
Agnostic Q-learning with Function Approximation in
Deterministic Systems: Near-Optimal Bounds on

Approximation Error and Sample Complexity

Anonymous Author(s)
Affiliation
Address
email

Abstract

The current paper studies the problem of agnostic Q-learning with function approx-1

imation in deterministic systems where the optimal Q-function is approximable2

by a function in the class F with approximation error δ ≥ 0. We propose a novel3

recursion-based algorithm and show that if δ = O
(
ρ/
√

dimE

)
, then one can find4

the optimal policy using O(dimE) trajectories, where ρ is the gap between the5

optimal Q-value of the best actions and that of the second-best actions and dimE6

is the Eluder dimension of F . Our result has two implications:7

1. In conjunction with the lower bound in [Du et al., 2020], our upper bound8

suggests that the condition δ = Θ̃
(
ρ/
√

dimE

)
is necessary and sufficient for9

algorithms with polynomial sample complexity.10

2. In conjunction with the obvious lower bound in the tabular case, our upper11

bound suggests that the sample complexity Θ̃ (dimE) is tight in the agnostic12

setting.13

Therefore, we help address the open problem on agnostic Q-learning proposed14

in [Wen and Van Roy, 2013]. We further extend our algorithm to the stochastic15

reward setting and obtain similar results.16

1 Introduction17

Q-learning is a fundamental approach in reinforcement learning [Watkins and Dayan, 1992]. Empiri-18

cally, combining Q-learning with function approximation schemes has lead to tremendous success19

on various sequential decision-making problems. However, theoretically, we only have a good20

understanding of Q-learning in the tabular setting. Strehl et al. [2006], Jin et al. [2018] show that21

with certain exploration techniques, Q-learning provably finds a near-optimal policy with sample22

complexity polynomial in the number of states, number of actions and the planning horizon. However,23

modern reinforcement learning applications often require dealing with large state space where the24

polynomial dependency on the number of states is not acceptable.25

Recently, there has been great interest in designing and analyzing Q-learning algorithms with26

linear function approximation [Wen and Van Roy, 2013, Du et al., 2019]. Under various additional27

assumptions, these works show that one can obtain a near-optimal policy using Q-learning with28

sample complexity polynomial in the feature dimension d and the planning horizon, if the optimal29

Q-function is an exact linear function of the d-dimensional features of the state-action pairs.30

A major drawback of these works is that the algorithms can only be applied in the well-specified case,31

i.e., the optimal Q-function is an exact linear function. In practice, the optimal Q-function is usually32

linear up to small approximation errors instead of being exactly linear. In this paper, we focus on33

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

the agnostic setting, i.e., the optimal Q-function can only be approximated by a function class with34

approximation error δ, which is closer to practical scenarios. Indeed, designing a provably efficient35

Q-learning algorithm in the agnostic setting is an open problem posed by Wen and Van Roy [2013].36

Technically, the agnostic setting is arguably more challenging than the exact setting. As recently37

shown by Du et al. [2020], for the class of linear functions, when the approximation error δ =38

Ω(
√

poly(H)/d) where H is the planning horizon, any algorithm needs to sample exponential39

number of trajectories to find a near-optimal policy even in deterministic systems. Therefore, for40

algorithms with polynomial sample complexity, additional assumptions are needed to bypass the41

hardness result. For the exact setting δ = 0, Wen and Van Roy [2013] show that one can find an42

optimal policy using polynomial number of trajectories for linear functions in deterministic systems,43

which implies that the agnostic setting could be exponentially harder than the exact setting.44

Due to the technical challenges, for the agnostic setting, previous papers mostly focus on the bandit45

setting or reinforcement learning with a generative model [Lattimore and Szepesvari, 2019, Van Roy46

and Dong, 2019, Neu and Olkhovskaya, 2020], and much less is known for the standard reinforcement47

learning setting. In this paper, we design Q-learning algorithms with provable guarantees in the48

agnostic case for the standard reinforcement learning setting.49

1.1 Our Contributions50

Our main contribution is a provably efficient Q-learning algorithm for the agnostic setting with51

general function approximation in deterministic systems. Our results help address the open problem52

posed by Wen and Van Roy [2013].53

Theorem 1.1 (Informal). For a given episodic deterministic system and a function class F , suppose54

there exists f ∈ F such that the optimal Q-function Q∗ satisfies |f(s, a) − Q∗(s, a)| ≤ δ for55

any state-action pair (s, a). Suppose ρ = Ω(
√

dimEδ), where the optimality gap ρ is the gap56

between the optimal Q-value of the best action and that of the second-best action (formally defined in57

Definition 3.1) and dimE is the Eluder dimension of F (see Definition 3.5), our algorithm finds the58

optimal policy using O(dimE) trajectories.59

Our main assumption is that the optimality gap ρ satisfies ρ = Ω(
√

dimEδ). Below we discuss the60

necessity of this assumption and its connection with the recent hardness result in Du et al. [2020].61

In Du et al. [2020], it has been proved that in deterministic systems, if the optimality gap ρ = 162

and the optimal Q-function can be approximated by linear functions with approximation error63

δ = Ω(
√

poly(H)/d), any algorithm needs to sample exponential number of trajectories to find64

a near-optimal policy even in deterministic systems. Here d is the input dimension of the linear65

functions. Using the same technique as in [Du et al., 2020], we show the following hardness result66

for Q-learning with linear function approximation in the agnostic setting.67

Proposition 1.2 (Generalization of Theorem 4.1 in [Du et al., 2020]). For any ρ ≤ 1, there exists68

a family of deterministic systems where the optimality gap is ρ and the optimal Q-function can69

be approximated by linear functions with approximation error δ = O(C/
√
d · ρ), such that any70

algorithm that returns a ρ/2-optimal policy needs to sample Ω(2C) trajectories.71

By setting C = O(log(Hd)) such that 2C = poly(Hd), Proposition 1.2 implies that for any72

algorithm with polynomial sample complexity, the approximation error δ that can be handled is at73

most Õ(ρ/
√
d). Recall that the Eluder dimension of linear functions is Õ(d). Theorem 1.1 suggests74

that as long as ρ = Ω̃(
√
dδ), our algorithm finds the optimal policy using polynomial number of75

samples. Note that this applies to every pair of (ρ, δ) that satisfies the condition. Proposition 1.276

suggests that there exist environments with ρ = Ω̃(
√
dδ) which require exponential number of77

samples to find a near-optimal policy. Therefore, combining Theorem 1.1 and Proposition 1.2, we78

give a tight characterization (up to logarithmic factors) on the quantitative relation between ρ and δ79

under which one can use polynomial number of samples to find the optimal policy.80

Our result is in the same spirit as the results in [Lattimore and Szepesvari, 2019, Van Roy and81

Dong, 2019], which also demonstrate the tightness of the hardness result in [Du et al., 2020].82

However, as will be made clear, technically our result significantly deviates from those in [Lattimore83

and Szepesvari, 2019, Van Roy and Dong, 2019]. See Section 2 for more detailed comparison84

with [Lattimore and Szepesvari, 2019, Van Roy and Dong, 2019].85

2

Note that the sample complexity of our algorithm is linear in the Eluder dimension of the function86

class. For the tabular setting, the Eluder dimension is as large as the cardinality of the state-action87

space [Russo and Van Roy, 2013]. This cardinality is also a sample complexity lower bound, i.e.,88

for the tabular setting, the sample complexity lower bound is Ω (dimE). Therefore, our sample89

complexity is also tight.90

Finally, we show how to generalize our results to handle stochastic rewards. Under the same91

assumption that ρ = Ω(
√

dimEδ), our algorithm finds an optimal policy using poly(dimE ,H)
ρ2 log(1/p)92

trajectories with failure probability p. We would like to remark that the log(1/p)/ρ2 dependency is93

necessary for finding optimal policies even in the bandit setting [Mannor and Tsitsiklis, 2004].94

Organization In Section 2, we review related work. In Section 3, we introduce necessary notations,95

definitions and assumptions. In Section 4, we discuss the special case where F is the class of96

linear functions to demonstrate the high-level approach of our algorithm and the intuition behind the97

analysis. We then present the result for general function classes in Section 5. We conclude in Section98

6 and defer proofs to the supplementary material.99

2 Related Work100

Classical theoretical reinforcement learning literature studies asymptotic behavior of concrete algo-101

rithms or finite sample complexity bounds forQ-learning algorithms under various assumptions [Melo102

and Ribeiro, 2007, Zou et al., 2019]. These works usually assume the initial policy has certain benign103

properties, which may not hold in practical applications. Another line of work focuses on sample104

complexity and regret bound in the tabular setting [Lattimore and Hutter, 2012, Azar et al., 2013,105

Sidford et al., 2018a,b, Agarwal et al., 2019, Jaksch et al., 2010, Agrawal and Jia, 2017, Azar et al.,106

2017, Kakade et al., 2018]. Strehl et al. [2006], Jin et al. [2018] show that with certain exploration107

techniques, Q-learning provably finds a near-optimal with polynomial sample complexity. However,108

these works have sample complexity at least linearly depends on the number of states, which is109

necessary without additional assumptions [Jaksch et al., 2010].110

Various exploration algorithms are proposed for Q-learning with function approximation [Azizzade-111

nesheli et al., 2018, Fortunato et al., 2018, Lipton et al., 2018, Osband et al., 2016, Pazis and Parr,112

2013]. However, none of these algorithms have polynomial sample complexity guarantees. Li et al.113

[2011] propose a Q-learning algorithm which requires the Know-What-It-Knows oracle. However, it114

is unknown how to implement such oracle in general. Wen and Van Roy [2013] propose an algorithm115

for Q-learning with function approximation in deterministic systems which works for a family of116

function classes in the exact setting. For the agnostic setting, the algorithm in [Wen and Van Roy,117

2013] can only be applied to a special case called “state aggregation case”. See Section 4.3 in [Wen118

and Van Roy, 2013] for more details. Indeed, as stated in the conclusion of [Wen and Van Roy, 2013],119

designing provably efficient algorithm for agnostic Q-learning with general function approximation120

is a challenging open problem.121

Du et al. [2019] propose an algorithm for Q-learning with linear function approximation in the exact122

setting. The algorithm in [Du et al., 2019] further requires conditions on the optimality gap ρ and a123

low-variance condition on the transition. Our algorithms also requires conditions on the optimality124

gap ρ and shares similar recursion-based structures as the algorithm in [Du et al., 2019]. However, our125

algorithm handles general function classes with bounded Eluder dimension and with approximation126

error, neither of which can be handled by the algorithm in [Du et al., 2019].127

Recently, Du et al. [2020] proved lower bounds for Q-learning algorithm in the agnostic setting. As128

mentioned in the introduction, our algorithm complements the lower bounds in [Du et al., 2020]129

and demonstrates the tightness of their lower bound. Lattimore and Szepesvari [2019], Van Roy and130

Dong [2019] also give algorithms in the agnostic setting to demonstrate the tightness of the lower131

bound in [Du et al., 2020] from other perspectives. Technically, our results are different from those132

in [Lattimore and Szepesvari, 2019, Van Roy and Dong, 2019] in the following ways. First, we133

study the standard reinforcement learning setting, where Van Roy and Dong [2019] focus on the134

bandit setting and Lattimore and Szepesvari [2019] study both the bandit setting and reinforcement135

learning with a generative model. Second, for the reinforcement learning result in [Lattimore and136

Szepesvari, 2019], it is further assumed that Q-functions induced by all polices can be approximated137

by linear functions, while in this paper we only assume the optimal Q-function can be approximated138

3

by a function class with bounded Eluder dimension, which is much weaker than the assumption139

in [Lattimore and Szepesvari, 2019]. In conjunction with the lower bound in [Du et al., 2020], we140

give a tight condition δ = Θ̃
(
ρ/
√

dimE

)
under which there is an algorithm with polynomial sample141

complexity to find the optimal policy.142

Recently, a line of work study Q-learning in the linear MDP setting [Yang and Wang, 2019b,a,143

Jin et al., 2019, Wang et al., 2019]. In the linear MDP setting, it is assumed that both the reward144

function and the transition operator is linear, which is stronger than the assumption that the optimal145

Q-function is linear studied in this paper. For the linear MDP setting, algorithms with polynomial146

sample complexity are known, and these algorithms can usually handle approximation errors on the147

reward function and the transition operator.148

3 Preliminaries149

Notations We write [n] to denote the set {1, 2, . . . , n}. We use ‖ · ‖p to denote the `p norm of a150

vector. For any finite set S, we write4(S) to denote the probability simplex.151

3.1 Episodic Reinforcement Learning152

In this paper, we consider Markov Decision Processes with deterministic transition and stochastic153

reward. Formally, letM = (S,A, H, P,R) be a Markov Decision Process (MDP) where S is the154

state space,A is the action space,H ∈ Z+ is the planning horizon, P : S×A → S is the deterministic155

transition function which takes a state-action pair and returns a state, and R : S ×A → 4 (R) is the156

reward distribution. When the reward is deterministic, we may regard R : S ×A → R as a function157

instead of a distribution. We assume there is a fixed initial state s1.158

A policy π : S → 4(A) prescribes a distribution over actions for each state. The policy π induces159

a (random) trajectory s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH where a1 ∼ π(s1), r1 ∼ R(s1, a1),160

s2 = P (s1, a1), a2 ∼ π(s2), etc. To streamline our analysis, for each h ∈ [H], we use Sh ⊆ S161

to denote the set of states at level h, and we assume Sh do not intersect with each other.1 We also162

assume
∑H
h=1 rh ∈ [0, 1]. Our goal is to find a policy π that maximizes the expected total reward163

E
[∑H

h=1 rh | π
]
. We use π∗ to denote the optimal policy.164

3.2 Q-function, V -function and the Optimality Gap165

An important concept in RL is the Q-function. Given a policy π, a level h ∈ [H] and a state-action166

pair (s, a) ∈ Sh ×A, the Q-function is defined as Qπh(s, a) = E
[∑H

h′=h rh′ | sh = s, ah = a, π
]
.167

For simplicity, we denote Q∗h(s, a) = Qπ
∗

h (s, a). It will also be useful to define the value function168

of a given state s ∈ Sh as V πh (s) = E
[∑H

h′=h rh′ | sh = s, π
]
. For simplicity, we denote V ∗h (s) =169

V π
∗

h (s). Throughout the paper, for the Q-function Qπh and Q∗h and the value function V πh and V ∗h ,170

we may omit h from the subscript when it is clear from the context.171

In addition to these definitions, we list below an important concept, the optimality gap, which is172

widely used in reinforcement learning and bandit literature.173

Definition 3.1 (Optimality Gap). The optimality gap ρ is defined as ρ = infQ∗(s,a) 6=V ∗(s) V
∗(s)−174

Q∗(s, a).175

In words, ρ is the smallest reward-to-go difference between the best set of actions and the rest. In176

this paper we need ρ to be strictly positive. We remark that this is not a restrictive assumption.177

This assumption is widely used in bandit problems Abbasi-Yadkori et al. [2011], Dani et al. [2008],178

Lattimore and Szepesvári [2018]. Recently, Du et al. [2019] gave a provably efficient Q-learning179

algorithm based on this assumption, Simchowitz and Jamieson [2019] showed that with this condition,180

the agent only incurs logarithmic regret in the tabular setting and Zanette et al. [2019] showed that181

under this condition, one can remove all horizon dependencies in the sample complexity. Empirically,182

1This assumption is only for the sake of presentation. Our result can be easily generalized to the case when
this assumption does not hold.

4

arguably all environments with a finite action set satisfy the optimality gap conditions. In Atari-games,183

e.g., Freeway, the optimal Q value is often distinctive from the rest of actions. For board games, e.g.184

tic-tac-toe, Chess, etc, most states have zero rewards except for the winning states. Hence, every185

optimal action has a Q-value of 1 and the rest actions have a Q-value of 0, in which case ρ = 1 by186

Definition 3.1.187

3.3 Function Approximation and Eluder Dimension188

When the state space is large, we need structures on the state space so that reinforcement learning189

methods can generalize. For a given function class F , each f ∈ F is a function that maps a state-190

action pair to a real number. For a given MDP and a function class F , we define the approximation191

error to the optimal Q-function as follow.192

Definition 3.2 (Approximation Error). For a given MDP and a function class F , the approximation193

error δ is defined to be δ = inff∈F sup(s,a)∈S×A |f(s, a)−Q∗(s, a)|.194

Here, the approximation error δ characterizes how well the given function class F approximates the195

optimal Q-function. When δ = 0, then optimal Q-function can be perfectly predicted by the function196

class, which has been studied in previous papers [Wen and Van Roy, 2013, Du et al., 2019]. In this197

paper, we focus the case δ > 0.198

An important function class is the class of linear functions. We assume the agent is given a feature199

extractor φ : S ×A → Rd where ‖φ(s, a)‖2 ≤ 1 for all state-action pairs. The feature extractor can200

be hand-crafted or a pre-trained neural network that transforms a state-action pair to a d-dimensional201

embedding. Given the feature extractor φ, we define the class of linear functions as follow.202

Definition 3.3. For a vector θ ∈ Rd, we define fθ(s, a) = θ>φ(s, a). The class of linear functions203

is defined as F = {fθ | ‖θ‖2 ≤ 1}.204

Here we assume ‖θ‖2 ≤ 1 only for normalization purposes.205

For general function classes, an important concept is the Eluder dimension, for which we first need to206

introduce the concept of ε-dependence.207

Definition 3.4 (ε-dependence [Russo and Van Roy, 2013]). For a function class F , we say a state-208

action pair (s, a) is ε-dependent on state-action pairs {(s1, a1), . . . , (sn, an)} ⊂ S ×A with respect209

to F if for all f1, f2 ∈ F ,210

n∑
i=1

|f1(si, ai)− f2(si, ai)|2 ≤ ε2 =⇒ |f1(s, a)− f2(s, a)|2 ≤ ε2.

Further, (s, a) is ε-independent of state-action pairs {(s1, a1), . . . , (sn, an)} if (s, a) is not ε-211

dependent on state-action pairs {(s1, a1), . . . , (sn, an)}.212

Now, we recall the definition of ε-Eluder dimension as introduced in Russo and Van Roy [2013].213

Definition 3.5 (ε-Eluder Dimension). For a function class F , the ε-Eluder dimension dimE(F , ε) is214

the length of the longest sequence of elements in S ×A such that every element is ε′-independent of215

its predecessors for some ε′ ≥ ε.216

As an example, when F is the class of linear functions with norm ‖θ‖2 ≤ 1 and ‖φ(s, a)‖2 ≤ 1,217

the ε-Eluder dimension dimE(F , ε) is O(d log(1/ε)) as noted in Example 4 in Russo and Van Roy218

[2013]. We refer interested readers to Russo and Van Roy [2013] for more examples.219

We remark that in this paper, the sample complexity of our algorithm depends on the ε-Eluder220

dimension introduced in Russo and Van Roy [2013] instead of the the Eluder dimension introduced221

in Wen and Van Roy [2013], since the Eluder dimension introduced in Wen and Van Roy [2013] is222

defined for the exact case and therefore cannot handle approximation errors.223

4 Algorithm for Linear Functions224

In this section, we consider the special case where F is the class of linear functions to demonstrate225

the high-level approach of our algorithm and the intuition behind the analysis. For simplicity, we also226

5

Algorithm 1 Main Algorithm
1: Initialize the current policy π arbitrarily
2: set C = ρ2/16 · I ∈ Rd×d
3: set Y = 0 ∈ Rd
4: invoke Explore(s1)
5: return π

Algorithm 2 Explore(s)

1: for a ∈ A do
2: if φ(s, a)>C−1φ(s, a) ≤ 1 then
3: set Q̂(s, a) = φ(s, a)>C−1Y
4: else
5: let s′ = P (s, a)
6: set

Q̂(s, a) =

{
r(s, a) if s ∈ SH
Explore(s′) + r(s, a) otherwise

7: set C = C + φ(s, a)φ(s, a)>, Y = Y + φ(s, a)Q̂(s, a)
8: end if
9: end for

10: set π(s) = argmaxa∈AQ̂(s, a).
11: return r(s, π(s)) + Explore(P (s, π(s)))

assume that the size of action space A is bounded by a constant and the reward is deterministic. We227

show how to remove these assumptions in the following sections.228

Our goal is to show when ρ = Ω(δ
√
d log(1/ρ)), Algorithm 1 learns the optimal policy π∗ using229

nearly linear number of trajectories.230

Theorem 4.1. Suppose ρ ≥ 4δ(
√

2d log(16/ρ2) + 1). Algorithm 1 returns the optimal policy π∗231

using at most O(d log(1/ρ)) trajectories.232

The complete proof is provided in the supplementary material. On a high level, our algorithm is233

divided into two parts: Algorithm 1 in which we define the main loop and Algorithm 2 in which234

we define a recursion-based subroutine Explore(s) to calculate the optimal values. Intuitively, the235

subroutine Explore(s) should return V ∗(s), and upon the termination of Explore(s) we should have236

π(s) = π∗(s).237

In our algorithm, we maintain a dataset to store the features of a subset of the state-action pairs φ(s, a)238

and their optimal Q-values Q∗(s, a). Here, the matrix C ∈ Rd is the covariance of the dataset, i.e.,239

C =
∑
φ(s, a)φ(s, a)> and Y =

∑
φ(s, a)Q∗(s, a). In order to predict the optimal Q-value of an240

unseen state-action pair (s, a) using least squares, we may directly calculate φ(s, a)>C−1Y if C is241

invertible. We use a ridge term of ρ2/16 to make sure C is always invertible.242

The high-level idea behind our algorithm is simple: we use least squares to predict the optimal243

Q-value whenever possible, and use recursions to figure out the optimal Q-value otherwise. One244

technical subtlety here is: What condition should we check to decide whether we can calculate the245

optimal Q-value directly by least squares or we need to make recursive calls? This condition needs to246

be chosen carefully, since if we make too many recursive calls, the overall sample complexity will be247

unbounded, and if we make too few recursive calls, the optimal Q-values estimated by linear squares248

will be inaccurate which affects the correctness of the algorithm.249

In Line 2 of Explore(s), we check whether φ(s, a)>C−1φ(s, a) ≤ 1, which is the condition we use250

to decide whether we should make recursive calls or calculate the optimal Q-value directly by least251

squares. Here φ(s, a)>C−1φ(s, a) is the variance of the prediction, which is common in UCB-type252

algorithm for linear contextual bandit (see e.g. Li et al. [2010]). In our algorithm, instead of using253

φ(s, a)>C−1φ(s, a) as an uncertainty bonus, we directly check its magnitude to decide whether254

the linear predictor learned on the collected dataset generalizes well on the new data φ(s, a) or not.255

The effectiveness of such a choice follows from the following lemma which bounds the number of256

recursive calls made by our algorithm.257

6

Lemma 4.2. Line 7 is executed for at most 2d log(16/ρ2) times.258

A proof is provided in the supplementary material. Moreover, in order to make sure that the value259

returned by Explore(s) is accurate, in Line 11 of Explore(s), we make recursive calls instead of using260

the estimated Q-values Q̂. As will be shown in the supplementary material, such a choice guarantees261

that the value returned by Explore(s) always equals V ∗(s).262

Lastly, we want to remark that if we use a ρ′ < ρ in the algorithm, the algorithm is still correct and263

the sample complexity will be O(d log(1/ρ′)). For unknown ρ, one can use an exponential search in264

a suitable range which will only increase the sample complexity by a logarithmic factor.265

5 General Result266

In this section, we consider the general case where F is an arbitrary function class and provide a267

provably efficient algorithm which is a generalization of the algorithm in Section 4. Note that we make268

no assumptions on the action space A. For simplicity, we assume that the reward is deterministic. We269

show how to remove this assumption in the supplementary material. We first define the Maximum270

Uncertainty Oracle which allows us to work with arbitrary action space.271

5.1 Maximum Uncertainty Oracle272

As discussed the previous section, it is useful to identify actions for which we can not accurately273

compute the optimal Q-value using the least-squares predictor. We formalize this intuition to arrive274

at the following oracle which finds the action with largest “uncertainty” for a given state s. We note275

that similar oracles were also used in [Du et al., 2019].276

Definition 5.1 (Oracle(s, δ, Y)). Given a state s ∈ S, δ ≥ 0 and a set of state-action pairs Y ⊆277

S ×A, define278

(â, f̂1, f̂2) = argmax
a∈A,f1,f2∈F

|f1(s, a)− f2(s, a)|2 (1)

s.t.
1

|Y |
∑

(s′,a′)∈Y

|f1(s′, a′)− f2(s′, a′)|2 ≤ δ2. (2)

The oracle returns (â, |f̂1(s, â)− f̂2(s, â)|2).279

To motivate this oracle, suppose f2 is the function that gives the best approximation of the optimal280

Q-function, i.e., the optimizer f in Definition 3.2. In this scenario, we know f1 predicts well on281

state-action pairs (s′, a′) ∈ Y which is implied by the constraint. Note that since we maximize over282

the entire function class F , â is the action with largest uncertainty. If |f̂1(s, â)− f̂2(s, â)|2 is small,283

then we can predict well on state s for all actions. Otherwise, if we cannot predict well on state s for284

some action, so we need to explore and return the action with largest uncertainty.285

Remark 1. When F is the class of linear functions, evaluating the oracle’s response amounts to286

solving:287

(â, θ̂1, θ̂2) = argmax
a∈A,θ1,θ2∈F

|(θ1 − θ2)>φ(s, a)|2

s.t. (θ1 − θ2)>

 1

|Y |
∑

(s′,a′)∈Y

φ(s′, a′)φ(s′, a′)>

 (θ1 − θ2) ≤ δ2.

In this case, using the notation in the algorithm in Section 4, it can be seen that the oracle returns the288

action a ∈ A which maximizes φ(s, a)>C−1φ(s, a).289

5.2 Algorithm290

In this section, we present the high level intuition for the Algorithm 3. Our goal is to show that291

when ρ = Ω(δ
√

dimE(F , ρ)), our algorithm learns the optimal policy π∗ using linear number of292

trajectories (in terms of Eluder dimension).293

7

Algorithm 3 Main Algorithm
1: Initialize the current policy π and f arbitrarily.
2: set Y = {}
3: invoke Explore(s1)
4: return π

Algorithm 4 Explore(s)

1: set (a, r) = Oracle(s, 2δ, Y)
2: while r > |ρ2 − δ| do
3: set Y = Y ∪ {(s, a,Explore(P (s, a)) + r(s, a))}
4: set (a, r) = Oracle(s, 2δ, Y)
5: end while
6: set f = argminf∈F

∑
(si,ai,yi)∈Y |f(si, ai)− yi|2

7: set π(s) = argmaxa∈A f(s, a)
8: return r(s, π(s)) + Explore(P (s, π(s)))

Theorem 5.1. Suppose294

ρ ≥ 6
√

2δ

√
dimE(F , ρ

4
). (3)

Then Algorithm 3 returns the optimal policy π∗ using at most O(dimE(F , ρ/4)) trajectories.295

The complete proof is provided in the supplementary material. Similar to the algorithm for linear296

functions given in Section 4, the algorithm for general function class is divided into two parts:297

Algorithm 3 and a subroutine Explore(s). Intuitively, the subroutine Explore(s) should return V ∗(s),298

and upon the termination of Explore(s), we should have π(s) = π∗(s).299

In our algorithm, we maintain a dataset to store the state-action pairs (s, a) and their optimalQ-values300

Q∗(s, a). In order to predict the optimal Q-value of an unseen state-action pair (s, a), we find the301

best predictor on the dataset using least squares, and use it to predict on (s, a).302

Similar to the algorithm in Section 4, the high level idea is that we use least squares to predict the303

optimal Q-value whenever possible, and otherwise we explore the environment. In Line 2, we check304

for a state s, whether the Maximum Uncertainty Oracle reports an uncertainty r > |ρ/2− δ|. Such a305

choice guarantees that the value returned by Explore(s) always equals V ∗(s) and also, as we prove,306

upper bounds the number of times we explore, i.e., execute Line 3, by the Eluder dimension of307

function class F .308

Lemma 5.2. For any constant c > 1, suppose ρ ≥ 4δ
√

c dimE(F, ρ4)−1
c−1 + 2δ. Then we have |Y | ≤309

cdimE(F, ρ4).310

A proof is provided in the supplementary material. The proof relies on definition of the Eluder311

dimension and the Maximum Uncertainty Oracle. We remark that when applied to linear functions,312

using the notation in the algorithm in Section 4, the subroutine Explore(s) keeps finding an action313

a ∈ A which maximizes φ(s, a)>C−1φ(s, a) (see Remark 1) until φ(s, a)>C−1φ(s, a) is below a314

threshold for all actions a ∈ A. Therefore, our algorithm is a generalization of the algorithm in315

Section 4.316

Again, we remark that while Algorithm 3 depends on both ρ and δ, one can use an exponential search317

for ρ and δ, and the sample complexity will increase mildly.318

6 Conclusion319

In this paper, we propose a novel provably efficient recursion-based algorithm for agnostic Q-learning320

with general function approximation in deterministic systems. We obtain a sharp characterization321

on the relation between the approximation error and the optimality gap, and also a tight sample322

complexity. We help address the open problem raised by Wen and Van Roy [2013].323

8

Broader Impact324

The focus of this paper is purely theoretical, and thus a broader impact discussion is not applicable.325

References326

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic327

bandits. In Advances in Neural Information Processing Systems, pages 2312–2320, 2011.328

Alekh Agarwal, Sham Kakade, and Lin F Yang. On the optimality of sparse model-based planning329

for markov decision processes. arXiv preprint arXiv:1906.03804, 2019.330

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case331

regret bounds. In Advances in Neural Information Processing Systems, pages 1184–1194, 2017.332

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax PAC bounds on the333

sample complexity of reinforcement learning with a generative model. Machine learning, 91(3):334

325–349, 2013.335

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-336

ment learning. In Proceedings of the 34th International Conference on Machine Learning, pages337

263–272, 2017.338

K. Azizzadenesheli, E. Brunskill, and A. Anandkumar. Efficient exploration through bayesian deep339

Q-networks. In 2018 Information Theory and Applications Workshop (ITA), pages 1–9, 2018.340

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit341

feedback. 2008.342

Simon S Du, Yuping Luo, Ruosong Wang, and Hanrui Zhang. Provably efficient Q-learning343

with function approximation via distribution shift error checking oracle. In Advances in Neural344

Information Processing Systems, pages 8058–8068, 2019.345

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient for346

sample efficient reinforcement learning? In International Conference on Learning Representations,347

2020.348

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband,349

Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,350

and Shane Legg. Noisy networks for exploration. In International Conference on Learning351

Representations, 2018.352

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement353

learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.354

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient?355

In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.356

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement357

learning with linear function approximation. arXiv preprint arXiv:1907.05388, 2019.358

Sham Kakade, Mengdi Wang, and Lin F Yang. Variance reduction methods for sublinear reinforce-359

ment learning. arXiv preprint arXiv:1802.09184, 2018.360

Tor Lattimore and Marcus Hutter. PAC bounds for discounted mdps. In International Conference on361

Algorithmic Learning Theory, pages 320–334. Springer, 2012.362

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. preprint, page 28, 2018.363

Tor Lattimore and Csaba Szepesvari. Learning with good feature representations in bandits and in364

RL with a generative model. arXiv preprint arXiv:1911.07676, 2019.365

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to366

personalized news article recommendation. In Proceedings of the 19th international conference on367

World wide web, pages 661–670, 2010.368

9

Lihong Li, Michael L Littman, Thomas J Walsh, and Alexander L Strehl. Knows what it knows: a369

framework for self-aware learning. Machine learning, 82(3):399–443, 2011.370

Zachary Chase Lipton, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal Ahmed, and Li Deng. BBQ-371

networks: Efficient exploration in deep reinforcement learning for task-oriented dialogue systems.372

In AAAI, 2018.373

Shie Mannor and John N Tsitsiklis. The sample complexity of exploration in the multi-armed bandit374

problem. Journal of Machine Learning Research, 5(Jun):623–648, 2004.375

Francisco S Melo and M Isabel Ribeiro. Q-learning with linear function approximation. In Interna-376

tional Conference on Computational Learning Theory, pages 308–322, 2007.377

Gergely Neu and Julia Olkhovskaya. Efficient and robust algorithms for adversarial linear contextual378

bandits. arXiv preprint arXiv:2002.00287, 2020.379

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized380

value functions. In Proceedings of the 33rd International Conference on International Conference381

on Machine Learning, pages 2377–2386, 2016.382

Jason Pazis and Ronald Parr. PAC optimal exploration in continuous space markov decision processes.383

In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, pages 774–781,384

2013.385

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic386

exploration. In Advances in Neural Information Processing Systems, pages 2256–2264, 2013.387

Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time and sample388

complexities for solving markov decision processes with a generative model. In Advances in389

Neural Information Processing Systems, pages 5186–5196, 2018a.390

Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and faster391

algorithms for solving markov decision processes. In Proceedings of the Twenty-Ninth Annual392

ACM-SIAM Symposium on Discrete Algorithms, pages 770–787. SIAM, 2018b.393

Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds for tabular394

mdps. In Advances in Neural Information Processing Systems, pages 1151–1160, 2019.395

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. PAC model-396

free reinforcement learning. In Proceedings of the 23rd international conference on Machine397

learning, pages 881–888. ACM, 2006.398

Benjamin Van Roy and Shi Dong. Comments on the Du-Kakade-Wang-Yang lower bounds. arXiv399

preprint arXiv:1911.07910, 2019.400

Yining Wang, Ruosong Wang, Simon S Du, and Akshay Krishnamurthy. Optimism in reinforcement401

learning with generalized linear function approximation. arXiv preprint arXiv:1912.04136, 2019.402

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.403

Zheng Wen and Benjamin Van Roy. Efficient exploration and value function generalization in404

deterministic systems. In Advances in Neural Information Processing Systems, pages 3021–3029,405

2013.406

Lin F. Yang and Mengdi Wang. Reinforcement leaning in feature space: Matrix bandit, kernels, and407

regret bound. arXiv preprint arXiv:1905.10389, 2019a.408

Lin F. Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.409

In International Conference on Machine Learning, pages 6995–7004, 2019b.410

Andrea Zanette, Mykel J Kochenderfer, and Emma Brunskill. Almost horizon-free structure-aware411

best policy identification with a generative model. In Advances in Neural Information Processing412

Systems, pages 5626–5635, 2019.413

Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for SARSA with linear414

function approximation. In Advances in Neural Information Processing Systems, pages 8665–8675,415

2019.416

10

A Proof of Proposition 1.2417

In this section, we briefly discuss how to generalize the results in [Du et al., 2020] to prove Proposi-418

tion 1.2. We first recall Theorem 4.1 in [Du et al., 2020].419

Proposition A.1 (Theorem 4.1 in [Du et al., 2020]). There exists a family of deterministic systems420

M such that for any M ∈ M, the following conditions hold. There exists a feature extractor421

φ : S × A → Rd and θ1, θ2, . . . , θH ∈ Rd such that d = O(H/δ2), and for any h ∈ [H] and any422

(s, a) ∈ Sh ×A,423

|Q∗(s, a)− θ>h φ(s, a)| ≤ δ.
Moreover, for the deterministic systems inM, any algorithm that returns a 1/2-optimal policy with424

probability 0.9 needs to sample Ω(2H) trajectories.425

We first note that the assumption in Proposition A.1 is slightly different from ours. In this paper, we426

assume there exists a single vector θ ∈ Rd such that for any (s, a) ∈ S ×A,427

|Q∗(s, a)− θ>φ(s, a)| ≤ δ.
However, the lower bound in [Du et al., 2020] can still be generalized to hold under our assumption,428

if one breaks the feature space into H blocks so that each block contains d/H coordinates, and for429

any state s1 ∈ S1 and a ∈ A, φ(s1, a) contains non-zero entries only in the first block, and for any430

state s2 ∈ S2 and a ∈ A, φ(s2, a) contains non-zero entries only in the second block, etc. By doing431

so, we need to change the condition d = O(H/δ2) to d = O(H2/δ2).432

Moreover, in order to prove an Ω(2C) sample complexity lower bound, one only needs to use the first433

C levels in the family of deterministic systems in Proposition A.1, and add H − C dummy levels so434

that there are H levels in total. In this case, Proposition A.1 requires d = O(C2/δ2), or equivalently,435

δ = Ω(C/
√
d).436

Finally, by scrutinizing the construction in [Du et al., 2020], it can be seen that the optimality gap437

ρ = 1. In general, for a given value ρ ≤ 1, we can scale all reward values and the vector θ in the438

original construction by ρ. By doing so, the approximation error δ = Ω(C/
√
d · ρ).439

B Missing Proofs in Section 4440

Proof of Theorem 4.1. Recall that by Definition 3.2 and Definition 3.3, there exists θ ∈ Rd with441

‖θ‖2 ≤ 1 such that |Q∗(s, a)− θ>φ(s, a)| ≤ δ for all state-action pairs (s, a).442

Since the sample complexity of our algorithm equals the number of times we execute Line 5 in443

Explore(s), following Lemma 4.2, the sample complexity of our algorithm is O(d log(1/ρ)).444

To complete the proof, it is sufficient to prove the following induction hypothesis for all levels445

h ∈ [H].446

Induction Hypothesis.447

I When Line 6 is executed for any state s ∈ Sh, Q̂(s, a) = Q∗(s, a).448

II Each time Line 10 in Explore(s) is executed for any state s ∈ Sh, we have π(s) = π∗(s), and449

the value returned by Explore(s) equals V ∗(s).450

For the above induction hypothesis, the base case h = H is clearly true. Now we assume the451

induction hypothesis holds for all levels H, . . . , h+ 1 and prove it holds for all levels h ∈ [H].452

Induction Hypothesis I. This follows from Induction Hypothesis II for level h+1 and the Bellman453

equations.454

Induction Hypothesis II. By Induction Hypothesis I and Definition 3.1, we only need to show455

when Line 3 is executed, we have |Q̂(s, a)−Q∗(s, a)| ≤ ρ/2, in which case we have π(s) = π∗(s).456

To verify this, note that457

|φ(s, a)>C−1Y −Q∗(s, a)| ≤ |φ(s, a)>C−1Y − θ>φ(s, a)|+ |Q∗(s, a)− θ>φ(s, a)|.

11

The second term is bounded by δ. For the first term, we write Φ to be a matrix whose i-th column is458

the i-th φ(s, a) vector in the summation. Recall that459

C =
(∑

φ(s, a)φ(s, a)>
)

+ ρ2/16 · I = ΦΦ> + ρ2/16 · I

and460

Y =
∑

φ(s, a)Q∗(s, a)

by Induction Hypothesis I. Moreover,461

Y =
∑

φ(s, a)(φ(s, a)>θ + b(s, a))

where |b(·, ·)| ≤ δ. Thus, the first term can be upper bounded by462

‖φ(s, a)>C−1Φ‖1 · δ +
∣∣φ(s, a)>(C−1ΦΦ> − I)θ

∣∣ .
For the first term, by Lemma 4.2 there are at most 2d log(16/ρ2) columns in Φ. When Line 3 is463

executed, we must have φ(s, a)>C−1φ(s, a) ≤ 1. Using Lemma B.1 we have464

‖φ(s, a)>C−1Φ‖1
≤
√

2d log(16/ρ2) · ‖φ(s, a)>C−1Φ‖2

=
√

2d log(16/ρ2) ·
√
φ(s, a)>C−1ΦΦ>C−1φ(s, a)

≤
√

2d log(16/ρ2).

For the second term, since ‖θ‖2 ≤ 1 and φ(s, a)>C−1φ(s, a) ≤ 1, by Cauchy-Schwarz and465

Lemma B.1, we have466

|φ(s, a)>(C−1Φ>Φ− I)θ| ≤ ‖φ(s, a)>(C−1Φ>Φ− I)‖2 ≤ ρ/4.

All together we get467

|φ(s, a)>C−1Y −Q∗(s, a)| ≤ ρ/2

which completes the proof.468

Proof of Lemma 4.2. Suppose Line 7 has been executed for T times, since ‖φ(s, a)‖2 ≤ 1, the trace469

of φ(s, a)φ(s, a)> is upper bounded by ‖φ(s, a)‖22 ≤ 1. By additivity of trace, the trace of C is470

upper bounded by471

T + d · ρ2/16

since initially the trace of C is d · ρ2/16. By AM-GM,472

det(C) ≤ (T/d+ ρ2/16)d.

However, each time Line 7 is executed, by matrix determinant lemma, det(C) will be increased by a473

factor of474

1 + φ(sh, a)>C−1φ(sh, a) ≥ 2.

Moreover, initially det(C) = (ρ2/16)d. Thus,475

2T (ρ2/16)d ≤ (T/d+ ρ2/16)d,

which proves the lemma.476

Lemma B.1. For any positive semi-definite M ∈ Rd×d, α > 0 and x ∈ Rd such that x>(M + α ·477

I)−1x ≤ 1, we have478

• ‖(M(M + α · I)−1 − I)x‖2 ≤ α;479

• x>(M + α · I)−1M(M + α · I)−1x ≤ 1.480

12

Proof. We use M = UTΛU to denote the spectral decomposition of M , where Λ is a diagonal481

matrix with non-negative entries. We use Λi to denote the i-th diagonal entry of Λ and let y = Ux.482

By the assumption, it holds that483
d∑
i=1

y2i
Λi + α

≤ 1.

Clearly,484

‖(M(M + α · I)−1 − I)x‖22

=

d∑
i=1

y2i ·
(

Λi
Λi + α

− 1

)2

=

d∑
i=1

y2i ·
(

α

Λi + α

)2

≤ α

and485

x>(M + α · I)−1M(M + α · I)−1x

=

d∑
i=1

y2i ·
Λi

(Λi + α · I)2
≤ 1.

486

C Missing Proofs in Section 5487

Proof of Theorem 5.1. Firstly, using Lemma 5.2 with c = 18 we have488

|Y | ≤ 18 dimE(F , ρ
4

), (4)

i.e. Line 3 is executed for at most 18 dimE(F, ρ/4) times and therefore the sample complexity of our489

algorithm is O(dimE(F , ρ/4)).490

To complete the proof, it is sufficient to prove the following induction hypothesis for all levels491

h ∈ [H].492

Induction Hypothesis.493

I For any state s ∈ Sh, when Line 6 in Explore(s) is executed, we have yi = Q∗(si, ai) for all494

(si, ai, yi) ∈ Y .495

II For any state s ∈ Sh, when Line 7 in Explore(s) is executed, we have π(s) = π∗(s), and the496

value returned by Explore(s) is V ∗(s).497

For the above induction hypothesis, the base case h = H is clearly true. Now we assume the498

induction hypothesis holds for all levels H, . . . , h+ 1 and prove it holds for all levels h ∈ [H].499

Induction Hypothesis I. From Induction Hypothesis II for level h+1, it follows that value returned500

by Explore(P (s, a)) is V ∗(P (s, a)) for all a ∈ A. Then, Induction Hypothesis I follows from the501

Bellman equations.502

Induction Hypothesis II. It suffices to show that for any state s ∈ Sh, when Line 7 in Explore(s)503

is executed, for all actions a ∈ A504

|f(s, a)−Q∗(s, a)| ≤ ρ

2
. (5)

First, there exists f∗ ∈ F such that for all (si, ai, yi) ∈ Y ,505

|f∗(si, ai)−Q∗(si, ai)| ≤ δ. (6)

From Induction Hypothesis I, for all (si, ai, yi) ∈ Y506

yi = Q∗(si, ai). (7)

13

From Equation (6) and (7), it follows that507 ∑
(si,ai,yi)∈Y

|f∗(si, ai)− yi|2 ≤ |Y |δ2. (8)

Since, we execute Line 6 and f∗ ∈ F , from Equation (8), it follows that508 ∑
(si,ai,yi)∈Y

|f(si, ai)− yi|2 ≤ |Y |δ2. (9)

We split the analysis into two cases:509

(1) we consider actions for which we execute Line 3 and510

(2) we consider rest of the actions.511

Case 1: We now prove Equation (5) for all actions a for which we execute Line 3. Using Equation512

(4), (7) and (9), we get that for actions a for which we executed Line 3 (since then we added it to Y)513

|f(s, a)−Q∗(s, a)| ≤
√

18 dimE(F,
ρ

4
)δ ≤ ρ

2
(10)

where the last step follows from our assumption on ρ (Equation (3)).514

Case 2: We now prove this for rest of the actions a. From Equation (6), (7), (9) and triangle515

inequality for the `2 norm, we get516 ∑
(si,ai,yi)∈Y

|f∗(si, ai)− f(si, ai)|2 ≤ 4|Y |δ2. (11)

Also, since we did not add this action to Y , by the definition of the oracle (Definition 5.1), we get517

|f∗(s, a)− f(s, a)| ≤ ρ

2
− δ. (12)

Therefore,518

|Q∗(s, a)− f(s, a)| ≤ ρ

2
(13)

which completes the proof.519

Proof of Lemma 5.2. For some n > 0, assume520

Y = {(s1, a1, y1), . . . , (sn, an, yn)}.

We will show that n is upper bounded by Eluder dimension. When we add (sj , aj , yj) to Y at Line 3,521

1. The condition at Line 2 must be True i.e. from Equation (1), there exists f1, f2 ∈ F such522

that |f1(sj , aj)− f2(sj , aj)| > ρ
2 − δ.523

2. Observe that for any subsequence B ⊂ {(s1, a1), . . . , (sj−1, aj−1)} where (sj , aj) is524

(ρ2 − δ)-dependent on B (Definition 3.4),525 ∑
(s,a)∈B

|f1(s, a)− f2(s, a)|2 ≥ (
ρ

2
− δ)2. (14)

3. Therefore, if there are K disjoint subsequences in {(s1, a1), . . . , (sj−1, aj−1)} such that526

(sj , aj) is (ρ2 − δ)-dependent on all of them, then527

j−1∑
i=1

|f1(si, ai)− f2(si, ai)|2 ≥ K(
ρ

2
− δ)2. (15)

14

4. However, using Equation 2, we have that528

j−1∑
i=1

|f1(si, ai)− f2(si, ai)|2 ≤ (j − 1)(2δ)2. (16)

Therefore, we can upper bound for any state-action pair (sj , aj) ∈ {(s1, a1), . . . , (sn, an)}, the529

number of disjoint subsequencesK in {(s1, a1), . . . , (sj−1, aj−1)} that (sj , aj) is (ρ2−δ)-dependent530

on, i.e.531

K ≤ (j − 1)(2δ)2

(ρ2 − δ)2
.

Moreover, it follows from the proof of Proposition 3 in [Russo and Van Roy, 2013] that for any532

sequence of state-action pairs say {(s1, a1), . . . , (sn, an)}, there exists a (sj , aj) which is (ρ2 −533

δ)-dependent on at least n
dimE(F, ρ2−δ)

− 1 disjoint subsequences in {(s1, a1), . . . , (sj−1, aj−1)}.534

Therefore,535

n

dimE(F, ρ2 − δ)
− 1 ≤ K ≤ (j − 1)(2δ)2

(ρ2 − δ)2
(17)

and thus536

n ≤ dimE(F,
ρ

2
− δ)

(
(n− 1)(2δ)2

(ρ2 − δ)2
+ 1

)
. (18)

As ρ > 4δ, we get537

n ≤ dimE(F,
ρ

4
)

(
(n− 1)(2δ)2

(ρ2 − δ)2
+ 1

)
(19)

which follows from definition of Eluder dimension since a < b implies dimE(F, a) ≥ dimE(F, b).538

For any ρ and c > 1 such that539

ρ ≥ 2

2

√
cdimE(F, ρ4)− 1

c− 1
+ 1

 δ (20)

we get from Equation (19) that540

n ≤ cdimE(F,
ρ

4
). (21)

541

D Extension to Stochastic Rewards542

Algorithm 5 Main Algorithm
1: Initialize the current policy π and f arbitrarily
2: set Y = {}
3: invoke Explore(s1)

In this section, we extend our algorithm and analysis to stochastic rewards, i.e., reward r(s, a) ∼543

R(s, a) is a random variable with expectation r̄(s, a) and r(s, a) ∈ [0, 1].544

D.1 Algorithm545

We modify Explore(s) such that whenever previously we used r(s, a), we use the empirical mean546

r̂(s, a) of n samples from R(s, a) to get a good estimate of the expected reward r̄(s, a). For our547

algorithm, we set548

n =
H2

2δ2r
log

18 dimE(F , ρ/4)H

p
, (22)

where δr is a parameter to be chosen and p is the failure probability of the algorithm.549

15

Algorithm 6 Explore(s)

1: set (a, r) = Oracle(s, 2(δ + δr), Y)
2: while r > |ρ2 − δ| do
3: set r̂(s, a) to be the empirical mean of n = H2

2δ2r
log 18 dimE(F,ρ/4)H

p samples from R(s, a)

4: set

Y =

{
Y ∪ {(s, a, r̂(s, a))} s ∈ SH
Y ∪ {(s, a,Explore(P (s, a)) + r̂(s, a))} otherwise

5: set (a, r) = Oracle(s, 2(δ + δr), Y)
6: end while
7: set f = argminf∈F

∑
(si,ai,yi)∈Y |f(si, ai)− yi|2

8: set π(s) = argmaxa∈A f(s, a)
9: return {

r̂(s, π(s)) s ∈ SH
r̂(s, π(s)) + Explore(P (s, π(s))) otherwise

D.2 Analysis550

Theorem D.1. Suppose551

ρ ≥ 6
√

2(δ + δr)
√

dimE(F , ρ/4) + 2δr. (23)

Algorithm 5 returns the optimal policy π∗ with probability 1− p.552

Remark 2. Note that by setting553

δr =
ρ

24
√

2 dimE(F , ρ/4)
and ρ ≥ 12

√
2δ
√

dimE(F , ρ/4), (24)

Theorem D.1 implies that Algorithm 5 returns the optimal policy π∗ with probability 1− p using at554

most555
poly(dimE(F , ρ/4), H)

ρ2
log(1/p)

trajectories.556

Now we formally prove Theorem D.1.557

Proof of Theorem D.1. Firstly, for c = 18, following Lemma D.2, we have558

|Y | ≤ 18 dimE(F , ρ/4), (25)

i.e. Line 4 is executed for at most 18 dimE(F, ρ/4) times.559

560

To complete the proof, it is sufficient to prove the following induction hypothesis for all561

levels h ∈ [H].562

Induction Hypothesis.563

1. For any state s ∈ Sh, when Line 7 in Explore(s) is executed, we have564

yi ∈
[
Q∗(si, ai)−

H − h+ 1

H
δr, Q

∗(si, ai) +
H − h+ 1

H
δr

]
for all (si, ai, yi) ∈ Y .565

2. For any state s ∈ Sh, when Line 8 in Explore(s) is executed, we have π(s) = π∗(s), and566

the value returned by Explore(s) is in567 [
V ∗(s)− H − h+ 1

H
δr, V

∗(s) +
H − h+ 1

H
δr

]
.

568

Note that the base case h = H is true by Lemma D.3 and union bound. Now we assume the induction569

hypothesis holds for all levels H, . . . , h+ 1 and prove it holds for level h.570

16

Induction Hypothesis 1. From Induction Hypothesis 2 for level h+1, it follows that value returned571

by Explore(P (s, a)) is in572 [
V ∗(P (s, a))− H − h

H
δr, V

∗(P (s, a)) +
H − h
H

δr

]
for all a ∈ A. Then, Induction Hypothesis 1 follows from Lemma D.3 and union bound.573

Induction Hypothesis 2. It suffices to show that for any state s ∈ Sh, when Line 8 in Explore(s)574

is executed, then for all actions a ∈ A575

|f(s, a)−Q∗(s, a)| ≤ ρ

2
. (26)

Similar to proof of Theorem 5.1, we get576 ∑
(si,ai,yi)∈Y

|f(si, ai)− yi|2 ≤ |Y |(δ + δr)
2. (27)

We split the analysis in two cases:577

1. we consider actions for which we execute Line 4 and578

2. we consider rest of the actions.579

Case 1: We now prove Equation (26) for all actions a for which we execute Line 4. Similar to580

proof of Theorem 5.1, we get581

|f(s, a)−Q∗(s, a)| ≤
√

18 dimE(F , ρ/4)(δ + δr) + δr ≤
ρ

2
. (28)

Case 2: We now prove this for rest of the actions a. Similar to proof of Theorem 5.1, we get582 ∑
(si,ai,yi)∈Y

|f∗(si, ai)− f(si, ai)|2 ≤ 4|Y |(δ + δr)
2. (29)

Also, since we did not add this action to Y , by the definition of the oracle (Definition 5.1), we get583

|Q∗(s, a)− f(s, a)| ≤ ρ

2
, (30)

which completes the proof.584

Lemma D.2. For any constant c > 1, if585

ρ ≥ 4(δ + δr)

√
cdimE(F , ρ/4)− 1

c− 1
+ 2δ, (31)

then586

|Y | ≤ cdimE(F , ρ/4). (32)

Proof. Let Y = {(s1, a1, y1), . . . , (sn, an, yn)}. Similar to proof of Lemma 5.2, we can upper bound587

for any state-action pair (sj , aj) ∈ {(s1, a1), . . . , (sn, an)}, the number of disjoint subsequences K588

in {(s1, a1), . . . , (sj−1, aj−1)} that (sj , aj) is (ρ2 − δ)-dependent on, i.e.589

K ≤ (j − 1)(2(δ + δr))
2

(ρ2 − δ)2
.

Also, for any sequence of state-action pairs say {(s1, a1), . . . , (sn, an)}, there exists a590

(sj , aj) which is (ρ2 − δ)-dependent on at least n
dimE(F, ρ2−δ)

− 1 disjoint subsequences in591

{(s1, a1), . . . , (sj−1, aj−1)}. Therefore,592

n

dimE(F, ρ2 − δ)
− 1 ≤ K ≤ (j − 1)(2(δ + δr))

2

(ρ2 − δ)2
. (33)

17

That is, for any ρ and c > 1 such that593

ρ ≥ 2

(
2(δ + δr)

√
cdimE(F , ρ/4)− 1

c− 1
+ δ

)
, (34)

we get594

n ≤ cdimE(F , ρ/4). (35)
595

A simple concentration bound gives the following lemma:596

Lemma D.3. For any fixed state s and action a, consider n ≥ H2

2δ2r
log 1

p random independent samples597

{ri(s, a)}ni=1 of random variable R(s, a) with expectation r̄(s, a) and ri(s, a) ∈ [0, 1]. Then,598 ∣∣∣∣∣ 1n
n∑
i=1

ri(s, a)− r̄(s, a)

∣∣∣∣∣ ≤ δr
H

with probability at least 1− p.599

18

	Introduction
	Our Contributions

	Related Work
	Preliminaries
	Episodic Reinforcement Learning
	Q-function, V-function and the Optimality Gap
	Function Approximation and Eluder Dimension

	Algorithm for Linear Functions
	General Result
	Maximum Uncertainty Oracle
	Algorithm

	Conclusion
	Proof of Proposition 1.2
	Missing Proofs in Section 4
	Missing Proofs in Section 5
	Extension to Stochastic Rewards
	Algorithm
	Analysis

