u} \in Q \setminus P} \max(f_{vu}(\emptyset), f_{vu}(v)) \right).
\]

Lemma 4. Reduction Rule 7 is safe.
Proof. For the forward direction, assume that \(I' \) admits a solution \(D' \), and let \(\lambda \) be the score \(D' \) achieves on \(v \). By the construction of \(I' \), there must be a parent set \(Z \in \Gamma_f(v) \) such that \(Z \cap V' = P_{D'}(v) \) (i.e., \(Z \) agrees with \(v \)'s parents in \(D' \)) and \(\lambda \) is the sum of the following scores:

1. \(f_{c}(Z) \), the maximum achievable score for each vertex in \(Q \setminus Z \), and
2. the score of \(\{ \emptyset \} \) for each vertex in \(Z \cap Q \). Let \(D \) be obtained from \(D' \) by adding the following arcs: \(zv \) for each \(z \in Z \), and \(vy \) for each \(q \in Q \setminus Z \) such that \(q \) achieves its maximum score with \(v \) as its parent. By construction, \(\lambda = \sum_{w \in \{ v \} \cup Q} f_w(P_{D}(w)) \). Since the scores of \(D \) and \(D' \) coincide on all vertices outside of \(\{ v \} \cup Q \) and \(D \), we conclude that \(\text{score}(D) = \text{score}(D') \), and hence \(I \) is a Yes-instance.

For the converse direction, assume that \(I \) admits a solution \(D \). Let \(D' = D - Q \). By the construction of \(f_{c}^{*} \), it follows that \(f_{c}^{*}(P_{D'}(v)) \) is greater or equal to the score \(D \) achieves on \(\{ v \} \cup Q \). Thus, \(D' \) is a solution to \(I' \), and we conclude that Reduction Rule \(\square \) is safe.

Observe that the superstructure graph \(G' \) obtained after applying one step of Reduction Rule \(\square \) is simply \(G - Q \); after its exhaustive application we obtain an instance \(I \) such that all the leaves of the tree \(T \) are endpoints of \(E_F \). Our next step is to get rid of long paths in \(G \) whose internal vertices have degree 2. We note that this step is more complicated than in typical kernelization results using feedback edge set as the parameter, since a directed path \(Q \) in \(G \) can serve multiple “roles” in a hypothetical solution \(D \) and our reduction gadget needs to account for all of these. Intuitively, \(Q \) may or may not appear as a directed path in \(D \) (which impacts what other arcs can be used in \(D \) due to acyclicity), and in addition the total score achieved by \(D \) on the internal vertices of \(Q \) needs to be preserved while taking into account whether the endpoints of \(Q \) have a neighbor in the path or not. Because of this (and unlike in many other kernelization results of this kind \(\{ \square \} \)), we will not be replacing \(Q \) merely by a shorter path, but by a more involved gadget.

Reduction Rule 2. Let \(a, b_1, \ldots, b_m, c \) be a path in \(G \) such that for each \(i \in [m] \), \(b_i \) has degree precisely 2. For each \(B \subseteq \{ a, c \} \), let \(\ell_{\max}(B) \) be the maximum sum of scores that can be achieved by \(b_1, \ldots, b_m \) under the condition that \(b_1 \) (and analogously \(b_m \)) takes a \((c) \) into its parent set if and only if \(a \in B \) (\(c \in B \)). In other words, \(\ell_{\max}(B) = \max_{D_B \subseteq B} \sum_{b_i \in [m]} f_B(P_{D_B}(b_i)) \) where \(D_B \) is a DAG on \(\{ b_1, \ldots, b_m \} \cup B \) such that \(B \) does not contain any vertices of out-degree 0 in \(D_B \). Moreover, let \(\ell_{\text{noPath}}(a) \) (and analogously \(\ell_{\text{noPath}}(c) \)) be the maximum score that can be achieved on the vertices \(b_1, \ldots, b_m \) by a DAG on \(a, b_1, \ldots, b_m, c \) with the following properties: \(a (c) \) has out-degree 1, \(c (a) \) has out-degree 0, and there is no directed path from \(a \) to \(b_m \) (from \(c \) to \(b_1 \)).

We construct a new instance \(I' = (V', F', \ell) \) as follows:

- \(V' := V \cup \{ b \} \setminus \{ b_2, \ldots, b_{m-1} \} \);
- \(\Gamma_{F'}(b) = \{ B \cup \{ b_1, b_m \} | B \subseteq \{ a, c \} \} \) with scores \(f_{c}'(B \cup \{ b_1, b_m \}) := \ell_{\max}(B) \);
- The scores for \(a \) and \(c \) are obtained from \(F \) by simply adding \(b \) to any parent set containing either \(b_1 \) or \(b_m \); formally:
 - \(\Gamma_{F'}(a) \) is a union of \(\{ P \in \Gamma_f(a) | b_1 \notin P \} \), where \(f_a'(P) := f_a(P) \) and \(\{ P \cup \{ b \} | b_1 \in P, P \in \Gamma_f(a) \} \), where \(f_a'(P \cup \{ b \}) := f_a(P) \);
 - \(\Gamma_{F'}(c) \) is a union of \(\{ P \in \Gamma_f(c) | b_m \notin P \} \), where \(f_c'(P) := f_c(P) \), and \(\{ P \cup \{ b \} | b_m \in P, P \in \Gamma_f(c) \} \), where \(f_c'(P \cup \{ b \}) := f_c(P) \).
- \(\Gamma_{F'}(b_1) \) contains only \(\{ a, b_1, b_m \} \) with score \(\ell_{\text{noPath}}(a) \);
- \(\Gamma_{F'}(b_m) \) contains only \(\{ b, b_1, b_m \} \) with score \(\ell_{\text{noPath}}(c) \);
- for all \(w \in V' \setminus \{ a, b_1, b_m, c \} \), \(f_w' = f_w \).

An Illustration of Reduction Rule \(\square \) is provided in Figure \(\square \). The rule can be applied in linear time, since the 6 values of \(\ell_{\text{noPath}} \) and \(\ell_{\max} \) can be computed in linear time by a simple dynamic programming subroutine that proceeds along the path \(a, b_1, \ldots, b_m, c \) (alternatively, one may instead invoke the fact that paths have treewidth 1 \(\{ \square \} \).

Lemma 5. Reduction Rule \(\square \) is safe.

Proof. Note that the superstructure graph of reduced instance is obtained from \(G_T \) by contracting \(b_2, b_{m-1}, b \) and connecting it by edges to \(a, c, b_1, b_m \). We will show that a score of at least \(\ell \)
can be achieved in the original instance I if and only if a score of at least ℓ can be achieved in the reduced instance I'. Assume that D is a DAG that achieves a score of ℓ in I. We will construct a DAG D', called the reduct of D, with $f'(D') \geq \ell$. To this end, we first modify D by removing the vertices $b_2 \ldots b_{m-1}$ and adding b (let us denote the DAG obtained at this point D^*). Further modifications of D^* depend only on $D'[a, b_1 \ldots b_m, c]$, and we distinguish the 6 cases listed below (see also Figure 2):

- **case 1:** D contains both arcs ab_1 and cb_m. We add to D^* arcs from a, c, b_1, b_m to b, denote resulting graph by D'. As D' is obtained from DAG by making b a sink, it is a DAG as well. Parent set of b in D' is $\{a, c, b_1, b_m\}$, so its score is $\ell_{\text{max}}(a, c) \geq \sum_{i=1}^m f_b(P_D(b_i))$, which means that it achieves the highest scores all of b_1's can achieve in D. The remaining vertices in $V(D') \setminus \{b_1, b_m, b\}$ have the same scores as in D, so $f'(D') \geq f(D) = \ell$.

- **case 2:** D contains none of the arcs ab_1 and cb_m. To keep the scores of a and c the same as in D, we add to D^* the arc ba if D contains b_1a, add arc bc if D contains $b_m c$. Furthermore, we add arcs $b_1 b$ and $b_m b$ and denote resulting graph D'. As D' is obtained from D by making b a source and then adding sources b_1 and b_m, it is a DAG as well. The parent set of b in D' is $\{b_1, b_m\}$, so its score is $\ell_{\text{max}}(\emptyset) \geq \sum_{i=1}^m f_b(P_D(b_i))$. Rest of vertices in $V(D') \setminus \{b_1, b_m, b\}$ have the same scores as in D, so $f'(D') \geq f(D) = \ell$.

- **case 3:** D doesn’t contain arc ab_1, but contains cb_m and all the arcs $b_{i+1}b_i$, $i \in [m-1]$. We add to D^* arcs $cb, b_1 b$ and b_mb. We also add ba if D contains b_1a, to preserve the score of a. Denote resulting graph by D'. D' can be considered as D where long directed path $c \rightarrow b_m \rightarrow \ldots \rightarrow b_1$ was replaced by $c \rightarrow b$ and then sources b_1 and b_m were added, so it is a DAG. Arguments for scores are similar to cases 1 and 2.

- **case 4:** D doesn’t contain arc cb_m, but contains ab_1 and all the arcs $b_i b_{i+1}$, $i \in [m-1]$. This case is symmetric to case 3.

- **case 5:** D contains the arc ab_1 but does not contain the arc cb_m and at least one of the arcs $b_i b_{i+1}$, $i \in [m-1]$ is also missing (i.e., there is no directed path from a to b_m). We add to D^* arcs bb_1 and b_mb_1. If $b_mc \in A(D)$, add also bc. Denote the resulting graph D'. As D' is obtained from D^* by making b_1 a sink and b a source, it is a DAG. b_1 has parent set $\{a, b, b_m\}$ in D', so its score is $\ell_{\text{noPath}}(a) \geq \sum_{i=1}^m f_b(P_D(b_i))$. Rest of vertices in $V(D') \setminus \{b_1, b_m, b\}$ have the same scores as in D, so $f'(D') \geq f(D) = \ell$.

- **case 6:** D contains the arc cb_m but does not contain the arc ab_1 and at least one of the arcs $b_i b_{i+1}$, $i \in [m-1]$ is also missing. This case is symmetric to case 5.
The considered cases exhaustively partition all possible configurations of $D[a, b_1 \ldots b_m, c]$, so we always can construct D' with a score at least ℓ. For the converse direction, note that the DAGs constructed in cases 1-6 cover all optimal configurations on $\{a, b_1, b, b_m, c\}$: if there is a DAG D'' in I' with a score of ℓ', we can always reverse the construction to obtain a DAG D' with score at least ℓ' such that $D'[a, b_1, b, b_m, c]$ has one of the forms depicted at the bottom line of the figure. The claim for the reverse direction follows from the fact that every such D' is a reduct of some DAG D of the original instance with the same score.

We are now ready to prove the desired result.

Proof of Theorem 3. We begin by exhaustively applying Reduction Rule 2 on an instance whose superstructure graph has a feedback edge set of size k, which results in an instance with the same feedback edge set but whose spanning tree T has at most $2k$ leaves. It follows that there are at most $2k$ vertices with a degree greater than 2 in T.

Let us now “mark” all the vertices that either are endpoints of the edges in E_F or have a degree greater then 2 in T; the total number of marked vertices is upper-bounded by $4k$. We now proceed to the exhaustive application of Reduction Rule 2 which will only be triggered for sufficiently long paths in T that connect two marked vertices but contain no marked vertices on its internal vertices; there are at most $4k$ such paths due to the tree structure of T. Reduction Rule 2 will replace each such path with a set of 3 vertices, and therefore after its exhaustive application we obtain an equivalent instance with at most $4k + 4k \cdot 3 = 16k$ vertices, as desired. Correctness follows from the safeness of Reduction Rules 1 and the runtime bound follows by observing that the total number of applications of each rule as well as the runtime of each rule are upper-bounded by a linear function of the input size.

3.2 Fixed-Parameter Tractability of BNSL \(\# \# 0 \) using the Local Feedback Edge Number

Our aim here will be to lift the fixed-parameter tractability of BNSL \(\# \# 0 \) established by Theorem 3 by relaxing the parameterization to \(\lfen \). In particular, we will prove:

Theorem 6. BNSL \(\# \# 0 \) is fixed-parameter tractable when parameterized by the local feedback edge number of the superstructure.

Since \(\fen \) is a more restrictive parameter than \(\lfen \), this results in a strictly larger class of instances being identified as tractable. However, the means we will use to establish Theorem 6 will be fundamentally different: we will not use a polynomial-time data reduction algorithm as the one provided in Theorem 3, but instead apply a dynamic programming approach. Since the kernels constructed by Theorem 3 contain only polynomially-many variables w.r.t. \(\fen \), that result is incomparable to Theorem 6.

In fact one can use standard techniques to prove that, under well-established complexity assumptions, a data reduction result such as the one provided in Theorem 3 cannot exist for \(\fen \). The intuitive reason for this is that \(\fen \) is a “local” parameter that does not increase by, e.g., performing a disjoint union of two distinct instances (the same property is shared by many other well-known parameters such as treewidth, pathwidth, treedepth, clique-width, and tree-cut width). We provide a formal proof of this claim at the end of Subsection 4.

As our first step towards proving Theorem 6, we provide general conditions for when the union of two DAGs is a DAG as well. Let $D = (V, A)$ be a directed graph and $V' \subseteq V$. Denote by $\con(V', D)$ the binary relation on $V' \times V'$ which specifies whether vertices from V' are connected by a path in D: $\con(V', D) = \{(v_1, v_2) \in V' \times V' \mid \exists$ directed path from v_1 to v_2 in $D\}$. Similarly to arcs, we will use $v_1, v_2 \in V$ as shorthand for (v_1, v_2); we will also use \trcl to denote the transitive closure.

Lemma 7. Let D_1, D_2 be directed graphs with common vertices $V_{\text{com}} = V(D_1) \cap V(D_2)$, $V_{\text{com}} \subseteq V_1 \subseteq V(D_1)$, $V_{\text{com}} \subseteq V_2 \subseteq V(D_2)$. Then:

- (i) $\con(V_1 \cup V_2, D_1 \cup D_2) = \trcl(\con(V_1, D_1) \cup \con(V_2, D_2))$;
- (ii) If D_1, D_2 are DAGs and $\con(V_1 \cup V_2, D_1 \cup D_2)$ is irreflexive, then $D_1 \cup D_2$ is a DAG.

Proof. (i) Denote $R_i := \con(V_i, D_i), i = 1, 2$. Obviously $\trcl(R_1 \cup R_2)$ is a subset of $\con(V_1 \cup V_2, D_1 \cup D_2)$. Assume that for some $x, y \in V_1 \cup V_2$ there exists a directed path P from x to y in $D_1 \cup D_2$. We will show (by induction on the length l of shortest P) that $xy \in \trcl(R_1 \cup R_2)$.
Towards proving Theorem 6, assume that we are given an instance \(I = (V,F,t) \) of BNSL\(^{\neq 0} \) with connected superstructure graph \(G = (V,E) \). Let \(T \) be a fixed rooted spanning tree of \(G \) such that \(\text{Ifen}(G,T) = \text{Ifen}(G) = k \), denote the root by \(v \). For \(v \in V(T) \), let \(T_v \) be the subtree of \(T \) rooted at \(v \), let \(V_v = V(T_v) \), and let \(V_r = N_G(V_v) \) \(v \). We define the boundary \(\delta(v) \) of \(v \) to be the set of endpoints of all edges in \(G \) with precisely one endpoint in \(V_v \) (observe that the boundary can never have a size of 1). \(v \) is called closed if \(|\delta(v)| \leq 2 \) and open otherwise. We begin by establishing some basic properties of the local feedback edge set.

Observation 8. Let \(v \) be a vertex of \(T \). Then:

1. For every closed child \(w \) of \(v \) in \(T \), it holds that \(\delta(w) = \{v, w\} \) and \(vw \) is the only edge between \(V_w \) and \(V \setminus V_w \) in \(G \).
2. \(|\delta(v)| \leq 2k + 2 \).
3. Let \(\{v_i|i \in [t]\} \) be the set of all open children of \(v \) in \(T \). Then \(t \leq 2k \) and \(\delta(v) \subseteq \bigcup_{i=1}^{t} \delta(v_i) \cup \{v\} \cup N_G(v) \).

Proof. The first claim follows by the connectivity assertion on \(G \) and the definition of boundary.

For the second claim, clearly \(\delta(r) = \emptyset \). Let \(v \neq r \) have the parent \(u \), and consider an arbitrary \(w \in \delta(v) \setminus \{u,v\} \). Then there is an edge \(uw' \in E(G) \) with precisely one endpoint in \(V_v \) and \(uw' \neq uv \). Hence \(uw' \not\in E(T) \) and the path between \(w \) and \(w' \) in \(T \) contains \(v \), and this implies \(uw' \in E(T) \delta(v) \) by definition. Consequently, \(w \in V_T(v) \). For the claimed bound we note that

\[
|V_T(v)| \leq 2|E_T(v)| \leq 2k.
\]

For the third claim, let \(w = v_i \) for some \(i \in [t] \). As \(w \) is open, there exists an edge \(e \neq uw \) between \(V_w \) and \(V \setminus V_w \) in \(G \). By definition of local feedback edge set, \(e \in E_T(v) \). Let \(x_v \) be the endpoint of \(e \) that belongs to \(V_v \), then \(x_v \in V_T(v) \) and \(x_v \notin V_v \). For any open child \(w' \neq w \) of \(v \). But

\[
|V_T(v)| \leq 2k \text{, which yields the bound on number } t \text{ of open children.}
\]

For the boundary inclusion, consider any edge \(e \) in \(G \) with precisely one endpoint \(x_v \) in \(V_v \). Note that \(x_v \) can not belong to \(V_w \) for any closed child \(w \) of \(v \). If \(x_v \in V_{v_i} \) for some \(i \in [t] \), then endpoints of \(c \) belong to \(\delta(v_i) \). Otherwise \(x_v \neq v \) and therefore the second endpoint of \(c \) is in \(N_G(v) \).

With Observation 8 in hand, we can proceed to a definition of the records used in our dynamic program. Intuitively, these records will be computed in a leaf-to-root fashion and will store at each vertex \(v \) information about the best score that can be achieved by a partial solution that intersects the subtree rooted at \(v \).

Let \(R \) be a binary relation on \(\delta(v) \) and \(s \) an integer. For \(s \in \mathbb{Z} \), we say that \((R : s) \) is a record for a vertex \(v \) if and only if there exists a DAG \(D \) on \(V_v \) such that (1) \(w \in V_r \) for each arc \(uw \in A(D) \), (2) \(R = \cos(\delta(v),D) \) and (3) \(\sum_{w \in V_v} f_r(P_D(u)) = s \). The records \((R,s) \) where \(s \) is maximal for fixed \(R \) are called valid. Denote the set of all valid records for \(v \) by \(\mathcal{R}(v) \), and note that \(|\mathcal{R}(v)| \leq 2^{O(k^2)} \).

Observe that if \(v_i \) is a closed child of \(v \), then by Observation 8, \(\mathcal{R}(v_i) \) consists of precisely two valid records: one for \(R = \emptyset \) and one for \(R = \{v_i\} \). Moreover, the root \(r \) of \(T \) has only a single valid record \((\emptyset : s_T) \), where \(s_T \) is the maximum score that can be achieved by a solution in \(\mathcal{I} \). The following lemma lies at the heart of our result and shows how we can compute our records in a leaf-to-root fashion along \(T \).
Lemma 9. Let \(v \in V(G) \) have \(m \) children in \(T \) where \(m > 0 \), and assume we have computed \(\mathcal{R}(v_i) \) for each child \(v_i \) of \(v \). Then \(\mathcal{R}(v) \) can be computed in time at most \(m \cdot |\Gamma_f(v)| \cdot 2^{O(k^3)} \).

Proof. Without loss of generality, let the open children of \(v \in V(G) \) be \(v_1, \ldots, v_t \) and let the remaining (i.e., closed) children of \(v \) be \(v_{t+1}, \ldots, v_{m} \); recall that by Point 3. of Observation 8, \(t \leq 2k \). For each closed child \(v_j, j \in [m] \setminus [t] \), let \(s_j^\emptyset \) be the second component of the valid record for \(\emptyset \in \mathcal{R}(v_j) \), and let \(s_j^\times \) be the second component of the valid record for the single non-empty relation in \(\mathcal{R}(v_j) \). Consider the following procedure \(A \).

First, \(A \) branches over all choices of \(P \in \Gamma_f(v) \) and all choices of \((R_i, s_i) \in \mathcal{R}(v_i) \) for each individual open child \(v_i \) of \(v \). Let \(R_0 = \{ pv \mid p \in P \} \) and let \(R^* = \bigcup_{j \in [t]} R_j \). If \(\text{trcl}(R^*) \) is not irreflexive, we discard this branch; otherwise, we proceed as follows. Let \(R_{\text{new}} \) be the subset of \(R^* \) containing all arcs \(uv \) such that \(w \in V_o \). Moreover, let \(s_{\text{new}} = f_v(P) + \left(\sum_{i \in [t]} s_i \right) + (\sum_{i \in [m] \setminus [t]} s_j^\emptyset) + (\sum_{i \in [m] \setminus [t]} s_j^\times) \).

The algorithm \(A \) gradually constructs a set \(\mathcal{R}^*(v) \) as follows. At the beginning, \(\mathcal{R}^*(v) = \emptyset \). For each newly obtained tuple \((R_{\text{new}}, s_{\text{new}}) \), \(A \) checks whether \(\mathcal{R}^*(v) \) already contains a tuple with \(R_{\text{new}} \) as its first element; if not, we add the new tuple to \(\mathcal{R}^*(v) \). If there already exists such a tuple \((R_{\text{new}}, s_{\text{add}}) \in \mathcal{R}^*(v) \), we replace it with \((R_{\text{new}}, \max(s_{\text{add}}, s_{\text{new}})) \).

For the running time, recall that in order to construct \(\mathcal{R}^*(v) \) the algorithm branched over \(|\Gamma_f(v)| \)-many possible parent sets of \(v \) and over the choice of at most \(2k \)-many binary relations \(R_i \) on the boundaries of open children. According to Observation 8.2, there are at most \(3^{2k+2}k^2 \) options for every such relation, so we have at most \(O((3^{2k+2}k^2)^{2k} \cdot |\Gamma_f(v)|) \leq 2^{O(k^3)} \cdot |\Gamma_f(v)|\) branches. In every branch we compute \(\text{trcl}(R^*) \) in time \(k^{O(1)} \) and then compute the value of \(s_{\text{new}} \) using the equation provided above before updating \(\mathcal{R}^*(v) \), which takes time at most \(O(m) \).

Finally, to establish correctness it suffices to prove following claim:

Claim 1. \((R : s) \) is a record for \(v \) if and only if there exist \(P \in \Gamma_f(v) \) and records \((R_i : s_i) \) for \(v_i, i \in [m] \), such that:

\[\text{trcl}(\bigcup_{i=0}^t R_i) \text{ is irreflexive;} \]
\[R_i = \emptyset \text{ for any closed child } v_i \in P; \]
\[\sum_{i=1}^m s_i + f_v(P) = s; \]
\[R = (\text{trcl}(\bigcup_{i=0}^t R_i)) \delta(v) \times \delta(v). \]

Moreover, if \((R : s) \in \mathcal{R}(v) \) then in addition:

\[(R_i : s_i) \in \mathcal{R}(v_i), i \in [t]; \]
\[\text{for every closed child } v_i \notin P, s_i = \max(s_i^\emptyset, s_i^\times). \]

Proof of the Claim. (a) \((\Rightarrow) \) Denote \(V_i = V_{v_i} \) and \(\bar{V}_i = \bar{V}_{v_i}, i \in [m] \). For every \(i \in [m] \) there exists DAG \(D_i \) on \(V_i \) such that all its arcs finish in \(V_i, R_i = \text{Con}(\delta(v_i), D_i) \) and \(\sum_{u \in V_i} f_u(P_D(u)) = s_i \). Denote by \(D_0 \) DAG on \(V_0 = v \cup N_G(v) \) with arc set \(R_0 \). We will construct the witness \(D \) of \((R, s) \) by gluing together all \(D_i, i \in [m] \).

We start from \(D_0 \) and DAGs of open children. Note that \(\text{Con}(V_0, D_0) = R_0 \) and \(\text{Con}(\delta(v_i), D_i) = R_i \) for \(i \in [t] \). Inductive application of Lemma 7 to DAGs \(D_i, i \in [t] \), yields \(\text{Con}(\bigcup_{i=0}^t \delta(v_i) \cup V_0, D^*) = \text{trcl}(\bigcup_{i=0}^t R_i) \). In particular, as \(\delta(v) \subseteq \bigcup_{i=1}^t \delta(v_i) \cup V_0 \) by Observation 8.3, we have that \(\text{Con}(\delta(v), D^*) = (\text{trcl}(\bigcup_{i=0}^t R_i)) \delta(v) \times \delta(v) = R \). As \(\text{trcl}(\bigcup_{i=0}^t R_i) \) is irreflexive, \(D^* = \bigcup_{i=0}^t D_i \) is DAG by Lemma 7.

Now we add to \(D^* \) DAGs for closed children and finally obtain \(D = \bigcup_{i=0}^m D_i \cup D^* \). For every closed child \(v_i, D_i \) is by Observation 8.1 the union of \(v \) and \(D_i \setminus v \), plus at most one of arcs \(v v_i, v_i v \) between them (recall \(R_i = \emptyset \) for any closed child \(v_i \in P \)). Note that \(D_i \setminus v \) can share only
we now ready to prove the main result of this subsection.

Proof of Theorem 6. We provide an algorithm that solves BNSL $\#P$ in time $2^{O(k^3)} \cdot n^3$, where $n = |I|$, assuming that a spanning tree T of G such that $\text{fen}(G, T) = k$ is provided as part of the input. Once that is done, the theorem will follow from Theorem 2.

The algorithm computes $\mathcal{R}(v)$ for every node v in T, moving from leaves to the root:

- For a leaf v, compute $\mathcal{R}^+(v) := \{(R_P : f_v(P))| P \in \Gamma_f(v), R_P = \{uv|u \in P\}\}$. This can be done by simply looping over $\Gamma_f(v)$ in time $O(n)$. Note that $\mathcal{R}^+(v)$ is the set of all records of v, so we can correctly set $\mathcal{R}(v) := \{(R : s) \in \mathcal{R}^+(v)|$ there is no $(R : s') \in \mathcal{R}^+(v)$ with $s' > s\}$.
- Let $v \in V(G)$ have at least one child in T, and assume we have computed $\mathcal{R}(v_i)$ for each child v_i of v. Then we invoke Lemma 9 to compute $\mathcal{R}(v)$ in time at most $m \cdot |\Gamma_f(v)| \cdot 2^{O(k^3)} \leq 2^{O(k^3)} \cdot n^2$. □

3.3 Lower Bounds for BNSL $\#P$

Since fen lies between fen and treecut width in the parameter hierarchy (see Proposition 1) and BNSL $\#P$ is FPT when parameterized by fen, the next step would be to ask whether this tractability result can be lifted to treecut width. Below, we answer this question negatively.

Theorem 10. BNSL $\#P$ is $\mathcal{W}[1]$-hard when parameterized by the treecut width of the superstructure graph.
In fact, we show an even stronger result: BNSL is \(W[1] \)-hard when parameterized by the vertex cover number of the superstructure even when all vertices outside of the vertex cover are required to have degree at most 2. We remark that while BNSL was already shown to be \(W[1] \)-hard when parameterized by the vertex cover number \([36]\), in that reduction the degree of the vertices outside of the vertex cover is not bounded by a constant and, in particular, the graphs obtained in that reduction have unbounded treecut width.

Proof of Theorem 10 We reduce from the following well-known \(W[1] \)-hard problem \([12,8]\):

REGULAR MULTICOLORED CLIQUE (RMC)

Input: A \(k \)-partite graph \(G = (V_1 \cup \ldots \cup V_k, E) \) such that \(|N_G(v)| = m \) for every \(v \in V \)

Parameter: The integer \(k \)

Question: Are there nodes \(v^i \) that form a \(k \)-colored clique in \(G \), i.e. \(v^i \in V_i \) and \(v^i v^j \in E \) for all \(i, j \in [k], i \neq j \)?

We say that vertices in \(V_i \) have color \(i \). Let \(G = (V_1 \cup \ldots \cup V_k, E) \) be an instance of RMC. We will construct an instance \((V, F, \ell)\) of BNSL such that \(I \) is a \(\text{YES} \)-instance if and only if \(G \) is a \(\text{YES} \)-instance of RMC. \(V \) consists of one vertex \(v_i \) for each color \(i \in [k] \) and one vertex \(v_e \) for every edge \(e \in E \). For each edge \(e \in E \) that connects a vertex of color \(i \) with a vertex of color \(j \), the constructed vertex \(v_e \) will have precisely one element in its score function that achieves a non-zero score, in particular: \(f_{v_e}(\{v_i, v_j\}) = 1 \).

Proof of Theorem 10 We reduce from the following well-known \(W[1] \)-hard problem \([12,8]\):

Next, for each \(i \in [k] \), we define the scores for \(v_i \) as follows. For every \(v \in V_i \), let \(E_v \) be the set of all edges incident to \(v \) in \(G \), and let \(P^i_v = \{e \mid e \in E_v\} \). We now set \(f_{v_i}(P^i_v) = m + 1 \) for each such \(v \); all other parent sets will receive a score of 0. Note that \(\{v_i \mid i \in [k]\} \) forms a vertex cover of the superstructure graph and that all vertices outside of this vertex cover have degree at most 2, as desired.

We will show that \(G \) has a \(k \)-colored clique if and only if there is a Bayesian network \(D \) with score at least \(\ell = |E| + k + \binom{k}{2}. \) (In fact, it will later become apparent that the score can never exceed \(\ell \).)

We assume first that \(G \) has a \(k \)-colored clique on \(v^i, i \in [k] \), consisting of a set \(E_X \) of \(\binom{k}{2} \) edges.

Consider the digraph \(D \) obtained as follows. For each vertex \(v_i, i \in [k] \), and each vertex \(v_e \) where \(e \in E \), \(D \) contains the arc \(v_e v_i \) if \(v_e \) is incident to \(v^i \) and otherwise \(D \) contains the arc \(v_i v_e \). This completes the construction of \(D \). Now notice that the construction guarantees that each \(v_i \) receives the parent set \(P^i_v \) and hence contributes a score of \(m + 1 \). Moreover, for every edge \(e \) not incident to a vertex in the clique, the vertex \(v_e \) contributes a score of 1; note that the number of such edges is \(|E| - km + \binom{k}{2}; \) indeed, every \(v_i \) is incident to \(m \) edges but since \(v^i, i \in [k] \), was a clique we are guaranteed to double-count precisely \(\binom{k}{2} \) many edges. Hence the total score is \(k(m + 1) + |E| - km + \binom{k}{2} = |E| + k + \binom{k}{2}, \) as desired.

Assume that \(I = (V, F, \ell) \) is a \(\text{YES} \)-instance and let \(s_{\text{opt}} \geq \ell = |E| + k + \binom{k}{2} \) be the maximum score that can be achieved by a solution to \(I \); let \(D \) be a dag witnessing such a score. Then all \(v_i, i \in [k], \) must receive a score of \(m + 1 \) in \(D \). Indeed, assume that some \(v_i \) receives a score of 0 and let \(P^i = \) any parent set of \(v_i \) with a score \(m \). Modify \(D \) by orienting edges \(v_i v_e \) for every \(v_e \in P \) inside \(v_i \). Now local score of \(v_i \) is \(m + 1 \), total score of the rest of vertices decreased by at most \(m \) (maximal number of \(v_e \) that had local score 1 in \(D \) and lost it after the modification). So the modified DAG has a score of at least \(s_{\text{opt}} + 1 \), which contradicts the optimality of \(s_{\text{opt}} \). Therefore all \(v_i, i \in [k], \) get score \(m + 1 \) in \(D \).

Let \(P_i \) be parent set of \(v_i \) in \(D \), then \(|P_i| = m \), \(P_i = P_i^v \) for some \(v^i \in V_i \). For every \(v_e \in P_i \), the local score of \(v_e \) in \(D \) is 0. Denote by \(E_{\text{unatt}} \) the set of all \(v_e \) that have a score of 0 in \(D \). Every \(v_e \) belongs to at most 2 different \(P_i \) and \(P_i \cap P_j \leq 1 \) for every \(i \neq j \), so \(|E_{\text{unatt}}| \geq km - \binom{k}{2} \). If \(|E_{\text{unatt}}| > km - \binom{k}{2} \), sum of local scores of \(v_e \) in \(D \) would smaller then \(|E| - km + \binom{k}{2}, \) which results in \(s_{\text{opt}} < |E| + k + \binom{k}{2}. \) Therefore \(|E_{\text{unatt}}| = km - \binom{k}{2}. \) But this means that \(P_i \cap P_j = \emptyset \) for any \(i \neq j \), i.e. \(v^i, i \in [k] \) form a \(k \)-colored clique in \(G \). In particular \(s_{\text{opt}} = \ell. \)

For our second result, we note that the construction in the proof of Theorem 10 immediately implies that BNSL is \(\text{NP} \)-hard even under the following two conditions: (1) \(\ell + \sum_{v \in \mathcal{V}} |\Gamma_f(v)| \in O(|\mathcal{V}|^2) \)
(i.e., the size of the parent set encoding is quadratic in the number of vertices), and (2) the instances are constructed in a way which makes it impossible to achieve a score higher than \(\ell \). Using this, as a fairly standard application of AND-cross-compositions \cite{BNSL} we can exclude the existence of an efficient data reduction algorithm for BNSL\(^{\neq 0} \) parameterized by \(I \):

\textbf{Theorem 11.} Unless \(\text{NP} \subseteq \text{co-NP}/\text{poly} \), there is no polynomial-time algorithm which takes as input an instance \(I \) of BNSL\(^{\neq 0} \) whose superstructure has \(I \) and outputs an equivalent instance \(I’ = (V’, F’, \ell’) \) of BNSL\(^{\neq 0} \) such that \(|V’| \in \Omega(1) \). In particular, BNSL\(^{\neq 0} \) does not admit a polynomial kernel when parameterized by \(I \).

\textit{Proof Sketch.} We describe an AND-cross-composition for the problem while closely following the terminology and intuition introduced in Section 15 in the book \cite{BNSL}. Let the input consist of instances \(I_1, \ldots, I_t \) of (unparameterized) instances of BNSL\(^{\neq 0} \) which satisfy conditions (1) and (2) mentioned above, and furthermore all have the same size and same target value of \(\ell_1 \) (which is ensured through the use of the polynomial equivalence relation \(R \) \cite{BNSL} Definition 15.7)). The instance \(I \) produced on the output is merely the disjoint union of instances \(I_1, \ldots, I_t \) where we set \(\ell := t \cdot \ell_1 \), and we parameterize \(I \) by \(I \).

Observe now that condition (a) in Definition 15.7 \cite{BNSL} is satisfied by the fact that the local feedback edge number of \(I \) is upper-bounded by the number of edges in a connected component of \(I \). Moreover, the AND- variant of condition (b) in that same definition (see Subsection 15.1.3 \cite{BNSL}) is satisfied as well: since none of the original instances can have a score greater than \(\ell_1 \), \(I \) achieves a score of \(\ell_1 \cdot t \) if and only if each of the original instances was a \(\text{Yes} \)-instance.

This completes the construction of an AND-cross-composition for BNSL\(^{\neq 0} \) parameterized by \(I \), and the claim follows by Theorem 15.12 \cite{BNSL}.

\[\square \]

\section{Additive Scores and Treewidth}

While the previous section focused on the complexity of BNSL when the non-zero representation was used (i.e., BNSL\(^{\neq 0} \)), here we turn our attention to the complexity of the problem with respect to the additive representation. Recall from Subsection 2 that there are two variants of interest for this representation: BNSL\(_+ \) and BNSL\(_\leq \). We begin by showing that, unsurprisingly, both of these are \(\text{NP} \)-hard.

\textbf{Theorem 12.} BNSL\(_+ \) is \(\text{NP} \)-hard. Moreover, BNSL\(_\leq \) is \(\text{NP} \)-hard for every \(q \geq 3 \).

\textit{Proof.} We provide a direct reduction from the following \(\text{NP} \)-hard problem \cite{BNSL} \cite{BNSL}:

\begin{center}
\textbf{MINIMUM FEEDBACK ARC SET ON BOUNDED-DEGREE DIGRAPHS (MFAS)}
\end{center}

Input: Digraph \(D = (V, A) \) whose skeleton has degree at most 3, integer \(m \leq |A| \).

Question: Is there a subset \(A’ \subseteq A \) where \(|A’| \leq m \) such that \(D - A’ \) is a DAG?

Let \((D, m) \) be an instance of MFAS. We construct an instance \(I \) of BNSL\(_\leq \) as follows:

\begin{itemize}
\item \(V = V(D) \),
\item \(f_y(x) = 1 \) for every \(xy \in A(D) \),
\item \(f_y(x) = 0 \) for every \(xy \in A(D) \backslash A(D) \),
\item \(\ell = |A| - m \), and
\item \(q = 3 \).
\end{itemize}

Assume that \((D, m) \) is a \(\text{Yes} \)-instance and \(A’ \) is any feedback arc set of size \(m \). Let \(D’ \) be the DAG obtained from \(D \) after deleting arcs in \(A’ \). Then \(\text{score}(D’) \) is equal to the number of arcs in \(D’ \), which is \(|A| - m \), so \(I \) is a \(\text{Yes} \)-instance. On the other hand, if \(I \) is a \(\text{Yes} \)-instance of BNSL\(_+ \), pick any DAG \(D’ \) with \(\text{score}(D’) \geq \ell = |A| - m \). Without loss of generality we may assume that \(A(D’) \subseteq A \), as the remaining arcs have a score of zero and may hence be removed. All the arcs in \(A \) have a score 1 and hence the DAG \(D’ \) contains at least \(|A| - m \) arcs, i.e., it can be obtained from \(D \).
While the use of the additive representation did not affect the classical complexity of BNSL, it makes a significant difference in terms of parameterized complexity. Indeed, in contrast to BNSL\(^\neq 0 \):

Theorem 13. BNSL\(^+ \) is FPT when parameterized by the treewidth of the superstructure. Moreover, BNSL\(^- \leq \)FPT when parameterized by \(q \) plus the treewidth of the superstructure.

Proof. We begin by proving the latter statement, and will then explain how that result can be straightforwardly adapted to obtain the former. As our initial step, we apply Bodlaender’s algorithm \([4, 27]\) to compute a nice tree-decomposition \((T, \chi)\) of \(G_T \) of width \(k = tw(G_T) \). In this proof we use \(T \) to denote the set of nodes of \(T \) and \(r \in T \) be the root of \(T \). Given a node \(t \in T \), let \(\chi_t \) be the set of all vertices occurring in bags of the rooted subtree \(T_t \), i.e., \(\chi_t = \{ u \mid \exists t' \in T_t \text{ such that } u \in \chi(t') \} \).

Let \(G_T^+ \) be the subgraph of \(G_T \) induced on \(\chi_T^+ \).

To prove the theorem, we will design a leaf-to-root dynamic programming algorithm which will compute and store a set of records at each node of \(T \), whereas once we ascertain the records for \(r \) we will have the information required to output a correct answer. Intuitively, the records will store all information about each possible set of arcs between vertices in each bag, along with relevant connectivity information provided by arcs between vertices in \(\chi_r \) and information about the partial score. They will also keep track of parent set sizes in each bag.

Formally, the records will have the following structure. For a node \(t \), let \(S(t) = \{ (\text{loc, con, inn}) \mid \text{loc, con} \subseteq \chi(t), \text{inn} : \chi(t) \rightarrow [q]_0 \} \) be the set of snapshots of \(t \). The record \(R_t \) of \(t \) is then a mapping from \(S(t) \) to \(\mathbb{N}_0 \cup \{ \bot \} \). Observe that \(|S(t)| \leq 4k^2(q + 1)^k \). To introduce the semantics of our records, let \(\Upsilon_t \) be the set of all directed acyclic graphs over the vertex set \(\chi_t \) with maximal in-degree at most \(q \), and let \(D_t = (\chi_t, A) \) be a directed acyclic graph in \(\Upsilon_t \). We say that the snapshot of \(D_t \) in \(t \) is the tuple \((\alpha, \beta, p)\) where \(\alpha = A \cap A_{\chi(t)}, \beta = \text{Con}(\chi(t), D_t) \) and \(p \) specifies numbers of parents of vertices from \(\chi(t) \) in \(D_t \), i.e., \(p(v) = |\{ w \in \chi_t^+ \mid wv \in A \}|, v \in \chi(t) \). We are now ready to define the record \(R_t \). For each snapshot \((\text{loc, con, inn}) \in S(t)\):

- \(R_t(\text{loc, con, inn}) = \bot \) if and only if there exists no directed acyclic graph in \(\Upsilon_t \) whose snapshot is \((\text{loc, con, inn}) \),
- \(R_t(\text{loc, con, inn}) = \tau \) if \(\exists D_t \in \Upsilon_t \) such that
 - the snapshot of \(D_t \) is \((\text{loc, con, inn}) \),
 - \(\text{score}(D_t) = \tau \), and
 - \(\forall D'_t \in \Upsilon_t \text{ such that the snapshot of } D'_t \text{ is } (\text{loc, con, inn}): \text{score}(D_t) \geq \text{score}(D'_t) \).

Recall that for the root \(r \in T \), we assume \(\chi(r) = \emptyset \). Hence \(R_r \) is a mapping from the one-element set \(\{ (\emptyset, \emptyset, \emptyset) \} \) to an integer \(\tau \) such that \(\tau \) is the maximum score that can be achieved by any DAG \(D = (V, A) \) with all in-degrees of vertices upper bounded by \(q \). In other words, \(I \) is a YES-instance if and only if \(R_r((\emptyset, \emptyset, \emptyset), \emptyset) \geq \tau \). To prove the theorem, it now suffices to show that the records can be computed in a leaf-to-root fashion by proceeding along the nodes of \(T \). We distinguish four cases:

- **t is a leaf node.** Let \(\chi(t) = \{v\} \). By definition, \(S(t) = \{ (\emptyset, \emptyset, \emptyset) \} \) and \(R_t((\emptyset, \emptyset, \emptyset)) = f_r(\emptyset) \).
- **t is a forget node.** Let \(t' \) be the child of \(t \) in \(T \) and let \(\chi(t) = \chi(t') \setminus \{v\} \). We initiate by setting \(R_t(\text{loc, con, inn}) = \bot \) for each \((\text{loc, con, inn}) \in S(t) \).

 For each \((\text{loc}, \text{con}', \text{inn}') \in S(t'), \text{loc}, \text{con}, \text{inn} \) be the restrictions of \text{loc}', \text{con}' \) to tuples containing \(v \). We now define \(\text{loc} = \text{loc}' \setminus \text{loc}_v, \text{con} = \text{con}' \setminus \text{con}_v, \text{inn} = \text{inn}' \mid \chi(t) \) and say that \((\text{loc, con, inn})\) is induced by \((\text{loc}', \text{con}', \text{inn}')\). Set \(R_t((\text{loc, con, inn})) := \max(R_t(\text{loc, con, inn}), R_{t'}((\text{loc}', \text{con}', \text{inn}'))) \), where \(\bot \) is assumed to be a minimal element.

 For correctness, it will be useful to observe that \(\Upsilon_t = \Upsilon_{t'} \). Consider our final computed value of \(R_t((\text{loc, con, inn})) \) for some \((\text{loc, con, inn}) \in S(t) \).

 If \(R_t((\text{loc, con, inn})) = \tau \) for some \(\tau \neq \bot \), then there exists a DAG \(D \) which witnesses this. But then \(D \) also admits a snapshot \((\text{loc}', \text{con}', \text{inn}') \) at \(t' \) and witnesses
Let us branch over each R by the numbers of incoming arcs in \mathcal{D} as in $\text{inn}(\text{loc})$. Moreover, $\text{inn}(\text{loc}) := \perp$ for each $(\text{loc}, \text{con}, \text{inn}) \in S(t)$.

For each $(\text{loc}', \text{con}', \text{inn}') \in S(t')$ and each $Q \subseteq \{ab \in A_{\chi(t)} | \{a, b\} \cap \{v\} \neq \emptyset\}$, we define:

- $\text{loc} := \text{loc}' \cup Q$
- $\text{con} := \text{trcl}(\text{con} \cup Q)$
- $\text{inn}(x) := \text{inn}'(x) + \{y \in \chi(t) | yx \in Q\}$ for every $x \in \chi(t) \setminus \{v\}$
- $\text{inn}(v) := \{y \in \chi(t) | yv \in Q\}$

If con is not irreflexive or $\text{inn}(x) > q$ for some $x \in \chi(t)$, discard this branch. Otherwise, let $\mathcal{R}_t^0(\text{loc}, \text{con}, \text{inn}) := \max(\mathcal{R}_t^0(\text{loc}, \text{con}, \text{inn}), \text{new})$ where $\text{new} = \mathcal{R}_t(\text{loc}', \text{con}', \text{inn}') + \sum_{ab \in Q} f_b(a)$. As before, \perp is assumed to be a minimal element here.

Consider our final computed value of $\mathcal{R}_t^0(\text{loc}, \text{con}, \text{inn})$ for some $(\text{loc}, \text{con}, \text{inn}) \in S(t)$.

For correctness, assume that $\mathcal{R}_t^0(\text{loc}, \text{con}, \text{inn}) = \tau$ for some $\tau \neq \perp$ and is obtained from $(\text{loc}', \text{con}', \text{inn}'), Q$ defined as above. Then $\mathcal{R}_t(\text{loc}', \text{con}', \text{inn}') = \tau - \sum_{ab \in Q} f_b(a)$. Construct a directed graph D from the witness D' of $\mathcal{R}_t(\text{loc}', \text{con}', \text{inn}')$. By adding the directed arcs specified in Q, D is a DAG as well by [7].

Moreover, $\text{inn}(x) \leq q$ for every $x \in \chi(t)$ and the rest of vertices have in $\text{inn}(v)$ the same parents as in D', so $D \in \mathcal{D}$. In particular, $(\text{loc}, \text{con}, \text{inn})$ is a snapshot of D in t and D witnesses $
abla$ for each $(\text{loc}, \text{con}, \text{inn}) \geq \mathcal{R}_t(\text{loc}', \text{con}', \text{inn}') + \sum_{ab \in Q} f_b(a) = \tau$.

On the other hand, if $\mathcal{R}_t(\text{loc}, \text{con}, \text{inn}) = \tau$ for some $\tau \neq \perp$, then there must exist a directed acyclic graph $D = (\chi_t, A)$ in \mathcal{D} that achieves a score of τ. Let Q be the restriction of A to arcs containing v, and let $D' = (\chi_t \setminus v, A \setminus Q)$, clearly $D' \in \mathcal{D}$. Let $(\text{loc}', \text{con}', \text{inn}')$ be the snapshot of D' at t'. Observe that $\text{loc} = \text{loc}' \cup Q$, $\text{con} = \text{trcl}(\text{con} \cup Q)$, inn' differs from inn' by the numbers of incoming arcs in Q and the score of D' is precisely equal to the score \mathcal{R}_t minus $\sum_{ab \in Q} f_b(a)$. Therefore $\mathcal{R}_t(\text{loc}', \text{con}', \text{inn}') \geq \tau - \sum_{ab \in Q} f_b(a)$ and in the algorithm $\mathcal{R}_t^0(\text{loc}, \text{con}, \text{inn}) \geq \mathcal{R}_t(\text{loc}', \text{con}', \text{inn}') + \sum_{ab \in Q} f_b(a) \geq \tau$. Equality now follows from the previous direction of the correctness argument.

Hence, at the end of our procedure we can correctly set $\mathcal{R}_t = \mathcal{R}_t^0$.

t is a join node. Let t_1, t_2 be the two children of t in \mathcal{T}, recall that $\chi(t_1) = \chi(t_2) = \chi(t)$. By the well-known separation property of tree-decompositions, $\chi_1 \cap \chi_2 = \chi(t)$ [12][8]. We initiate by setting $\mathcal{R}_t^0(\text{loc}, \text{con}, \text{inn}) := \perp$ for each $(\text{loc}, \text{con}, \text{inn}) \in S(t)$.

Let us branch over each $\text{loc}, \text{con}_1, \text{con}_2 \subseteq A_{\chi(t)}$ and $\text{inn}_1, \text{inn}_2 : \chi(t) \rightarrow \{q\}_0$. For every $b \in \chi(t)$ set $\text{inn}(b) := \text{inn}_1(b) + \text{inn}_2(b) - |\{a | ab \in \text{loc}\}|$. If:

- $\text{trcl}(\text{con}_1 \cup \text{con}_2)$ is not irreflexive and/or
- $\mathcal{R}_t(\text{loc}, \text{con}_1, \text{inn}_1) = \perp$, and/or
- $\mathcal{R}_t(\text{loc}, \text{con}_2, \text{inn}_2) = \perp$, and/or
- $\text{inn}(b) > q$ for some $b \in \chi(t)$
We conclude this section by answering this question affirmatively. To do so, we will aim to reduce this completely resolves the parameterized complexity of BNSL+ w.r.t. all parameters depicted on Figure 1. However, the same is not true for BNSL-; while a careful analysis of the algorithm provided in the proof of Theorem 13 reveals that BNSL- is XP-tractable when parameterized by the treewidth of the superstructure alone, it is not yet clear whether it is FPT—in other words, do we need to parameterize by both g and treewidth to achieve fixed-parameter tractability? We conclude this section by answering this question affirmatively. To do so, we will aim to reduce from the following problem, which can be seen as a dual to the W[1]-hard Multidimensional Subset Sum problem considered in recent works [21, 18].

Uniform Dual Multidimensional Subset Sum (UDMSS)

Input:	An integer k, a set $S = \{s_1, \ldots, s_n\}$ of item-vectors with $s_i \in \mathbb{N}^k$ for every i with $1 \leq i \leq n$, a uniform target vector $t = (r, \ldots, r) \in \mathbb{N}^k$, and an integer d.		
Parameter:	k.		
Question:	Is there a subset $S' \subseteq S$ with $	S'	\geq d$ such that $\sum_{s \in S'} s \leq t$?

We first begin by showing that this variant of the problem is $\text{W}[1]$-hard by giving a fairly direct reduction from the originally considered problem, and then show how it can be used to obtain the desired lower-bound result.

Proof. The $W[1]$-hard Multidimensional Subset Sum problem is stated as follows:

Multidimensional Subset Sum (MSS)

Input: An integer k, a set $S = \{s_1, \ldots, s_n\}$ of item-vectors with $s_i \in \mathbb{N}^k$ for every i with $1 \leq i \leq n$, a target vector $t = (t^1, \ldots, t^k) \in \mathbb{N}^k$, and an integer d.

Parameter: k.

Question: Is there a subset $S' \subseteq S$ with $|S'| \leq d$ such that $\sum_{s \in S'} s \geq t$?

Consider its dual version, obtained by reversing both inequalities:

Dual Multidimensional Subset Sum (DMSS)

Input: An integer k, a set $S = \{s_1, \ldots, s_n\}$ of item-vectors with $s_i \in \mathbb{N}^k$ for every i with $1 \leq i \leq n$, a target vector $t = (t^1, \ldots, t^k) \in \mathbb{N}^k$, and an integer d.

Parameter: k.

Question: Is there a subset $S' \subseteq S$ with $|S'| \geq d$ such that $\sum_{s \in S'} s \leq t$?

Given an instance $I = (S, t, k, d)$ of MSS, we construct an instance $I_d = (S, z - t, k, n - d)$ of DMSS, where $z = \sum_{s \in S} s$. Note that S' is a witness of I if and only if $S \setminus S'$ is a witness of I_d.

The observation establishes $W[1]$-hardness of DMSS.

Now it remains to show that DMSS is $W[1]$-hard even if we require all the components of the target vector t to be equal. Let $I = (S, t, k, d)$ be the instance of DMSS. We construct an equivalent instance $I_{eq} = (S_{eq}, t_{eq}, k + 1, d + 1)$ of UDMSS with $t_{eq} = (d \cdot t_{max}, \ldots, d \cdot t_{max})$, where $t_{max} = \max\{t^i : i \in [k]\}$. S_{eq} is obtained from S by setting the $(k + 1)$-th entries equal to t_{max}, plus one auxiliary vector to make the target uniform: $S_{eq} = \{(a^1, \ldots, a^k, t_{max})|(a^1, \ldots, a^k) \in S\} \cup \{b\}$, where $b = (dt_{max} - t^1, \ldots, dt_{max} - t^k, 0)$.

For correctness, assume that I is a Yes-instance, in particular, we can choose S' with $|S'| = d$ and $\sum_{s \in S'} s \leq t$. Then $S_{eq}' = \{(a^1, \ldots, a^k, t_{max})|(a^1, \ldots, a^k) \in S'\} \cup \{b\}$ witnesses that I_{eq} is a Yes-instance. For the converse direction, let I_{eq} be a Yes-instance, we choose S_{eq}' with $|S_{eq}'| = d + 1$ and $\sum_{s \in S_{eq}'} s \leq t_{eq}$. If $b \notin S_{eq}'$, sum of the $(k + 1)$-th entries in S_{eq}' would be at least $(d + 1) t_{max}$, so b must belong to S_{eq}'. Then $S_{eq}' \setminus \{b\}$ consists of precisely d vectors with sum at most $t_{eq} - b = (t^1, \ldots, t^k, dt_{max})$. Restrictions of these vectors to k first coordinates witness that I is a Yes-instance.

Theorem 15. BNSL$^{+}_2$ is $W[1]$-hard when parameterized by the treewidth of the superstructure.

Proof. Let $I = (S, t, k, d)$ be an instance of UDMSS with $t = (r_1, \ldots, r)$, and w.l.o.g. assume that r is greater than the parameter k. We construct an equivalent instance (V, F, ℓ, r) of BNSL$^{+}_2$. Let s start from the vertex set V. For every $i \in [k]$, we add to V a vertex v_i corresponding to the i-th coordinate of the target vector t. Further, for every $s = (s^1, \ldots, s^k) \in S$, we add vertices a_s, b_s and $s^1 + \cdots + s^k$ many vertices $s'_j, i \in [k], j \in [s^i]$. Intuitively, taking s into S' will correspond to adding arcs from s'_j to v_i for every $i \in [k], j \in [s^i]$. The upper bound r for each coordinate of the sum in S' is captured by allowing v_i to have at most r many parents. Formally, for every $s \in S, i \in [k], j \in [s^i]$ the scores are defined as follows (for convenience we list them as scores per arc): $f(s'_j, v_i) = 2$, $f(b_s, a_s) = M_s = 2 \cdot \sum_{i \in [k]} s^i - 1$. We call the arcs mentioned so far light. Note that for every fixed $s \in S, \sum_{i \in [k]} \sum_{j \in [s^i]} f(s'_j, v_i) = 2 \cdot \sum_{i \in [k]} s^i = M_s + 1$ so the sum of scores of light arcs is $L = \sum_{s \in S} (2M_s + 1)$. We finally set $f(a_s, s'_j) = f(v_i b_s) = L$ for every $s \in S, i \in [k]$ and $j \in [s^i]$. Now the number of arcs yielding the score of L is $m = k|S| + \sum_{s \in S} \sum_{i \in [k]} s^i$; we call these arcs heavy. We set the scores of all arcs not mentioned above to zero and we set $\ell = mL + \sum_{s \in S} M_s + d$.

This finishes our construction; see Figure 3 for an illustration. Note that the superstructure graph has treewidth of at most $k + 2$: the deletion of vertices $v_i, i \in [k]$, makes it acyclic.
While Reduction Rule 1 carries over to PL, Reduction Rule 2 has to be completely redesigned to preserve the (non-)existence of undirected paths between a and c. By doing so, we obtain:

Theorem 3: Data Reduction. Recall that the proof of Theorem 3 used two data reduction rules.

For correctness, assume that $I = (S, t, k, d)$ is a Yes-instance of UDMSS, let S' be a subset of S of size d witnessing it. We add all the heavy arcs, resulting in a total score of mL. Further, for every $s = (s^1, \ldots, s^k) \in S'$, we add the arcs $s_i^j v^i$, $i \in [k]$, $j \in [s^i]$, which increases the total score by $M_s + 1$. For every $s \in S \setminus S'$, we add an arc $b_s a_s$, augmenting the total score by M_s.

Denote the resulting digraph by D, then $\text{score}(D) = mL + \sum_{s \in S'} (M_s + 1) + \sum_{s \in S \setminus S'} M_s = mL + \sum_{s \in S} M_s + d = \ell$. We proceed by checking parent set sizes. Note that every s_i^j has precisely one incoming arc $a_s s_i^j$ in D, every a_s has at most one in-neighbour b_s and in-neighbours of every b_s are v^i, $i \in [k]$. Finally, for every $i \in [k]$, $P^i_D(v^i) = \{|s_i^j| s \in S', j \in [s^i]|\}$ by construction, so $|P^i_D(v^i)| = \sum_{s \in S'} s^i \leq r$ as S' is a solution to UDMSS. Therefore all the vertices in D have at most r in-neighbours. It remains to show acyclicity of D. As any cycle in the superstructure contains v^i for some $i \in k$, the same holds for any potential directed cycle C in D. Two next vertices of C after v^i can be only b_s and a_s for some $s \in S$. In particular, by our construction, $s \in S \setminus S'$. Then, again by construction, D doesn’t contain an arc $s_i^j v^i$ for any $i \in [k]$, $j \in [s^i]$, so v^i is not reachable from a_s, which contradicts to C being a cycle. Therefore D witnesses that (V, F, ℓ, r) is a Yes-instance.

For the opposite direction, let (V, F, ℓ, r) be a Yes-instance of BNLS$^+$ and let D be a DAG witnessing this. Then D contains all the heavy arcs. Indeed, sum of scores of all light arcs in F is L, so if at least one heavy arc is not in $A(D)$, then $\text{score}(D) \leq (m - 1) L + L = mL < \ell$. For every $s \in S$, let $A^s = \{|s_i^j v^i| i \in [k], j \in [s^i]|\}$. If D doesn’t contain an arc $b_s a_s$ and some of arcs from A^s, the total score of $A(D) \cap A^s$ is at most $M_s - 1$. In this case we modify D by deletion of $A(D) \cap A^s$ and addition of arc $b_s a_s$, which increases $\text{score}(D)$ and may only decrease the parent set sizes of v^i, $i \in k$. After these modifications, let $S'' = \{|s \in S| D$ contains an arc $b_s a_s\}$. Note that whenever $s \in S''$, D cannot contain any of the arcs $s_i^j v^i$, $i \in [k], j \in [s^i]$, as this would result in directed cycle $v^i \rightarrow b_s \rightarrow a_s \rightarrow s_i^j \rightarrow v^i$. Therefore for every $s \in S$, D contains at least $mL = \sum_{s \in S} M_s + d$. If $|S \setminus S''| \geq d$, we claim that $S'' = S \setminus S''$ is a solution to $I = (S, t, k, d)$. Indeed, for every $i \in [k]$, $r \geq |P^i_D(v^i)| = \{|s_i^j| s \in S', j \in [s^i]|\} = \sum_{s \in S'} s^i$. □

5 Implications for Polytree Learning

Here, we discuss how the results of Sections 3 and 4 can be adapted to Polytree Learning (PL).
Theorem 16. There is an algorithm which takes as input an instance I of $\text{PL}^{\neq 0}$ whose superstructure has feedback edge number k, runs in time $O(|I|^2)$, and outputs an equivalent instance $I' = (V', F', \ell')$ of $\text{PL}^{\neq 0}$ such that $|V'| \leq 24k$.

Proof. Note that Reduction Rule 1 acts on the superstructure graph by deleting leaves and therefore preserves not only optimal scores but also (non-)existence of polytrees achieving the scores. Hence we can safely apply the rule to reduce the instance of $\text{PL}^{\neq 0}$. After the exhaustive application, all the leaves of the superstructure graph G are the endpoints of edges in feedback edge set, so there can be at most $2k$ of them. To get rid of long induced paths in G, we introduce the following rule:

Reduction Rule 3. Let a, b_1, \ldots, b_m, c be a path in G such that for each $i \in [m]$, b_i has degree precisely 2. For every $B \subseteq \{a, c\}$ and $p \in \{0, 1\}$, let $\ell_p(B)$ be the maximum sum of scores that can be achieved by b_1, \ldots, b_m under the conditions that (1) there exists an undirected path between b_1 and b_m if and only if $p = 1$; (2) b_1 (and analogously b_m) takes a (c) into its parent set if and only if $a \in B$ (c $\in B$).

We construct a new instance $I' = (V', F', \ell')$ as follows:

- $V' := V \cup \{b, b'_1, b''_1, b'_m, b''_m\} \setminus \{b_1 \ldots b_m\}$;
- $\Gamma_f(b'_1) = \Gamma_f(b''_1) = \Gamma_f(b'_m) = \Gamma_f(b''_m) = \emptyset$;
- The scores for a (analogously c) are obtained from F by simply replacing every occurrence of b_1 by b'_1 and b''_1 (b'_m, b''_m), formally:
 - $\Gamma_f(a) = \{P \in \Gamma_f(a) \setminus \{b_1 \notin P\}, \text{ where } f'_a(P) := f_a(P) \}$ and $\{P \setminus b_1 \cup \{b'_1, b''_1\} \setminus \{b_1 \notin P\}, \text{ where } f'_a(P \setminus b_1 \cup \{b'_1, b''_1\}) := f_a(P)\}$;
 - $\Gamma_f(c) = \{P \in \Gamma_f(c) \setminus \{b_m \notin P\}, \text{ where } f'_c(P) := f_c(P) \}$ and $\{P \setminus b_m \cup \{b'_m, b''_m\} \setminus \{b_m \notin P\}, \text{ where } f'_c(P \setminus b_m \cup \{b'_m, b''_m\}) := f_c(P)\}$;
 - $\Gamma_f(b)$ consists of eight sets, yielding corresponding scores f'_b: $\{a, c, b'_1, b''_1, b'_m, b''_m\}$ → $l_1(\{a, c\}), \{b'_1, b''_1, b'_m, b''_m\} \setminus \{b_1\} \rightarrow l_1(\{a, c\}), \{b'_1, b''_1\} \rightarrow l_1(\emptyset), \emptyset \rightarrow l_0(\emptyset), \emptyset \rightarrow l_1(\emptyset), \emptyset \rightarrow l_0(\emptyset)$.

Parent sets of b are defined in a way to cover all the possible configurations on solutions to I restricted to a, b_1, \ldots, b_m, c. The corresponding scores of b are intuitively the sums of scores that $b_i, i \in [m]$, receive in the solutions. The eight cases that may arise are illustrated in Figure 4.

Claim 2. Reduction Rule 3 is safe.

Proof. We will show that a score of at least ℓ can be achieved in the original instance I if and only if a score of at least ℓ can be achieved in the reduced instance I'.

Assume that D is a polytree that achieves a score of ℓ in I. We will construct a polytree D', called the reduct of D, with $f'(D') \geq \ell$. To this end, we first modify D by removing the vertices b_1, \ldots, b_m and adding b'_1, b''_1, b'_m, b''_m. We also add arcs $b'_1 a$ and $b''_1 (b'_m c$ and $b''_m c$ correspondingly) if and only if $b_1 a \in A(D), (b_m c \in A(D))$. Let us denote the DAG obtained at this point D^*. Note that scores of a and c in D^* are the same as in D. Further modifications of D^* depend only on $D[a, b_1, \ldots, b_m, c]$ and change only the parent set of b. We distinguish the 8 cases listed below (see also Figure 4):

- case 1.1 (1.2): $ab_1, cb_m \in A(D), b_1$ and b_m are (not) connected by path in D. We add incoming arcs to b from $a, c, b'_1, b''_1, b'_m, b''_m$, resulting in $f'_b(P_{D'}(b)) = l_1(\{a, c\})$.
- case 2.1 (2.2): $ab_1, cb_m \notin A(D), b_1$ and b_m are (not) connected by path in D. We add incoming arcs to b from b'_1, b''_1, b'_m, b''_m, leaving D^* unchanged.
- case 3.1 (3.2): $ab_1 \in A(D), cb_m \notin A(D), b_1$ and b_m are (not) connected by path in D. We add incoming arcs to b from a, b'_1, b''_1, b'_m and b''_m only, then $f'_b(P_{D'}(b)) = l_1(\{a\})$.
- case 4.1 (4.2): $ab_1 \notin A(D), cb_m \in A(D), b_1$ and b_m are (not) connected by path in D. The cases are symmetric to 3.1 (3.2).
Note that D' contains a path between a and c if and only if D does. By definition of l_0 and l_1, the score of b in D' is at least as large as the sum of scores of b_i, $i \in \{m\}$, in D. Moreover, each vertex in $V(D) \cap V(D')$ receives equal scores in D and D'. Hence D' is a polytree with $f'(D') \geq \ell$, as desired.

For the converse direction, note that the polytrees constructed in cases 1.1-4.2 cover all optimal configurations which may arise in T': if there is a polytree D'' in T' with a score of ℓ', we can always modify it to a polytree D' with a score of at least ℓ' such that $D'[a, b, b', b''_m, \bar{b}']$ has one of the forms depicted at the bottom line of the figure. But every such D' is a reducible polytree D of the original instance with the same score.

We apply Reduction Rule 3 exhaustively, until there is no more path to shorten. Bounds on the running time of the procedure and size of the reduced instance can be obtained similarly to the case of BNSL. In particular, every long path is replaced with a set of 5 vertices, resulting in at most $4k + 4k \cdot 5 = 24k$ vertices.

Theorem 16. Fixed-parameter tractability. Analogously to BNSL, a data reduction procedure as the one provided in Theorem 16 does not exist for PL parametrized by lfen unless $\text{NP} \subseteq \text{co-NP/poly}$, since the lower-bound result provided in Theorem 11 can be straightforwardly adapted to PL. But similarly as for BNSL we can provide an FPT algorithm using the same ideas as in the proof of Theorem 4. The algorithm proceeds by dynamic programming on the spanning tree T of G with $\text{lfen}(G, T) = \text{lfen}(G) = k$. The records will, however, need to be modified: for each vertex v, instead of the path-connectivity relation on $\delta(v)$, we store connected components of the inner boundary $\delta(v) \cap V_i$ and incoming arcs to T_v. We provide a full description of the algorithm below.

Theorem 17. PL is fixed-parameter tractable when parameterized by the local feedback edge number of the superstructure.

Proof. As before, given an instance \mathcal{I} with a superstructure graph $G = G_T$ such that $\text{lfen}(G) = k$, we start from computing the spanning tree T of G with $\text{lfen}(G, T) = \text{lfen}(G) = k$; pick a root \bar{v} in T. We keep all the notations $T_v, V_v, \bar{V}_v, \delta(v)$ for $v \in V(T)$ from the subsection 3.2. In addition, we define the inner boundary of $v \in V(T)$ to be $\delta_{in}(v) := \delta(v) \cap V_i$, i.e. part of boundary that belongs to subtree of T rooted in v. The remaining part we call the outer boundary of v and denote by $\delta_{out}(v) := \delta(v) \setminus \delta_{in}(v)$. For any set A of arcs, we define $\tilde{A} = \{uv | uv \in A \text{ or } vu \in A\}$. Obviously,
We proceed by computing our records in a leaf-to-root fashion along R_v. Assume that in this case v is a leaf. Start by initiating $R_v = \{v\}$ and another for $A_v = \{v\}$, where v is a parent of v in T.

We proceed by computing our records in a leaf-to-root fashion along T.

Let v be a leaf. Start by initializing $R^*(v) := \emptyset$, then for each $P \in \Gamma_f(v)$ add to $R^*(v)$ the triple $(\{v\}, \{w|u \in P\}, f_v(P))$. Note that $R^*(v)$ is by definition precisely the set of all records for v, so we can correctly set $R(v) = \{(R_v, A_v, s_v) \in R^*(v) | s_v$ is maximal for fixed $R_v, A_v\}$.

Assume that v has m children $\{v_i : i \in [m]\}$ in T, where $v_i, i \in [t]$, are open and $v_i, i \in [m] \setminus [t]$, are closed. The following claim shows how (under which conditions) the records of children of v can be composed into a record of v.

Claim 3. Let $P \in \Gamma_f(v), D_0$ is a polytree on $V_0 = v \cup P$ with arc set $A_0 = \{uv|u \in P\}, (R_i, A_i, s_i)$ are records for v_i witnessed by $D_i, i \in [t]$. Let A_i^{loc} be the set of arcs in $\bigcup_{i \in [t]} A_i$, which have both endpoints in $V_v, R = \text{trcl}(A_i^{\text{loc}} \cup \bigcup_{i \in [t]} R_i)$. Then $D = \bigcup_{i \in [t]} D_i$ is a polytree if and only if the following two conditions hold:

1. $A_i = \emptyset$ for each closed child $v_i \in P$.
2. $\sum_{i=0}^t N_i - |A_i^{\text{loc}}| - \sum_{y \in Y} (n_y - 1) = N$, where
 - N is the number of equivalence classes in $\text{trcl}(\bigcup_{i \in [t]} (A_i \cup R_i))$
 - N_i is the number of equivalence classes in $R_i, i \in [t]$
 - Y is the set of endpoints of arcs in $\bigcup_{i \in [t]} A_i$ which don’t belong to any $V_i, i \in [m]$.
 - For every $y \in Y, n_y$ is the number of arcs in $A_0 \cup \ldots \cup A_i$ having endpoint y.

In this case D witnesses the record (R_v, A_v, s_v), where:

$R_v = R|_{\delta_{i_0}(v) \times \delta_{i_0}(v)}, A_v = (\bigcup_{i \in [t]} A_i)|_{\delta_{i_0}(v) \times \delta_{i_0}(v)}, s_v = \sum_{i=0}^m s_i + f_v(P)$.

If $(R_v, A_v, s_v) \in R(v), (R_i, A_i, s_i) \in R(v_i), i \in [m]$. Moreover, for any closed child $v_i \not\in P$, there is no $(R_i, A_i', s_i') \in R(v_i)$ with $s_i' > s_i$.

We will prove the claim at the end, let us show how it can be exploited to compute valid records of v. We start from initial setting $R^*(v) := \emptyset$, then branch over all parent sets $P \in \Gamma_f(v)$ and triples $(R_v, A_v, s_v) \in R(v)$ for open children v_i. For each closed child $v_i \not\in P$ take $(R_i, A_i, s_i) \in R(v_i)$ with maximal s_i, for each closed child $v_i \in P$ take $(R_i, A_i, s_i) \in R(v_i)$ with $A_i = \emptyset$. Now the first condition of Claim 3 holds, if the second one holds as well, we add to $R^*(v)$ the triple (R_v, A_v, s_v).
According to Claim \[3\], \(\mathcal{R}^*(v) \) computed in such a way consists only of records for \(v \) and, in particular, contains all the valid records. Therefore we can correctly set \(\mathcal{R}(v) = \{(R_v, A_v, s_v) \in \mathcal{R}^*(v)|s_v \) is maximal for fixed \(R_v, A_v \} \).

To construct \(\mathcal{R}^*(v) \) for node \(v \) with children \(v_i, i \in [m] \), we branch over at most \(n \) possible parent sets of \(v \) and at most \(2(2k^2+2)^2 \) valid records for every open child of \(v \). Number of open children is bounded by \(2k \), so we have at most \(O((2(2k^2+2)^2)^{2k} \cdot n) \leq 2^{O(k^3)} \cdot n^2 \) branches. In a fixed branch we compute scores for closed children in \(O(n) \), application of Claim \[3\] requires time polynomial in \(k \).

So \(\mathcal{R}^*(v) \) is computed in time \(2^{O(k^3)} \cdot n^2 \) that majorizes running time for leaves. As the number of vertices in \(T \) is at most \(n \), total running time of the algorithm is \(2^{O(k^3)} \cdot n^3 \) assuming that \(T \) is given as a part of the input.

proof of Claim \[3\] \((\Leftarrow)\). We start from checking whether \(D = \cup_{i=0}^n D_i \) is a polytree. As the first condition implies that a polytree of every closed child \(v_i \) is connected to the rest of \(D \) by at most one arc \(v_i; v \) or \(v_i; w \), it is sufficient to check whether \(D^f = \cup_{i=0}^n D_i \) is polytree. Number of connected components of \(D^f \) is \(N' + N \), where \(N' \) is the total number of connected components of \(D_i \) that don’t intersect \(\delta(v_i), i \in [t] \). Note that \(D^f \) can be constructed as follows:

1. Take a disjoint union of polytrees \(D'_i = D_i[V_i], i \in [t] \), then the resulting polytree has \(N' + \sum_{i=0}^t N_i \) connected components.
2. Add arcs between \(D'_i \) and \(D'_j \) that occur in \(D \) for every \(i, j \in [t] \), i.e. the arcs specified by \(A_{loc}^{in} \). Resulting digraph is a polytree if and only if every added arc decreases the number of connected components by 1, i.e. the number of connected components after this step is \(N' + \sum_{i=0}^t N_i - |A_{loc}^{in}| \).
3. Add all remaining vertices \(y \) of \(D \) together with their adjacent arcs in \(D \). Note that such \(y \) precisely form the set \(Y \), so \(D^f \) is a polytree if and only if we obtained a polytree after the previous step and every \(y \in Y \) decreased it’s number of connected components by \((n_y - 1) \), i.e. the number \(N' + N \) of connected components in \(D^f \) is equal to \(N' + \sum_{i=0}^t N_i - |A_{loc}^{in}| - \sum_{y \in Y} (n_y - 1) \). But this is precisely the condition 2 of the claim.

Now, assuming that \(D \) is a polytree, we will show that it witnesses (\(R_v, A_v, s_v \)). Parent sets of vertices from each \(V_i \) in \(D \) are the same as in \(D_i \), parent set of \(v \) in \(D \) is \(P \). So \(s_v = \sum_{i=0}^n s_i + f_v(P) \) is indeed the sum of scores over \(V_v \) in \(D \).

There are two kinds of arcs in \(D \) starting outside of \(V_v \): incoming arcs to \(v \) and incoming arcs to the subtrees of open children. Thus \(A(D)|\delta_{out}(v) \times \delta_{in}(v) = (\bigcup_{i \in [t]} A_i)|\delta_{out}(v) \times \delta_{in}(v) = A_v \).

Take any \(u, w \in \delta_{in}(v), u \neq w \), note that \(u \) and \(w \) can not belong to subtrees of closed children.

So \(u \) and \(w \) are in the same connected component of \(D[V_v] \) if and only if they are connected by some undirected path \(\pi \) in the skeleton of \(D \) using only vertices from \(D^f \cap V_v \). In this case \(R \) captures the segments of \(\pi \) which are completely contained in \(D_i[V_v], i \in [t] \). Rest of edges in \(\pi \) either connect \(v \) to some \(V_i, i \in [t] \), or have endpoints in different \(V_i \) and \(V_j \) for some \(i, j \in [t] \). Edges of this kind precisely form the set \(A_{loc}^{in} \), so \(uw \) belongs to \(R = \text{trc} \{ (\bigcup_{i \in [t]} R_i \cup A_i^{in}) \}. Therefore \(R_v = R|\delta_{out}(v) \times \delta_{in}(v) \) indeed represents connected components of \(\delta_{in}(v) \) in \(D[V_v] \).

\((\Rightarrow)\) Condition 1 obviously holds, otherwise \(D \) would contain a pair of arcs with the same endpoints and different directions. In \((\Leftarrow)\) we actually showed the necessity of condition 2 when 1 holds.

For the last statement, assume that \((R_v, A_v, s_v) \in \mathcal{R}(v) \) but \((R_i, A_i, s_i) \notin \mathcal{R}(v_i) \) for some \(i \). Then there is \((R_i, A_i, s_i + \Delta) \in \mathcal{R}(v_i) \) for some \(\Delta > 0 \). Let \(D'_i \) be a witness of \((R_i, A_i, s_i + \Delta) \), then \(D' = \bigcup_{i \in [m] \setminus [1]} D_i \cup D'_i \) is a polytree witnessing \((R_v, A_v, s_v + \Delta) \). But this contradicts to validity of \((R_v, A_v, s_v) \). By the same arguments records for closed children \(v_i \notin P \) are the ones with maximal \(s_i \) among two \((R_i, A_i, s_i) \in \mathcal{R}(v_i) \). \[3\]
Theorem 13. Additive Representation. We remark that, like BNSL$^+$ and BNSL$^+$, a simple reduction shows that PL$^+\leq$ is NP-hard for a fixed value of q, in this case $q = 1$.

Theorem 18. PL$^+\leq$ is NP-hard when $q = 1$.

Proof. We reduce from the classical HAMILTONIAN PATH problem. Given a graph G, we construct an instance \mathcal{I} of PL$^+\leq$ with $q = 1$ and the same vertex set. Whenever G contains an edge ab, we set $f_a(b) = f_b(a) = 1$; all other cost functions are set to 0. ℓ is set to $|V| - 1$.

Consider a solution D for \mathcal{I}. Since D is a DAG, it must contain a source; by construction, all other vertices in D must have an in-degree of 1. This implies that the arcs of D form a Hamiltonian path in G. Conversely, given a Hamiltonian path in G, one can construct a solution D by choosing one endpoint of the path as the source and then adding all arcs along the path. ☐

Moreover, the dynamic programming algorithm for BNSL$^+$ parameterized by treewidth and q can be adapted to also solve PL$^+\leq$. For completeness, we provide a full proof below; however one should keep in mind that the ideas are very similar to the proof of Theorem 13.

Theorem 19. PL$^+$ is FPT when parameterized by the treewidth of the superstructure. Moreover, PL$^+\leq$ is FPT when parameterized by q plus the treewidth of the superstructure.

Proof. We begin by proving the latter statement, and will then explain how that result can be straightforwardly adapted to obtain the former. As our initial step, we apply Bodlaender’s algorithm [4] to compute a nice tree-decomposition (T, χ) of $G_{\mathcal{I}}$ of width $\ell = tw(G_{\mathcal{I}})$. We keep the notations $T, r, \ell, and \chi_t \leq \ell$ from the proof of Theorem 13. For any arc set A we denote $\bar{A} = \{uw, wu|uw \in A\}$.

We will design a leaf-to-root dynamic programming algorithm which will compute and store a set of records at each node of T, whereas once we ascertain the records for r we will have the information required to output a correct answer. The set of snapshots and structure of records will be the same as in the proof of Theorem 13. However, semantics will slightly differ: in contrast to information about directed paths via forgotten nodes, con will now specify whether vertices of the bag belong to the same connected component of the partial polytree. Formally, let Ψ_t be the set of all polytrees over the vertex set $\chi_t \leq \ell$ with maximal in-degree at most q, and let $D_t = (\chi_t \leq \ell, A)$ be a polytree in Ψ_t. We say that the snapshot of D_t in t is the tuple (α, β, p) where $\alpha = A \chi(t) \cap A$, $\beta = A \chi(t) \cap \bar{A}$, and p belongs to the same connected component of D_t and p specifies numbers of parents of vertices from $\chi(t)$ in D, i.e. $p(v) = |\{w \in \chi_t \leq \ell | uw \in A\}|$, $v \in \chi(t)$. We will call a connected component of D_t active if it intersects $\chi(t)$. Note that the number of equivalence classes of con is equal to the number of active connected components of D_t. We are now ready to define the record R_t. For each snapshot $(\text{loc, con, inn}) \in S(t)$:

- $R_t(\text{loc, con, inn}) = \perp$ if and only if there exists no polytree in Ψ_t whose snapshot is (loc, con, inn), and
- $R_t(\text{loc, con, inn}) = \tau$ if $\exists D_t \in \Psi_t$ such that
 - the snapshot of D_t is (loc, con, inn),
 - $\text{score}(D_t) = \tau$, and
 - $\forall D'_t \in \Psi_t$ such that the snapshot of D'_t is (loc, con, inn): $\text{score}(D_t) \geq \text{score}(D'_t)$.

Recall that for the root $r \in T$, we assume $\chi(r) = \emptyset$. Hence R_r is a mapping from the one-element set $\{(|0, 0, 0|)\}$ to an integer τ such that τ is the maximum score that can be achieved by any polytree $D = (V, A)$ with all in-degrees of vertices upper bounded by q. In other words, \mathcal{I} is a YES-instance if and only if $R_r(|0, 0, 0|) \geq \ell$. To prove the theorem, it now suffices to show that the records can be computed in a leaf-to-root fashion by proceeding along the nodes of T. We distinguish four cases:

- t is a leaf node. Let $\chi(t) = \{v\}$. By definition, $S(t) = \{(|0, 0, 0|)\}$ and $R_t(|0, 0, 0|) = f_a(\emptyset)$.
- t is a forget node. Let t' be the child of t in T and let $\chi(t) = \chi(t') \setminus \{v\}$. We initiate by setting $R_t^0(\text{loc, con, inn}) = \perp$ for each $(\text{loc, con, inn}) \in S(t)$.
For each \((loc', con', inn') \in S(t')\), let \(loc_v, con_v\) be the restrictions of \(loc'\), \(con'\) to tuples containing \(v\). We now define
\[
loc = \text{loc} \setminus \text{loc}_v, \quad con = \text{con} \setminus \text{con}_v, \quad inn = \text{inn} \setminus \chi(t)
\]
and set
\[
\mathcal{R}_t^0(loc, con, inn) := \max(\mathcal{R}_t'(loc, con, inn), \mathcal{R}_t(loc', con', inn'))
\]
where \(\perp\) is assumed to be a minimal element. Finally we set
\[
\mathcal{R}_t = \mathcal{R}_t^0, \quad \text{correctness can be argued analogously to the case of BNSL}^*.
\]

\(t\) is an introduce node. Let \(t'\) be the child of \(t\) in \(T\) and let \(\chi(t) = \chi(t') \cup \{v\}\). We initiate by setting
\[
\mathcal{R}_t^0(loc, con, inn) = \perp \quad \text{for each} \ (loc, con, inn) \in S(t).
\]

For each \((loc', con', inn') \in S(t')\) and each \(Q \subseteq \{ab \in A_{\chi(t)} \mid \{a, b\} \cap \{v\} \neq \emptyset\}\), we define:

- \(loc := loc' \cup Q\)
- \(con := \text{trcl}(con' \cup Q)\)
- \(inn(x) := \text{inn}'(x) + \{|y \in \chi(t) \mid yx \in Q\} \quad \text{for every} \ x \in \chi(t) \setminus \{v\}\)
- \(inn(v) := \{|y \in \chi(t) \mid yv \in Q\}\)

Let \(N\) and \(N'\) be the numbers of equivalence classes in \(con\) and \(con'\) correspondingly. If \(N \neq N' + 1 - |Q|\) or \(\text{inn}(x) > q\) for some \(x \in \chi(t)\), discard this branch. Otherwise, let
\[
\mathcal{R}_t^0(loc, con, inn) := \max(\mathcal{R}_t^0(loc, con, inn), \text{new})
\]
where \(\text{new} = \mathcal{R}_t'(loc', con', inn') + \sum_{ab \in Q} f_b(a)\). As before, \(\perp\) is assumed to be a minimal element here.

Consider our final computed value of \(\mathcal{R}_t^0(loc, con, inn)\) for some \((loc, con, inn) \in S(t)\).

For correctness, assume that \(\mathcal{R}_t^0(loc, con, inn) = \tau\) for some \(\tau \neq \perp\) and is obtained from
\((loc', con', inn')\), \(Q\) defined as above. Then
\[
\mathcal{R}_t'(loc', con', inn') = \tau - \sum_{ab \in Q} f_b(a)
\]
Construct a directed graph \(D\) from the witness \(D'\) of \(\mathcal{R}_t'(loc', con', inn')\) by adding \(v\) and the arcs specified in \(Q\). The equality \(N = N' + 1 - |Q|\) guarantees that every such arc decreases the number of active connected components by one, so \(D\) is a polytree. Moreover, \(\text{inn}(x) \leq q\) for every \(x \in \chi(t)\) and the rest of vertices have in \(D\) the same parents as in \(D'\), so \(D \in \Psi_t\). In particular, \((loc, con, inn)\) is a snapshot of \(D\) in \(t\) and \(D\) witnesses \(\mathcal{R}_t(loc, con, inn) \geq \mathcal{R}_t'(loc', con', inn') + \sum_{ab \in Q} f_b(a)\). As before, \(\perp\) is assumed to be a minimal element here.

Consider our final computed value of \(\mathcal{R}_t^0(loc, con, inn)\) for some \((loc, con, inn) \in S(t)\).

For correctness, assume that \(\mathcal{R}_t^0(loc, con, inn) = \tau\) for some \(\tau \neq \perp\) and is obtained from
\((loc', con', inn')\), \(Q\) defined as above. Then
\[
\mathcal{R}_t'(loc', con', inn') = \tau - \sum_{ab \in Q} f_b(a)
\]
Construct a directed graph \(D\) from the witness \(D'\) of \(\mathcal{R}_t'(loc', con', inn')\) by adding \(v\) and the arcs specified in \(Q\). The equality \(N = N' + 1 - |Q|\) guarantees that every such arc decreases the number of active connected components by one, so \(D\) is a polytree. Moreover, \(\text{inn}(x) \leq q\) for every \(x \in \chi(t)\) and the rest of vertices have in \(D\) the same parents as in \(D'\), so \(D \in \Psi_t\). In particular, \((loc, con, inn)\) is a snapshot of \(D\) in \(t\) and \(D\) witnesses \(\mathcal{R}_t(loc, con, inn) \geq \mathcal{R}_t'(loc', con', inn') + \sum_{ab \in Q} f_b(a)\). As before, \(\perp\) is assumed to be a minimal element here.

Consider our final computed value of \(\mathcal{R}_t^0(loc, con, inn)\) for some \((loc, con, inn) \in S(t)\).

For correctness, assume that \(\mathcal{R}_t^0(loc, con, inn) = \tau\) for some \(\tau \neq \perp\) and is obtained from
\((loc', con', inn')\), \(Q\) defined as above. Then
\[
\mathcal{R}_t'(loc', con', inn') = \tau - \sum_{ab \in Q} f_b(a)
\]
Construct a directed graph \(D\) from the witness \(D'\) of \(\mathcal{R}_t'(loc', con', inn')\) by adding \(v\) and the arcs specified in \(Q\). The equality \(N = N' + 1 - |Q|\) guarantees that every such arc decreases the number of active connected components by one, so \(D\) is a polytree. Moreover, \(\text{inn}(x) \leq q\) for every \(x \in \chi(t)\) and the rest of vertices have in \(D\) the same parents as in \(D'\), so \(D \in \Psi_t\). In particular, \((loc, con, inn)\) is a snapshot of \(D\) in \(t\) and \(D\) witnesses \(\mathcal{R}_t(loc, con, inn) \geq \mathcal{R}_t'(loc', con', inn') + \sum_{ab \in Q} f_b(a)\). As before, \(\perp\) is assumed to be a minimal element here.

Hence, at the end of our procedure we can correctly set \(\mathcal{R}_t = \mathcal{R}_t^0\).

\(t\) is a join node. Let \(t_1, t_2\) be the two children of \(t\) in \(T\), recall that \(\chi(t_1) = \chi(t_2) = \chi(t)\). We

initiate by setting
\[
\mathcal{R}_t^0(loc, con, inn) := \perp \quad \text{for each} \ (loc, con, inn) \in S(t).
\]

Let us branch over each \(loc, con_1, con_2 \subseteq A_{\chi(t)}\) and \(\text{inn}_1, \text{inn}_2 : \chi(t) \to |q|_0\). For every \(b \in \chi(t)\)
set
\[
\text{inn}_1(b) = \text{inn}_1(b) + \text{inn}_2(b) - \{|a|ab \in \text{loc}|\}. \quad \text{Let} \ N_1 \text{ and} \ N \text{ be the numbers of equivalence classes in} \ con_1 \text{ and} \ \text{trcl}(con_1 \cup con_2)\text{ correspondingly. If:}
\]

- \(\text{con}_1 \cap \text{con}_2 \neq \text{trcl}(\widetilde{\text{loc}}), \quad \text{and/or}\)
- \(N - N_1 \neq \frac{1}{2}|\text{con}_2 \setminus \text{trcl}(\widetilde{\text{loc}})|, \quad \text{and/or}\)
- \(\mathcal{R}_t_1(loc, con_1, inn_1) = \perp, \quad \text{and/or}\)
- \(\mathcal{R}_t_2(loc, con_2, inn_2) = \perp, \quad \text{and/or}\)
- \(\text{inn}(b) > q \quad \text{for some} \ b \in \chi(t)\)

26
At the end of this procedure, we set $R_t = R^0_t$.

For correctness, assume that $R^0_t(\text{loc}, \text{con}, \text{inn}) = \tau \neq \perp$ is obtained from $\text{loc}, \text{con}_1, \text{con}_2, \text{inn}_1, \text{inn}_2$ as above. Let $D_1 = (\chi^{t_1}_1, A_1)$ and $D_2 = (\chi^{t_2}_2, A_2)$ be polytrees witnessing $R_{t_1}(\text{loc}, \text{con}_1, \text{inn}_1)$ and $R_{t_2}(\text{loc}, \text{con}_2, \text{inn}_2)$ correspondingly. Recall from the proof of Theorem 13 that common vertices of D_1 and D_2 are precisely $\chi(t)$, $\text{loc} = A_1 \cap A_2$ and inn specifies the number of parents of every $b \in \chi(T)$ in $D = D_1 \cup D_2$. Numbers of active connected components of D and D_1 are N and N_1 correspondingly. Observe that D can be constructed from D_1 by adding vertices and arcs of D_2. As $\text{con}_1 \cap \text{con}_2 = \text{trcl}(\text{loc})$, we can only add a path between vertices in $\chi(t)$ if it didn’t exist in D_1. Hence $\frac{1}{2} |\text{con}_2 \setminus \text{trcl}(\text{loc})|$ specifies the number of paths between vertices in $\chi(t)$ via forgotten vertices of $\chi^{t_2}_2$. The equality $N_1 = N - \frac{1}{2} |\text{con}_2 \setminus \text{trcl}(\text{loc})|$ means that adding every such path decreases the number of active connected components of D_1 by one. As D_1 is a polytree, D is a polytree as well, so $D \in \Psi_t$. The snapshot of D in t is $(\text{loc}, \text{con}, \text{inn})$ and

$$\text{score}(D) = \sum_{a \in A(D)} f_{a}(t) = \sum_{a \in A_1} f_{a}(t_1) + \sum_{a \in A_2} f_{a}(t_2) - \sum_{a \in \text{loc}} f_{a}(t) = \text{score}(D_1) + \text{score}(D_2) - \text{doublecount} = R_{t_1}(\text{loc}, \text{con}_1, \text{inn}_1) + R_{t_2}(\text{loc}, \text{con}_2, \text{inn}_2) - \text{doublecount} = \tau.$$

So D witnesses that $R_{t_1}(\text{loc}, \text{con}, \text{inn}) = \tau$.

For the converse, assume that $R_{t_1}(\text{loc}, \text{con}, \text{inn}) = \tau \neq \perp$ and D is a polytree witnessing this. Let D_1 and D_2 be restrictions of D to $\chi^{t_1}_1$ and $\chi^{t_2}_2$ correspondingly, then $A(D_1) \cap A(D_2) = \text{loc}$, in particular $D = D_1 \cup D_2$. Let $(\text{loc}, \text{con}_1, \text{inn}_1)$ be the snapshot of D_1 in t_i, $i = 1, 2$. $D = D_1 \cup D_2$ is a polytree, so any pair of vertices in $\chi(t)$ can not be connected by different paths in D_1 and D_2, i.e. $\text{con}_1 \cap \text{con}_2 = \text{trcl}(\text{loc})$. By the procedure of our algorithm,

$$\text{score}(D_2) - \text{doublecount} = R_{t_1}(\text{loc}, \text{con}_1, \text{inn}_1) + R_{t_2}(\text{loc}, \text{con}_2, \text{inn}_2) - \text{doublecount} \geq \text{score}(D_1) + \text{doublecount} \geq \text{score}(D) = \tau.$$

Hence the resulting record R_t is correct, which completes the correctness proof of the algorithm.

Since the nice tree-decomposition T has $O(n)$ nodes, the runtime of the algorithm is upper-bounded by $O(n)$ times the maximum time required to process each node. This is dominated by the time required to process join nodes, for which there are at most $2(2^{k^2})(4(k^2))^2 = 8^k \cdot (q+1)^{2k}$ branches corresponding to different choices of $\text{loc}, \text{con}_1, \text{con}_2, \text{inn}_1, \text{inn}_2$. Constructing $\text{trcl}(\text{con}_1 \cup \text{con}_2)$ and computing numbers of active connected components can be done in time $O(k^3)$. Computing doublecount and inn takes time at most $O(k^2)$. So the record for a join node can be computed in time $2^{O(k^2)} \cdot q^{O(k)}$. Hence, after we have computed a width-optimal tree-decomposition for instance by Bodlaender’s algorithm, the total runtime of the algorithm is upper-bounded by $2^{O(k^2)} \cdot q^{O(k)} \cdot n$.

Finally, to obtain the desired result for PL^+, we can simply adapt the above algorithm by disregarding the entry inn and disregard all explicit bounds on the in-degrees (e.g., in the definition of Ψ_t). The runtime for this dynamic programming procedure is then $2^{O(k^2)} \cdot n$.

The situation is, however, completely different for PL^+: unlike BNSL$^+$, this problem is in fact polynomial-time tractable. Indeed, it admits a simple reduction to the classical minimum edge-weighted spanning tree problem.

Observation 20. PL^+ is polynomial-time tractable.

Proof. Consider an the superstructure graph G of an instance $I = (V, F, t)$ of PL^+ where we assign to each edge $ab \in E(G)$ a weight $w(ab) = \max f_{a}(b), f_{b}(a)$, and recall that we can assume w.l.o.g. that G is connected. Each spanning tree T of G with weight p can be transformed to a DAG D over V with a score of p and whose skeleton is a tree by simply replacing each edge ab with the arc ab or ba, depending on which achieves a higher score. On the other hand, each solution to I can be transformed into a spanning tree T of the same score by reversing this process. The claim then follows from the fact that a minimum-weight spanning tree of a graph can be computed in time $O(|V| \cdot \log |V|)$. \qed
This coincides with the intuitive expectation that learning simple, more restricted networks could be easier than learning general networks. We conclude our exposition with an example showcasing that this is not true in general when comparing PL to BNSL. Grüttemeier et al. [24] recently showed that PL\(\neq 0\) is W[1]-hard when parameterized by the number of dependent vertices, which are vertices with non-empty sets of candidate parents in the non-zero representation. For BNSL\(\neq 0\) we can show:

Theorem 21. BNSL\(\neq 0\) is fixed-parameter tractable when parameterized by the number of dependent vertices.

Proof. Consider an algorithm \(\mathbb{B}\) for BNSL\(\neq 0\) which proceeds as follows. First, it identifies the set \(X\) of dependent vertices in the input instance \(\mathcal{I} = (\mathcal{V}, \mathcal{F}, \ell)\), and then it branches over all possible choices of arcs with both endpoints in \(X\), i.e., it branches over each arc set \(A \subseteq A_X\). This results in at most \(3^k\) branches, where \(k = |X|\). In each branch and for each vertex \(x \in X\), it now finds the highest-scoring parent set among those which precisely match \(A\) on \(X\), i.e., it first computes \(\Gamma^A_f(x) = \{ P \in \text{parentsets}(x) \mid \forall w \in X\setminus\{x\} : w \in P \iff wp \in A\}\) and then computes \(\text{score}^A(x) = \max_{P \in \Gamma^A_f(x)}(f_x(P))\). It then compares \(\sum_{x \in X} \text{score}^A(x)\) to \(\ell\), if the former is at least as large as the latter in at least one branch then \(\mathbb{B}\) outputs “Yes”, and otherwise it outputs no.

The runtime of this algorithm is upper-bounded by \(O(3^k \cdot k \cdot |\mathcal{I}|)\). As for correctness, if \(\mathcal{I}\) admits a solution \(D\) then we can construct a branch such that \(\mathbb{B}\) will output “Yes”: in particular, this must occur when \(A\) is equal to the arcs of the subgraph of \(D\) induced on \(X\). On the other hand, if \(\mathbb{B}\) outputs “Yes” for some choice of \(A\), we can construct a DAG \(D\) with a score of at least \(\ell\) by extending \(A\) as follows: for each \(x \in X\) we choose a parent set \(P \in \Gamma^A_f(x)\) which maximizes \(f_x(P)\) and we add arcs from each vertex in \(P \setminus X\) to \(x\). The score of this DAG will be precisely \(\sum_{x \in X} \text{score}^A(x)\), which concludes the proof. \(\square\)

6 Concluding Remarks

Our results provide a new set of tractability results that counterbalance the previously established algorithmic lower bounds for Bayesian Network Structure Learning and Polytree Learning on “simple” superstructures. In particular, even though the problems remain W[1]-hard when parameterized by the vertex cover number of the superstructure [36, 24], we obtained fixed-parameter tractability and a data reduction procedure using the feedback edge number and its localized version. Together with our lower-bound result for treecut width, this completes the complexity map for BNSL w.r.t. virtually all commonly considered graph parameters of the superstructure. Moreover, we showed that if the input is provided with an additive representation instead of the non-zero representation considered in previous theoretical works, the problems admit a dynamic programming algorithm which guarantees fixed-parameter tractability w.r.t. the treewidth of the superstructure.

This theoretical work follows up on previous complexity studies of the considered problems, and as such we do not claim any immediate practical applications of the results. That being said, it would be interesting to see if the polynomial-time data reduction procedure introduced in Theorem 3 could be adapted and streamlined (and perhaps combined with other reduction rules which do not provide a theoretical benefit, but perform well heuristically) to allow for a speedup of previously introduced heuristics for the problem [43, 42], at least for some sets of instances.

Last but not least, we’d like to draw attention to the local feedback edge number parameter introduced in this manuscript specifically to tackle BNSL. This generalization of the feedback edge set has not yet been considered in graph-theoretic works; while it is similar in spirit to the recent push towards measuring the so-called elimination distance of a graph to a target class, it is not captured by that notion. Crucially, we believe that the applications of this parameter go beyond BNSL; all indications suggest that it may be used to achieve tractability also for purely graph-theoretic problems where previously only tractability w.r.t. few was known.

References

Checklist

1. For all authors...

 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]

 (b) Did you describe the limitations of your work? [Yes] The limitations are given by assumptions in theorem formulations.

 (c) Did you discuss any potential negative societal impacts of your work? [N/A] This is a purely theoretical contribution that provides new insights into the complexity of a prominent problem in AI, and as such we do not see any conceivable negative societal impacts of this work.
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

(b) Did you include complete proofs of all theoretical results? [Yes] Due to space constraints, full proofs are provided in the supplementary material.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [N/A] The paper is purely theoretical.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]

(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] We didn’t use neither crowdsourcing nor conducted research with human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]