1 Architecture

As shown in Fig. 3, the generator consists of a text encoder, image encoders, and a series of upsampling and residual blocks, where the text encoder is a pre-trained bidirectional RNN [2,9], and the image encoders are pre-trained Inception-v3 [6] and VGG-16 [5] networks.

1.1 Residual Block

As shown in Fig. 1, each residual block consists of two 3×3 convolution layers, two instance normalisations (INs) [7], and one GLU [1] non-linear activation function.

![Figure 1: Architecture of the residual block.](image)

1.2 Upsampling Block

As shown in Fig. 2, each upsampling block consists of one upsample function with nearest mode, one instance normalisation (IN), one 3×3 convolution layer, and one GLU non-linear activation function.

![Figure 2: Architecture of the upsampling block.](image)
1.3 Trend of Manipulation Results

Following [3], we use paired data \((I, S) \rightarrow I\) to train our model, where \(S\) is the text description matching the image \(I\). Therefore, there is a trade-off between the reconstruction of the original contents existing in the input images and the generation of new attributes aligned with the given text descriptions. To verify this trade-off, we investigate the change of the manipulation results when the training epoch increases. As shown in Figs. 4 and 5, we can easily observe that the visual attributes of the input images are modified smoothly, matching the given text descriptions, e.g., blue head, black eyerings, and red belly in Fig. 4 and green grass background in Fig. 5. However, when the epoch increases further, new modified attributes are gradually replaced by the original contents in the input image, and finally the synthetic images become almost the same as the input images.

A bird is red and black in colour, with a blue crown and black eye rings.

Text

Original 50 epochs 100 epochs 150 epochs 200 epochs

Figure 4: Trend of the manipulation results over epoch increases on the CUB dataset.

Zebra, green grass.

Text

Original 5 epochs 10 epochs 15 epochs 20 epochs

Figure 5: Trend of the manipulation results over epoch increases on the COCO dataset.

2 Additional Results

Fig. 6 shows various colour manipulations on the same images. In Figs. 7 and 8 we show additional comparison results between our method and ManiGAN [3] on the CUB [8] and COCO [4] datasets.

This bird has blue wings, a yellow head, and a yellow belly.

This bird has brown wings, a brown head, and a brown belly.

This red bird has blue wings, a red head, and a red belly.

This white bird has blue wings, a white head, and a white belly.

A bird is red and black in colour, with a blue crown and black eye rings.

A bird is red and black in colour, with a blue crown and black eye rings.

A bird is red and black in colour, with a red crown and a red belly.

A bird is red and black in colour, with a red crown and a red belly.

A bird is white in colour, with a black crown and eye rings.

This bird has brown wings, a brown head, and a brown belly.

This red bird has blue wings, a red head, and a red belly.

This white bird has blue wings, a white head, and a white belly.

A bird is red in colour, with a red crown and a red belly.

A bird is red in colour, with a red crown and a red belly.

A bird is white in colour, with a white crown and a black belly.

Figure 6: Various colour manipulations on the same images.
This bird is **red** with a **red crown**, a **red head** and a **red belly**.

This **brown** bird has **wings** that are **brown**, with a **brown belly** and **black eyerings**.

This bird is **white and black in colour**, with a **white head** and a **black belly**.

This bird has a **white crown**, a **white head**, a **yellow beak**, and a **yellow belly**.

A small bird with a **yellow belly** and a **white crown**.

This red bird has **blue wings**, a **red head**, and a **red belly**.

Figure 7: Additional comparison results between ManiGAN [3] and Ours on the CUB bird dataset.
Figure 8: Additional comparison results between ManiGAN and Ours on the COCO dataset.
References

