
Outline of the appendix

• Appendix A contains omitted discussion and comparison to other frameworks.

• Appendix B contains proofs regarding the model and partial identification thereof.

• Appendix C discusses optimization and algorithms.

• Appendix D proves statistical consistency.

• Appendix E contains additional empirics and computational discussion.

A Additional context

A.1 Off Policy Policy Evaluation: Relationship to finite-horizon case

To aid comparison to the off-policy policy evaluation literature, we describe an approach to robustness
under unobserved confounding which might be pursued in the finite-horizon case, which does not
leverage stationarity. Such an approach would bound the density ratio product of true behavior
policy weights
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relative to the product of nominal inverse propensity weights,
Q

t2[H]
⇡e(at|st)
⇡b(at|st) (including the moment restrictions according to it being a valid density ratio). It is

apparent by factorizing the joint distribution that the true density ratio product would identify the
policy value.
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While optimizing bounds on the range of the product of importance-sampling weights,Q
t2[H]

⇡e(at|st)
⇡b(at|st,ut)

may be tractable using geometric programming [5], enforcing the moment
restrictions on density ratios (as in Eq. (7)) introduces further difficulty (nonconvex equality
constraints). The core difficulty is that considering an uncertainty set which decomposes as a
product set over timesteps may be too conservative to be useful in practice.

Further, in the infinite horizon setting, the divergence of the robust density ratio products grows with
the horizon length. This is immediate when considering a relaxation of the sharp uncertainty set,
i.e. optimizing the density ratio within bounds without enforcing moment constraints that must be
satisfied by inverse probabilities by a geometric programming reformulation [5]; verifying similar
properties in the sharp setting with additional nonlinear constraints may require additional analysis.

A.2 Related work and relation to POMDPs and robust MDPs

Contrast to POMDPs. In contrast to POMDPs in general, which emphasize the hidden underlying
state, our model is distinct in that we focus on rewards as functions of the observed state. The
unobserved confounder is therefore a “nuisance” confounder which prevents us from estimating
policy value, rather than the true underlying state to recover. In settings where unobserved confounders
are of concern in observational data in causal inference, typically it is unclear whether or not a latent
variable model such as those underlying POMDPs indeed generalizes to the time of deployment:
assuming so corresponds to a structural assumption about the environment.

Contrast to Robust MDPs. Robust MDPs, representing a model-based approach, consider
policy evaluation or improvement over an ambiguity set of the transition probabilities [9, 22, 38].
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Alternatively, some approaches build confidence regions from concentration inequalities [26, 37]
and restrict recommendations within them. [25] improve performance guarantee bounds for state
aggregation in MDPs; but in their setting they are able to sample additional full-information transitions
unlike our fully-observational data setting The difficulty in applying the robust MDP framework
using an ambiguity set on transition matrices suggested from Lemma 4 (in the appendix) is non-

rectangularity because the ambiguity set does not decompose as a product set over states, which
leads to a NP-hard problem in the general case [38].

B Proofs: Model and Partial Identification

Proof of Lemma 1. This is apparent from a recursive definition of w(j, u):
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Proof of Lemma 2. Clearly, by assumption of Markovian dynamics on the full information state
space, w(s, u) solves the estimating equation (state-action flow equations) on the space of S ⇥ U ,

E[⇡e(a | s)w(s, u)�(a | s, u) | s0 = k] = w(k, v) 8k 2 S, v 2 U (13)
E[w(s, u)] = 1. (14)

We will proceed to show that under Assumption 2, the projected w̃(k) defined as w̃(k) := w(k, v)
equivalently solves the estimating equation on the observed state space S .

The forward implication of Lemma 2 follows from Theorem 1 of Liu et al. [17] applied to the state
variable (s, u) after recognizing that w(s, u) only depends on s under Assumption 2 and marginalizing
out u0.
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so we conclude that w̃(s) / p
(1)
e , the stationary distribution on S induced by ⇡e.

Finally, we argue the reverse implication; uniqueness of the solution of w̃(s). Uniqueness is a
consequence of the positive recurrence assumption (Assumption 1) on the full-information MDP
on S ⇥ U . Note that by definition of recurrence, recurrence on the full-observation state space of
the Markov process induced under ⇡ implies recurrence of the Markov process induced under ⇡ on
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its marginalized transitions p(k | j, a). Recurrence requires that starting from any state j, u in the
recurrent class, the number of visits of the chain to the state is infinite. Clearly, if this is satisfied
by the full-information transition matrix, this is also satisfied for the aggregated recurrent class
corresponding to marginalized transitions.

Therefore, the stationary distribution exists, and is unique on S, under the marginalized transition
matrix induced by ⇡e. The solution to the invariant measure flow equations on S satisfies that
w̃(s)p1

b
(s) / p

1
e
(s); and only w̃(s) satisfies this requirement.

B.1 Observable Implications, Membership Oracle, and Sharpness

In this section, we introduce the state-action polytope and the state-action-state frequency polytope
and deduce the observable implications which lead to Proposition 1, the main membership certificate
result of Proposition 2, and Theorem 1.

For any infinite-horizon MDP with transition matrix on S ⇥ U , the stationary dynamics
impose restrictions on the unknown full-information state-action-state visitation distribution,
p
1
b
(s, u, a, s0, u0), and its observable marginalization p

1
b
(s, a, s0). These restrictions are

encapsulated as the full-information state-action polytope (SAP), which is the set of all limiting state-
action occupancy probabilities achievable under any policy, and the closely related state-action-state

polytope (SASP) [20, 29]. Marginalizing the full-information constraints with respect to p
1
b
(u | s)

leads to the marginalized versions mSAP and SASP.

Proof of Proposition 1. To study the observational implications of SAP, SASP (e.g. the implications
of the full-information polytopes which are additionally enforceable as constraints on B̃), we study the
marginalized versions of both the state-action polytope and the state-action-state frequency polytope
under the behavior policy as studied in [20, 29]. Typically the extremal analysis of the state-action
polytope in the infinite-horizon case characterizes the structure of the optimal policy. We simply
focus on its properties as a characterization of all the possible limiting state-action frequencies under
any stationary policy.

While [20] studies the asymptotic inclusion of more general policies such as non-stationary policies,
we focus on the case of stationary policies for simplicity. While we state the following analysis for
discrete state and action spaces (e.g. discrete u), the discussion of Altman & Shwartz [1, Sec. 4]
provides regularity results on the set of limiting state-action measures for the continuous state case
with continuous u. One sufficient condition for the case of continuous u is that, indexing x, y into
abstract state tuples on S ⇥ U , for the transition probability density defined as P⇡

x,K
:=
P

y2K
P

⇡
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,

with P
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= P(st+1 = y | st = x), given any ✏ > 0 there exist a finite set K(✏) and an integer N(✏)

such that for all x 2 X and g 2 U(S), [(P⇡)N(✏)]x,K(✏) � 1� ✏.

First, we introduce SAP, SASP as studied in [20].

Definition 1 (State-action polytope). Given an MDP, the state-action polytope SAP is defined as
the set of vectors x in �S⇥A that satisfy
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where p
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b
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, a) 2 �S⇥A is the limiting expected state-action frequency vector under policy ⇡.
This constraint can be understood as a “flow conservation” constraint satisfied by any full-information
joint distribution p

1
b
(s, u, a, s0, u0).

Definition 2 (State-action-state polytope). The state-action-state frequency polytope, SASP, is
the set of vectors in �S⇥A⇥S which satisfy conformability of state transitions under transition
probabilities; and marginalization:

p
1
b
(j, u0

, a, k, u
00) = p(k, u00

| j, u
0
, a)

X

k̃,ũ00
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Lemma 3.1 of [20] states that the two sets are equivalent: if p1
b
(s, u, a) 2 SAP, and furthermore

under the transformation
p
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0
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then p
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, a, k, u
00) 2 SASP. Every element of SASP can be generated in this manner from

some element of SAP. It is this construction that leads to the “information loss” stated formally in
the next result which characterizes the marginalized versions of Eqs. (15) to (17) in terms of the
marginalized weight of the reparametrization, gk(a | j).

Lemma 3. The marginalized version of Eq. (15) is
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The marginalized version of Eq. (16) enforces conformability of gk(a | j) for the true non-identifiable

transitions,

p(k | j, a) = p
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and of Eq. (17) is the conditional control variate,
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Proof of Lemma 3. Marginalizing Eq. (16):
Starting from the compatibility restriction with the observed empirical state-action frequencies:P

u
p
1
b
(j, u)⇡b(a | j, u)p(k, u0

| j, u, a) = p
1
b
(j, a, k, u0) and marginalizing over u0:

X

u

p
1
b
(j, u)⇡b(a | j, u)p(k | j, u, a) =

X

u

p
1
b
(j, a, k)

p(k | j, a)p1
b
(j)
X

u

p
1
b
(u | j)⇡b(a | j, u)

p(k | j, u, a)

p(k | j, a)
= p

1
b
(j, a, k)

p(k | j, a)gk(a | j)�1 = p
1
b
(a, k | j)

where p(k | j, a) =
P

u
p(k | j, u, a)p1

b
(u | j) and p

1
b
(a, k | j) = p

1
b (j,a,k)
p
1
b (j) .

This leads to the conformability requirement of gk(a | j) for the marginal transition probabilities
with respect to the observational joint distribution.
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which can also be derived as a marginalization of Eq. (16):
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Marginalizing Eq. (17):
Recall that from the forward decomposition of joint distribution with respect to the transition from
j, u ! k, u
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Therefore:
p
1
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X

j

p
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In order to interpret which of these constraints are observable implications and which are ultimately
informative, we next leverage a structural characterization that gk(a | j) can be interpreted as the
function which renders the transition probabilities conformable to the joint distribution. Its proof
is of independent interest in establishing the relationship to robust MDPs. We introduce the biased

marginalized transition probabilities p̃(s0 | s, a), which would be obtained from naive estimation
from the observational joint distribution:

p̃(s0 | s, a) :=
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These are biased estimates because they do not appropriately account for the transitions under the
true ⇡b(s, u) policy, only its marginalization over s.

Lemma 4.
p̃(k | j, a)⇡b(a | j) = p(k | j, a)gk(a | j)

Proof of Lemma 4. With full information, the transition probabilities could be estimated as
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and similarly, the marginalized transition probabilities as p
1
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⇡b(a|s,u)p1
b (s,u) = p(s0 | s, u, a).

A model-based perspective would partially identify the transition matrix under ⇡e, deduce the bounds
of p(s0 | s, a) relative to p̃(s0 | s, a). Note that under Assumption 2,
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X

u

p(s0 | s, u, a)p1
b
(u) =

X

u

p
1
b
(s, u, a, s0)p1

b
(u)

⇡b(a | s, u)p1
b
(s, u)

= p
1
b
(s)�1

X

u

p
1
b
(s, u, a, s0)

⇡b(a | s, u)

(22)
and further the distribution on unobserved confounders is independent of the policy, p1

b
(u) = p

1
e
(u).

p̃(s0 | s, a) =
p
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(s, a, s0)
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b
(s) E[⇡b(a | s, u) | s]
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p
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(23)

Combining Equations (22) and (23) yields the statement of the lemma.

Lemma 4 shows that the constraints in Equations (18) and (19) are uninformative: further restricting
p̃(s0 | a, s) within the given range of p(s0 | a, s) is redundant. Another interpretation is that gk(a | j)
are precisely the weights which render the observed stationary occupancy distribution p

1
b
(s, a, s0)

conformable under the unobserved true marginal transition probabilities.

Proposition 1 follows from Lemmas 3 and 4.

Proof of Proposition 2. We verify that optimizing over F (w) = 0 () w 2 ⇥,E[w] = 1 by first
showing the reparametrization of F (w) with respect to g, and then leveraging the characterization of
Proposition 1 and sharpness argument to verify that F (w) = 0 () w 2 ⇥,E[w] = 1.

Step 1: Proving the reparametrization of F (w) with respect to gk(a | j), and reformulating
gk(a | j).
We first expand the sample expectations for the estimating equation of Lemma 2:
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Rewrite as an expectation with respect to the observational (identifiable) joint distribution p1
b
(j, a | k),

taking limits as T ! 1, N ! 1 and multiplying by p
1
b (j,a|k)

p
1
b (j,a|k) = 1:
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Therefore, dependence on � arises only through the marginalized weight gk(a | j):

gs0(a | s) =
X

u

p
(1)
b

(j, u, a | k)

p1
b
(j, a | k)

�(a | j, u)

However, the marginalized weight depends on the unknown data-generating joint distribution
p
(1)
b

(j, u, a | k); and so it is unclear how to optimize over it. Next, we show that optimizing

over gk(a | j), which are the unknown inverse weights �(a | j, u) convolved with an unknown
density, is almost equivalent to optimizing over the set of weights B, up to a moment constraint on
ensuring that the implied full-information transition probabilities are valid probability distributions,
e.g. that

P
k
p(k | j, u, a) = 1. We first we show that it is equivalent to optimize over gk(a | j) over

the same bounds, though this may not enforce the restriction
P

k
p(k | j, u, a) = 1. In the next step,

we will argue that this restriction to valid transition probabilities is enforced by the feasibility of g for
the estimating equation.

Define

B̃
0 := {g 2 R|S||A||S|

+ : 9� 2 B such that gs0(a | s) =
X

u

p
(1)
b

(j, u, a | k)
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(j, a | k)
�}

as the ambiguity region of gk(a | j) induced by restrictions on � 2 B. We show how to identify
elements �̃ 2 B̃

0 with corresponding elements � 2 B. Although p
(1)
b

(j, u, a | k) is not identifiable
from observed data, its marginalization over u, p(1)

b
(j, a | k), is identifiable, so we can partially

identify B̃
0 as follows:
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8
>>>><

>>>>:
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p
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0  p
(1)
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� 2 B

9
>>>>=

>>>>;

A simple reparametrization with respect to qj,u,a|k :=
p
(1)
b (j,u,a|k)
p
(1)
b (j,a|k)

shows that optimizing over B̃0 is
equivalent to optimizing over elements of B averaged by unknown weights on the simplex. In the
following, suppress dependence of qj,u,a|k�(a | j, u) on a, j for brevity, and let qj,·,a,|k denote the
vector .

B̃
0 =

n
q
>
j,·,a,|k� : � 2 B; q

>
j,·,a,|k1 = 1, 0  qj,·,a,|k  1, 8j, a, k

o

In particular this suggests that g0
k
(a | j) 2 B since by convexity of B, we can map g

0
k
(a | j) 2 B̃

0

to some � 2 B; q are the convex combination weights. In the other direction, clearly any �0
2 B is

realizable by a q which is a Dirac measure which selects �0, so �0
2 B̃

0.
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Lastly, we directly verify the control variate property (Eq. (7) corresponding to Eq. (3)) thatP
j

P
k
p
(1)
b

(j, a | k)pb(k)gk(a | j) = 1:
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p
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so that we verify the action-marginal control variate,
P

k

P
j
p
(1)
b

(j, a, k)gk(a | j) = 1. Note that
this further implies Eq. (7):

X

j

p
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b
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X

j,u

p
1
b
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1
b
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Finally, to help interpret gk(a | j), we may further simplify and observe that

gk(a | j) =
X

u

p
(1)
b

((j, u), a | k)

p
(1)
b

(j, a | k)
�(a | j, u) =

P
u
p
1
b
(u | j)p(k | j, u, a)P

u
p1
b
(u | j)p(k | j, u, a)⇡b(a | j, u)

=
p(k | j, a)P

u
p1
b
(u | j)p(k | j, u, a)⇡b(a | j, u)

=
1

P
u
⇡b(a | j, u)

p
1
b (u|j)p(k|j,u,a)

p(k|j,a)

Note that in this step, we did not require the extremal gk(a | j) to be achieved by valid unobserved
transition probabilities such that

P
k
p(k | j, u, a) = 1. To do so directly would introduce technical

difficulties in effectively requiring a bilinear formulation. Instead, we have shown this one-to-one
correspondence of B̃0 with � 2 B̃ occurs for the marginalized weights, which are not further required
to correspond to valid adversarial transition probability distribution. In the next steps, we argue that
feasibility of g 2 B̃

0 for F (w)  0 ensures this compatibility with valid transition matrices.

Step 2: Proving F (w)  0,E[w] = 1 =) w 2 ⇥:

Proposition 1 shows that the specification of B̃ exhausts the observable implications of the sharp full
information polytope of all limiting state-action-state occupancy probabilities. It remains to show
that w is feasible for some gs0(a | s) 2 B iff gk(a | j) satisfies Eq. (19), p(k | j, a) = p

1
b
(a, k |

j)gk(a | j), 8j, a, k.

First we show that F (w)  0,E[w] = 1 implies w 2 ⇥. Suppose g is feasible for the estimating
equation:

w(k)�
X

j

w(j)
X

a

⇡e(a | j)p1
b
(j, a | k)gk(a | j) = 0, 8k (24)

Next we verify that gk(a | j) satisfying Eq. (19) is feasible for the estimating equation for w, Eq. (24).
Note that gka | j corresponding to underlying transitions which do not satisfy

P
k
p(k | j, u, a) = 1

cannot satisfy Eq. (19). By Bayes’ rule and conformability of gk(a | j) for p(k | j, a),

p
1
b
(j, a | k) =

p(k | j, a)p1
b
(j)gk(a | j)�1

p1
b
(k)

, (25)

so that we can verify the estimating equation holds with respect to the true marginalized transition
dynamics under ⇡e:

w(k)p1
b
(k)�

X

j

w(j)p1
b
(j)
X

a

⇡e(a | j)p(k | j, a) = 0, 8k
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Markovianness of the induced MDP under the true marginal transition probabilities p(k | j, a)
(follows since p(k | j, a) corresponds to the p

1(u)-occupancy-weighted aggregation to S under
Assumption 2), then w(k)p1

b
(k) is proportional to the invariant measure on S .

Step 3: Proving w 2 ⇥ =) F (w) = 0,E[w] = 1:
Next we show the other direction, that w feasible for Equation (24) for some gk(a | j) implies that
gk(a | j) satisfies Equation (19). This direction follows once we identify w(s)p1

b
(s) feasible for

Equation (24) uniquely with p
1
e
(s), which follows from Assumption 1. By Equation (25), feasibility

implies that w(s)p1
b
(s) satisfies compatibilty under ⇡e for gk(a | j). Uniqueness of the density ratio

implies that compatibility must also hold under ⇡b.

Proof of Theorem 1. Theorem 1 is a consequence of Proposition 1 and that computing the support
function of a set (e.g. optimizing an arbitrary linear objective over ⇥) is equivalent to optimizing over
the convex hull of ⇥ [32], conv(⇥). Convexity of the interval and of conv(⇥) yields sharpness.

Relationship between Lemma 4 and robust MDPs
Remark 4. We can define an ambiguity set for marginal transition probabilities on S for s, a

state-action pairs, Ps0|s,a:

P (· | s, a) 2 Ps0|s,a :=

(
Psa 2 �|S| : 9 � 2 B such that Psa(k) =

X

u

� ·
p
1
b
(s, u, a, k)

p1
b
(s)

, 8k 2 S

)

By an analogous construction as in Proposition 2, without additional restrictions on the variation of
the unobserved joint visitation distribution p

1
b
(s, u, a, s0),

Ps0|s,a :=
n
Psa 2 �|S| : 9 g 2 B̃ s.t. P (s0 | s, a) = gs0(a | s) · P̃ (s0 | s, a)

o

However, due to the restrictions on gk(a | j) corresponding to valid probability distributions, as
well as the restrictions that P (s0 | s, a) corresponds to valid probability distributions, the feasible
implicit ambiguity set on transition sets is not merely the union of Ps0|s,a for all s, a. Instead,
the valid ambiguity set combines the restrictions induced by the bounds assumptions of � over
Psa 2 [�|S|]|S|⇥|A|, with Ps0|s,a = p(s0 | s, a), and the observable implications of Proposition 1.

Pfeas =

8
>>>>>>><

>>>>>>>:

P 2 [�|S|]|S|⇥|A| :

9 g 2 B, w s.t.
P (k | j, a) = gs0(a | s) · ⇡(a | j)p̃(k | j, a), 8j, a, k

p
1
b
(k | a) =

X

j

p
1
b
(j, a, k)gk(a | j), 8k, a

E[⇡e(a | s)w(s)gk(a | s) | s0 = k] = w(k) 8k,

E[w(s)] = 1

9
>>>>>>>=

>>>>>>>;

(26)

Notably, the inverse probability restrictions on gk(a | j) render such an ambiguity set non-rectangular

over states and actions, while the requirement of compatibility (enforced by the estimating equations)
additionally introduces nonconvexity.

C Proofs: Optimization and algorithms

Proof of Proposition 3. A feasibility oracle for⇥, for a given w, is given by checking the existence of
g 2 W satisfying the moment condition. For brevity, let mk(w, g) denote the kth moment restriction:

mk(w, g) :=
X

j,a

p
(1)
b

(j, a | k)w(j)⇡e(a | j)gs0(a | s)� w(k)

F (w) := min
g2B̃

X

k

|mj(w, g)|

We will generate a disjunctive reformulation of F (w) by appealing to a different lifting of the `1 norm
that enumerates the possible sign patterns on {�1, 1}|S|; the next lemma briefly verifies equivalence.
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Lemma 5.

min{
X

j

�jmk(w, g) : g 2 B̃} = 0, 8�i 2 {�1, 1}p () min{
X

j

|mk(w, g)| : g 2 B̃} = 0

We next briefly introduce the disjunctive programming framework.

Preliminaries for disjunctive programs First we introduce disjunctive programs with generic
notation [3]. A disjunctive program optimizes over the union of polyhedra. A disjunctive program is
of the form: min {cx|Ax > a0, x > 0, x 2 L} where the logical conditions x 2 L can be represented
by the disjunctive normal form or the conjunctive normal form,

{Ax > a0, x > 0; _
i2Qj

�
d
i
x > di0

�
, j 2 S},

or equivalently, to make the conjunctions apparent,

Ax � a0

x � 0

�
^ [ _

i2Q0

�
d
i
x > di0

�
] ^ · · · ^ [ _

i2Q|S|

�
d
i
x > di0

�
]

The linear programming equivalent of a disjunctive normal form is given by Theorem 2.1 of
[3]. It generically provides the linear programming formulation of a disjunctive form, F =n
x 2 R

n
|
W

h2Q

�
A

h
x > a

h

0 , x > 0
�o

, as

clconvF =

8
<

:x 2 R
n
|

x =
P

h2Q⇤ ⇠
h
,

A
h
⇠
h
� a

h

0⇠
h

0 > 0, h 2 Q
⇤

P
h2Q⇤ ⇠

h

0 = 1,
�
⇠
h
, ⇠̌

h

0

�
> 0, h 2 Q

⇤

9
=

; ,

where Q
⇤ is the restriction of Q to nonempty disjunctions.

Reformulating as a disjunctive program. Using Lemma 5, we can rewrite (10), where X(B)
denotes the set of extreme points of polytope B:

max

(
E[w(s)�(s)] : 8� 2 {�1, 1}|S|

, 9 g 2 X(B̃) s.t.
X

k

�kmk(w, g) = 0

)

and therefore in the disjunctive syntax,

max

(
E[w(s)�(s)] : ^

�2{�1,1}|S|

 
_

g2X(B̃)
s.t. �kmk(w, g) = 0

!)

Next, by applying the distributive property of conjunctions and disjunctions ([3]), we can express the
conjunctive form into the disjunctive form, and then apply Theorem 2.1 to obtain the corresponding
linear programming representation. Note that this operation generates exponentially many unions
of disjunctions (each also exponential in cardinality of state space), and therefore admits a overall
superexponentially-sized program.

Proof of Lemma 5. For brevity, denote

P (�) := min{
X

j

�jmk(w, g) : g 2 B̃}

P (`1) := min{
X

j

|mk(w, g)| : g 2 B̃}

so that the lemma can be stated as:

P (�) = 0, 8� 2 {�1, 1}p () P (`1) = 0

First we argue (= : Suppose not, where {min
P

j
|mk(w, g)| = 0, 8j} is true (and achieved by

some w
⇤) but there is some �⇤ such that min{

P
j
�
⇤
j
mk(w,�) : a  w  b} > 0. But g⇤ was
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feasible for P (�⇤), and P (`1)  0 implies that mk(w, g⇤) = 0, 8j, so we could further reduce the
value of P (�⇤) at feasible g

⇤, contradicting optimality of �⇤ at a strictly positive value.

In the other direction, =) , suppose by way of contradiction that P (�)  0, 8� but P (`1) > 0
(equivalently, that g is infeasible for B). Let �⇤

`1
be the particular sign pattern which achieves strict

nonnegativity at optimality for P (`1). Then, the optimal value of P (�) at this particular choice of
�
⇤
`1

is also strictly positive, P (�⇤
`1
) = P (`1) > 0 since it induces the same optimization objective

over the same feasible set of weights, B.

By uniqueness of w for feasible values of the unknown weights gk (by properties of ergodicity and
uniqueness of the stationary distribution), it is not a relaxation to optimize over different weights for
each � value.

Proof of Proposition 4. We recall the notation which encodes the estimating equation as the matrix
A: we introduce the instrument functions �s,�s0 2 R|S|⇥1, random (row) vectors which are one-hot
indicators for the state random variable s, s

0 taking on each value, �s = [I[s = 0] . . . I[s = |S|]].
Let A(g) = E[�s0(⇡e(a | s)gs0(a | s)�s � �s0)>] and bs = p

1
b
(s). The set of g 2 B̃ that admit a

feasible solution to the estimating equation for some w 2 ⇥ is  := {g 2 B̃ : 9 w � 0 s.t. A(g)w =
0, b>w = 1}

A has rank |S| � 1 if g is feasible since satisfying the conformability constraint Equations (16)
and (20) implies linear dependence on the rows of A:

X

k

(wk �

X

j,a

p
1
b
(a, j | k)⇡e(a | j)gk(a | j)wj) = 0

Define Ã(g) by replacing the last row of A(g) by b and let v = (0, . . . , 0, 1). Then w = Ã
�1

v which
results in the following program, with v =

⇥
0|S|�1 1

⇤>:

inf / sup
n
'
>
Ã

�1
v : g 2  

o

Partial derivatives of the matrix-valued function of gk(a | j) follow from the matrix chain rule, where
Jj,k is a one-hot matrix with a 1 in the j, k entry and 0 everywhere else:

@'
>
Ã

�1
v

@gk(a | j)
=
X

i,j

@'
>
Ã

�1
v

@Ãi,j

@Ãi,j

@gk(a | j)

= �

X

i,j

Ã
�>
i,j
'v

>
Ã

�>
i,j

(I[j 6= |S|]⇡e

a,j

1b
p

j,a,k Jj,k)

= �(I[j 6= |S|]⇡e

a,j

1b
p

j,a,k)(Ã
�>
'w

>)i,j

D Proof of Theorem 3 (statistical consistency)

Consistency follows from stability of the optimization problem in terms of the deviations of empirical
probabilities from their population values. The former is a result from variational analysis/stability
analysis of linear programs, which is non-standard because the perturbations occur in the constraint
matrix coefficients. The latter is simply the convergence of empirical probabilities.

We prove statistical consistency by considering a support function estimate that discretizes the space
(restricting attention to feasible w). We apply a stability analysis argument to argue consistency for
every fixed w in the discretization. Since w is in a compact set (the S simplex), a covering argument
over the solution space provides a bound via a union bound over elements of the discretization. Lastly,
we bound the approximation error arising from the discretization. While the discretization approach
provides a statistical consistency result (in the limit as n ! 1 we assume the discretization grows
finer), it is a tool of the analysis but not the algorithmic proposal.
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Preliminaries: Stability Analysis Consistency follows from stability of the optimization problem
in terms of the deviations of empirical probabilities from their population values. The former is a
result from variational analysis/stability analysis of linear programs, which is non-standard because
the perturbations occur in the constraint matrix coefficients. The latter is simply the convergence of
empirical probabilities.

Stability analysis establishes convergence in Hausdorff distance between ⇥̂, ⇥, the partial
identification set obtained from optimizing the sample estimating equation vs. from optimizing
the population estimating equation. The Hausdorff distance between two sets A,B ⇢ Rd is
dH(A,B) = max {sup

a2A
d(a,B), sup

b2B
d(b, A)} where d(a,B) = infb2B ka� bk; e.g. it

measures the furthest distance from an arbitrary point in one of the sets to its closest neighbor in the
other set.

The main stability analysis result we use is Theorem 1 of [31]. To help keep the presentation of the
theorem self-contained, we state some preliminary notation. The paper considers the general case of
a system of linear inequalities, where A is a continuous linear operator from X into Y which are real
Banach spaces, and K is a nonempty closed convex cone in Y . We study

Ax K b, 8x 2 C (27)

with C ✓ X a convenience set to represent unperturbed constraints. We want to ascertain the stability

region of the solution set G, which implies that for each x0 2 G, for some positive number �, and
for any continuous linear operator A0 : X 7! Y and any b

0
2 Y , the distance from x0 to the solution

set of the perturbed system,
A

0
x K b

0
, (28)

is bounded by �⇢(x0), with ⇢(x) being the residual vector,

⇢(x) := d(b0 �A
0
x,K) := inf{kb0 �A

0
x� kk | k 2 K}.

For a more concise statement of the main stability analysis result, we introduce the augmented operator
with an auxiliary dimension to homogenize the system Q : X ⇥ R 7! Y : for finite-dimensional
systems of linear equations, this is the usual homogenization.

Q(


x

⇠

�
) =

8
><

>:

⇥
A �b

⇤ x
⇠

�
+K ,

⇥
x ⇠

⇤>
2 P,

1
⇥
x ⇠

⇤>
, 62 P

Now, under this notation, x 2 C satisfies Ax K b, 8x 2 C iff 0 2 Q(


x

⇠

�
). The result will leverage

properties of linear operators as special cases of convex processes (which are themselves multivalued
functions between two linear spaces): If T carries X into Y , with X,Y normed linear spaces, then
the inverse of T is T�1, which is defined for y 2 Y by

T
�1

y := {x | y 2 Tx}.

T is closed if gph(T ) := {(x, y) | y 2 Tx} is closed on product space X ⇥ Y . The norm of T is
operator norm.

This approach then allows us to identify another linear operator which parametrizes the perturbation

�(


x

⇠

�
) defined analogously to Q but with (A0

�A)x� (b0 � b)⇠ +K. The size of the perturbation

is measured by the operator norm of this system, and a crude bound is k�k  kA
0
�Ak+ kb

0
� bk;

we also have that ⇢(x)  k�kmax{1, kxk}.
Assumption 3. Regularity: b 2 int{A(C) +K} and singular otherwise.

The required regularity assumption is similar to strict consistency of [32], which states that 0 2

int(dom)(G), e.g. there exists u, v such that all inequality constraints f < 0 hold strictly.

Finally, having introduced the homogenized system Q and the perturbation�, we state the required
theorem: Q0 = Q+� is the perturbed augmented system.
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Theorem 5 (Linear system stability (Theorem 1, [31])). Suppose that the system Eq. (27) is regular.

Then Q is surjective,

��Q�1
�� < +1, and if

��Q�1
�� k�k < 1, then is also regular (hence solvable),

with

��Q0�1
�� 5

��Q�1
�� /
�
1�

��Q�1
�� k�k

�
. Further, if G

0
denotes the solution set of Eq. (28),

then for any x 2 C with

��Q0�1
�� ⇢(x) < 1 we have

d (x,G0) 5


kQ
0�1

k⇢(x)

1� kQ0�1k ⇢(x)

�
(1 + kxk) (29)

We now use these results to prove consistency.

Proof. Proof of Theorem 3

We consider the proposed support function estimator which conducts a grid search over an ✏-covering,
Ew covering R|S|

+ such that Ew is the smallest set satisfying that minw0 : kw � w
0
k1  ✏ 8w s.t. w>~1.

For simplicity, we consider the self-normalized version of the estimator that constrains w>~1 = 1:
convergence for the stochastic constraint E[w] = 1 holds by additionally conditioning on the event
kp

1
b
(s)k1  ✏ under fast geometric convergence of the stationary distribution.

The discretization-based support function estimator is:

R̂e = max
n
En[w(s)�(s)] : w 2 Ew, w 2 ⇥̂, w>~1 = 1

o

where ⇥̂ := {w 2 Ew :
X

j,a

ĥj,a,k(w)gs0(a | s)� w(k) = 0, 8k 2 S; g 2 B̃}

ĥj,a,k(w) := p̂
(1)
b

(j, a | k)w(j)⇡e(a | j).

We will bound the approximation error
���R̂e �Re

��� 

����R̂e �
ˆ̃
Re

����+
����
ˆ̃
Re � R̃e

����+
���R̃e �Re

���

with respect to the intermediary terms,
ˆ̃
Re = max

n
En[w(s)�(s)] : w 2 Ew, w 2 ⇥, w>~1 = 1

o

R̃e = max
n
E[w(s)�(s)] : w 2 Ew, w 2 ⇥, w>~1 = 1

o

Re = max
n
E[w(s)�(s)] : w 2 ⇥, w>~1 = 1

o

Bounding
���R̂e �

ˆ̃
Re

��� follows by verifying stability of the feasibility problem {
P

j,a
ĥj,a,k(w)gs0(a |

s) � w(k) = 0, 8k 2 S} for every such value of w, taking a union bound over the covering, and
then applying stability of w for a given feasible g to bound the objective values.

G(w), Ĝ(w) correspondingly denote the solution sets (in the space of g) of the feasibility program,

for a fixed w vector. We first bound
����R̂e �

ˆ̃
Re

���� by bounding the distance between the solution set

for G(w), Ĝ(w) for a fixed w. We then apply the bound for every w on a covering of the |S| simplex.

To map the problem quantities to the stability analysis notation, let the set of unperturbed constraints
be C := {x 2 B}. Observe that

��Q0�1
�� = maxkyk1{kxk : Q0

x = y, x 2 C}  |S|
2
|A|⌫ because

the unperturbed constraints include bounds constraints on g.

Bounding k�k proceeds by observing that since the perturbation matrix to the coefficients comprises
of terms X

j,a

w(j)⇡e(a | j)(p̂1
b
(j, a | k

0)� p
1
b
(j, a | k

0)),

applying a crude bound that w(j),⇡e(a | j)  1, it is sufficient to bound the operator norm of
perturbations as

k�k1  kp̂
1
b
(s, a | s

0)� p
1
b
(s, a | s

0)k1 .
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Consistency of the empirical state-action probabilities for the population state-action probabilities
yields the result, e.g. that p̂1

b
(s, a, s0) !p p

1
b
(s, a, s0), and p̂

1
b
(s) !p p

1
b
(s). (See [20] for

quantitative rates). Consider n large enough so that the condition
��Q0�1

�� ⇢(x) < 1
2 holds. Then,

d(x̂, G) 


kQ

0�1
k⇢(x)

1� kQ0�1k ⇢(x)

�
(1 + kxk)  2(1 + |S|

2
|A|⌫)2 kp̂1

b
(s, a | s

0)� p
1
b
(s, a | s

0)k1

(30)
for any x̂ 2 Ĝ, with probability 1; and analogously for d(x, Ĝ). The above bound holds for a fixed w.

We next bound
����R̂e �

ˆ̃
Re

����. Taking a union bound over finitely many w 2 Ew so that the bound (30)

holds uniformly over Ew, there exists n1 large enough such that

max
w2Ew

d(Ĝ(w), G(w))  �. (31)

This in turn suggests finite-time identification of the feasible set, ⇥̂(Ew) = ⇥(Ew), so that R̂e =
ˆ̃
Re.

We next bound
����
ˆ̃
Re � R̃e

����. For every ✏0, by geometric convergence of the stationary distribution

p̂
1
b
(s)�p

1
b
(s) and taking a union bound over w 2 Ew to establish uniform convergence, there exists

n2 large enough so that:

����
ˆ̃
Re � R̃e

����  max
w2⇥

{En[w(s)�(s)]� E[w(s)�(s)]}  ✏
0
.

Lastly,
���R̃e �Re

��� is bounded by the uniform approximation error which is satisfied by the definition
of the covering, and bounded state rewards�(s). Therefore, we have that for some n � max{n1, n2},

���R̂e �Re

���  ✏
0 + ✏

Therefore we obtain statistical consistency as we take the discretization width ✏! 0 as n ! 1.

D.1 Linear function approximation

Note that since the tabular case is a special case of linear function approximation of the state space,
our approach also handles the case where w = ✓

>
s is a linear parameter of the state observation.

We introduce some simplifications.  i:t,t+1
k

= (�(si
t+1)�(s

i

t
)>)k is the kth row vector (resp.  t,t

k
)

and

�̄(s) =
1

NT

NX

i=1

TX

t=1

�(si
t
) = ENET [�(s)]

 ̄t+1,t+1 =
1

NT

NX

i=1

TX

t=1

�(si
t+1)�(s

i

t
)>
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The corresponding finite-sample feasibility oracle for the case w = ✓
>
s, drawing on the least-squares

representation of Proposition 4, is:

F (✓) := min
g2B,z�0

X

k

zk

s.t. zk �
1

NT

NX

i=1

TX

t=1

⇣
⇡
e

i,t
 i:t,t+1

k
✓ · gi,t � 

i:t+1,t+1
k

✓

⌘
, , 8k 2 [d]

zk � �
1

NT

NX

i=1

TX

t=1

⇣
⇡
e

i,t
 i:t,t+1

k
✓ · gi,t � 

i:t+1,t+1
k

✓

⌘
, 8k 2 [d]

li,t  gi,t  mi,t, 8i 2 [N ], t 2 [T ]

1

NT

NX

i=1

TX

t=1

I[Ait = a
0]gi,t = 1, 8a0

To obtain bounds, using ENET as shorthand notation for empirical expectations over trajectories and
timesteps within trajectories, one then solves:

inf / sup {ENET [�(s)]
>
✓ : F (w)  0, ENET [�(s)]

>
✓}. (32)

since ENET [w(s)] = ENET [�(s)>>✓] = ENET [�(s)]>✓.

Finally we remark on additional difficulties in the linear function approximation setting that are not
encountered in the tabular setting. The computational burden increases because the reparametrization
argument of Proposition 2 crucially relied on the discrete distribution of S. In practice, introducing
a number of bilinear variables which grows with n performs quite poorly in comparison to the
re-parametrization. Furthermore, the approach requires well-specification of the linear function
class for w, since we effectively require realizability of a linear parameter for some set of possible
inverse propensity weights. Handling model misspecification via a feasibility relaxation for the
approximation error of the function class may therefore tradeoff sharpness; we leave this for future
work.

E Additional Empirics and Details

Confounded gridworld In Figure 4 we include a depiction of the 3x3 gridworld as described in
the main text describing the reward structure in greater detail. (If an action moves an agent into a
wall, it simply remains in place).

SDP relaxation One possibility is to consider the standard SDP relaxation for nonconvex

quadratic programs [24]. Let x =


g

w

�
, and Pk be the matrix that generates the quadratic

form
P

a,j
w(j)p1

b
(s, a, s)gk(a | j)⇡e(a | j), e.g. we have that P

k

(k,a,j),|S|2|A|+j
= ⇡e(a |

j)p1
b
(s, a, s), 8a, j. Then a standard relaxation gives that the solution to the following semidefinite

program is a lower bound:

max

⇢
E[w(s)�(s)] : Tr(XPk)� w(k)p1

b
(k) = 0, 8k; g 2 B̃,Eb[w(s)] = 1,


X x

x
> 0

�
⌫ 0

�

However, the lifting results in a (|S|2|A|) square matrix; given that under mild assumptions, typical
SDPs can be solved in O(n2

m
5/2 log(✏�1)) where n is dimension of the vector variable and m is

dimension of the matrix variable, we incur an intractable O(|S|9|A|
9/2) scaling overall.

Details for confounded random walk Note that the stationary distribution under ⇡b is, for s1, s2:
✓

�1 + (1� 2⇡s2u1)(pu1 + pu2) + ⇡s2u1

�1 + (⇡s2u2 � ⇡s1u1)(1� 2pu1 � 2pu2)
,
pu1 + pu2 + ⇡s1u1(1� 2pu1 � 2pu2)

1 + (⇡s1u1 � ⇡s2u1)(1� 2pu1 � 2pu2)

◆
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Figure 8: Comparison of global optimization and Algorithm 1.

Algorithm 1 vs. global optimization We compare the results from using Algorithm 1 (nonconvex
projected gradient descent) vs. solving to full optimality by Gurobi. We find that empirically, storing
previous solutions and imposing monotonicity (e.g. for any �, taking the max of all previous returned
values and the computed values) helps stabilize the optimization.

Computational details A complete description of the data collection process, including sample
size.

• Data: bounds computed based on a trajectory with 40000 steps, and a grid of 25 linearly
spaced � values from log(�) 2 [0.1, 1.7] (equivalently, � 2 [1.10, 5.47]).

• Experiments were run on a Macbook Pro with 16gb RAM.

• Packages: Python (numpy/scipy/pandas), Gurobi Version 9
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