Learning Long-Term Dependencies in Irregularly-Sampled Time Series

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Mathias Lechner, Ramin Hasani


<p>Recurrent neural networks (RNNs) with continuous-time hidden states are a natural fit for modeling irregularly-sampled time series. These models, however, face difficulties when the input data possess long-term dependencies. We prove that similar to standard RNNs, the underlying reason for this issue is the vanishing or exploding of the gradient during training. This phenomenon is expressed by the ordinary differential equation (ODE) representation of the hidden state, regardless of the ODE solver's choice. We provide a solution by designing a new algorithm based on the long short-term memory (LSTM) that separates its memory from its time-continuous state. This way, we encode a continuous-time dynamical flow within the RNN, allowing it to respond to inputs arriving at arbitrary time-lags while ensuring a constant error propagation through the memory path. We call these RNN models ODE-LSTMs. We experimentally show that ODE-LSTMs outperform advanced RNN-based counterparts on non-uniformly sampled data with long-term dependencies.</p>