Supplementary material for paper:

Robust Federated Learning: The Case of Affine Distribution Shifts

Appendix A Additional Numerical Experiments

A.1 Experimental Setup

In the experiments, we simulated a federated learning scenario with n = 10 nodes where each node
observes m = 5000 training samples. We also divided the extra 10,000 samples in each dataset to
two validation and test sets containing 5000 samples each. For CIFAR-10 samples, we applied the
sandard normalization and scaled and linearly mapped the pixel intensity values to interval [-1,1].
We applied batch normalization [44] in order to stabilize training and used the ADAM optimizer [45]
with stepsize value 10™* and default beta parameters 3; = 0.9 and 3 = 0.99 to optimize the neural
net’s parameters for 7" = 100 epochs (10000 iterations).

We did cross validation to choose A € {0.1,0.5,1,5,10,50} and chose the A-value resulting in the

closest additive penalty £ 37 [|A” I3 + |67 |3] to 10 percent of the average sample norm, i.e.

% Y [xV2Y2, over the m = 5000 validation samples. To perform GDA optimization, we applied

two ascent steps per descent step with stepsize % In order to simulate an affine distribution shift, we
manipulated each 5(; in the original training dataset via an affine transformation chosen randomly at
each node: ‘ o

X = (Ig+ A‘)i;. +0°. 9)

XN . . . .. . . . 2 i
Here, each A* is a random matrix with i.i.d. Gaussian entries according to N (0, %), and ¢* is a

random Gaussian vector according to A'(0,521;) where we set o = 0.01. In test time, we did not
apply any random affine transformation to test samples and instead considered the following three
scenarios: (1) no perturbation, (2) adversarial affine distribution shift obtained by optimizing the
inner maximization in (1) using projected gradient descent, 3) adversarial perturbations designed by
the projected gradient descent algorithm. We used 100 projected gradient steps with stepsize 0.1.

We considered three baselines in the experiments: (1) FedAvg where the server node averages the
updated parameters of the local nodes after every gradient step, (2) Distributed FGM training where
the nodes perform fast adversarial training [9] by optimizing an £3-norm bounded perturbation ¢}

using one gradient step followed by projection onto the ball {53 : H(S; |2 < €ggm }» and (3) Distributed
PGD training where each node preforms PGD adversarial training [8] similar to distributed FGM
but uses 10 projected gradient steps, each followed by projection onto {5; : H5; l2 < €pga}. We
used the value €ggm = €pga = 0.05E[[x;]|2] in the experiments. We observed training instability after
achieving perfect training accuracy for the baseline FedAvg algorithm, and hence performed early
stopping to avoid the instability in the FedAvg experiments. We did not encounter the instability
issue in FedRobust experiments.

A.2 Numerical Results for MNIST data

We repeated the CIFAR experiments in Figures 1 and 2 for the MNIST dataset. Figure 5 shows the
numerical results under affine distribution shifts. The figure’s top row includes the plots for fixed
maximum delta norm ||6]2 < 1 and different levels of maximum allowed |A - I|p, while in the
bottom row we fix the maximum allowed linear shift |[A - I|z < 0.6 and evaluate the test accuracy
under different levels of |§]2. As shown in the plots, FedRobust results in the best performance
in most of the evaluations, which indicates the superior performance of FedRobust against affine
distribution shifts. Figure 6 shows the test accuracy of the trained networks under different levels of
adversarial PGD perturbations. The figure’s experiments again shows that FedRobust can effectively
shield against PGD adversarial attacks and achieve a comparable performance to PGD and FGM
adversarial training.
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Figure 5: Trained networks’ test accuracy under affine distribution shifts in the MNIST experiments. Top row:
constraining |42 < 1 and changing maximum allowed |A - I 7, bottom row: constraining |A — I < 0.6 and

changing maximum allowed |d] 2.
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Figure 6: Trained networks’ test accuracy under PGD perturbations in the MNIST experiments. X -axis shows

the maximum allowed ¢2-norm for PGD perturbations.
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Appendix B Preliminaries and Useful Lemmas

In this section, we provide preliminary and useful results in order to prove Theorems 1 and 2. For
notational convenience, we use the following short-hand notations:

Notation Description
Pl = (A; , 6;) maximization variables of node 7 iteration ¢
1. on concatenation of all nodes’ maximization
Wi = (drss ) models at iteration ¢
1 .
wy = — Z wy average model at iteration ¢
n i€[n]
E[®(w,)] - optimality gap measure
= between @ (w; ) and min,, ®(w)
3 - optimality gap measure
=E[o(w) - f(we, V)] between f(w;y, V) and maxy f(w;, ¥)
_ l EH H average deviation of the local models
€ = n . w} ~ W, from the average model at iteration ¢
2
el Qg0 i norm squared of
Tl ie%;] Voo f*(wi, 91) local gradients w.r.t w at iteration ¢
2
B _ 1 Y norm squared of deviation in gradients w.r.t w
he =B VO (we) - ie%:z] Vuo ' (wi, ;) of maxy f(w;, ¥) and local functions f*(w?,v?)

Table 1: Table of notations.

Now, we present a set of useful lemmas and observations which we will invoke to prove the conver-
gence results for both PL-PL and nonconvex-PL loss cases. The following lemma establishes the
Lipschitz gradient parameter for the global function given those of the local objectives.

Lemma 1. If the local functions f's have Lipschits gradients with parameters stated in Assumption
3, then the global function f has also Lipschitz gradients as follows: for any w,w’, ¥, V' it holds
that

Vo f (w0, 9) Vo f (w0 | < L <2ju-v],.
[93 0. 9) =50 (', )] 2 220w s;uw—w'HF.
(10)
Proof. We defer the proof to Section E.1. O
Recall the definition of the function <I>(-), that is,
B(w) = mpx f(w,¥) = max Y flwg)= | omax S fiw AL (1D

R (A181) (A dm) 1y

Next lemma shows that ® has Lipschitz gradients and characterizes its parameter.

Lemma 2 ([32]). If Assumptions 3 and 4 (ii) hold, that is, the local objectives have Lipschitz gradients
and - f(w,") is ua-PL, then we have

VO(w) = Vo f (w, T (w)), (12)
where U* (w) € argmaxy f(w, V) for any w. Moreover, ® has Lipschitz gradients with parameter

_ Li2Lo
L@ = L1 + s
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Proof. We defer the proof to Section E.2. O

Next lemma shows the contraction of the sequence {E[®(w;)]}+>0 when running the update rule of
FedRobust method in Algorithm 1. Please refer to Table 1 to recall the definition of h; and g;.

Lemma 3. If Assumptions 2 and 3 hold, then the iterates of FedRobust satisfy the following
contraction inequality for any iteration t > (0

_ _ 2 Lo o2
E[(I)(w“l)]—E[(b(wt)]s—%EHV(I)(wt)” +%ht—%(1—7711/<1>)9t+77%7®7w- (13)

Proof. We defer the proof to Section E.3. O

Next lemma further bounds h; w.r.t. the two sequences b; and e;.

Lemma 4. If Assumptions 3 and 4 (ii) hold, that is, the local objectives have Lipschitz gradients and
—f(w,-) is pa-PL, then we have

413,

pan

hy < by +2L%;. (14)

Proof. We defer the proof to Section E.4. O

Next lemma establishes a contraction bound on the sequence b;.

Lemma 5. If Assumptions 2, 3 and 4 (ii) hold, then the sequence of {b;}+»o generated by the
FedRobust iterations with 1y < 1/ Lo satisfies the following contraction bound:

4L%2 m — 2 77% 2
b1 < (1= paman) | 1+m o be + 5EHV<I>(wt)H ey (L1 + Lo +212L3;) g¢
2
2 2 77% 2 o 77% 2
+(mL3 +moL3y) e + 0 (L1 + Lo +2n2L3;) 7“1 + ?LQ%, (15)

where L is the Lipschitz gradient parameter of the function ®(-) characterized in Lemma 2.
Proof. We defer the proof to Section E.5. O

Next lemma bounds e, that is the average deviation of local parameter models from their average.
Lemma 6. If Assumptions 1, 2 and 3 hold and the step-size 1, satisfies 3213 (7 — 1)2L? < 1, then

. 2 .
wy — Wy H is bounded as follows

the sequence e; = % Yien] E

2 -1
Uw
eté1677%(7'—1)2p2+4n%(r—1)(n+1)7+207ﬁ(7—1) > (16)
l=t.+1

where t. denotes the index of the most recent server-worker communication, i.e. t. = HJT and we
also denote p? = Sp? +6L3, (3 +€2).

Proof. We defer the proof to Section E.6. O

Next generic lemma is adopted form [16].

Lemma 7. Assume that two non-negative sequences {P;}is0 and {g:}is0 satisfy the following
inequality for each iteration t > 0 and some constants 0 <Y <1, L >0, B>0,andT" > 0:

t—1
Pi sTPt—%(l—nlL)gtHﬁB S g+, (17)

l=t.+1
where t. = HJT Then, for eacht > 0 we have

r

P <P
t > 0+1_T7

(18)
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if n1 satisfies the following condition

2B

Proof. We defer the proof to Section E.7. O

Next lemma bounds the overall optimality gap b; averaged over T iterations.

Lemma 8. If Assumptions 2, 3 and 4 (ii) hold and the vtep -sizes satisfy the conditions g < 1/Ls
8L3,

and % 2 o5, then the average of the sequence {b;}1_;' generated from the FedRobust can be
2
bounded as follows:
1T= 4L2 €2 +¢e2 m
T one g LS e
T % N2n 72 N2 Han
ni 1 o 15 1
+——— L1+ Lo+ 2oL gi + ——— (mL? + o L2 e
772M2n( 21) fz(:) 2 p2n ( ' ) Z '
2 2
1 o L
B (Ly+ Lo+ 2503 T2 40y —262, (20)
T2 p2m n Ham

where Lg is the Lipschitz gradient parameter of the function ®(-) characterized in Lemma 2 and
€1, € represent the radius of the affine perturbation balls, i.e. |A* - I|| < €1 and |6*|| < eo for each
node i € [n].

Proof. We defer the proof to Section E.8. O

Next lemma bounds the averaged local model deviations e; over 7' iterations.

Lemma 9. If Assumptions 1, 2 and 3 hold and the step-size 1, satisfies 321 (7 — 1)?L? < 1, then
the average of the sequence e; overt =0,---,'T — 1 is bounded as follows

2

1% 1
T > v <200 (r- )7 th+16nl(7 %7+ 8l (- D(n+ )72 @1
=0 #=0
Proof. We defer the proof to Section E.9. O

Appendix C Proof of Theorem 1

Having established the key lemmas, now we proceed to prove Theorem 1 for any 8 < 1/2. To show
the convergence of the sequence P, = a; + b, we firstly need to establish a contraction inequality
on P, with respect to P,. We begin by the following bound on the sequence a; = E[®(w;)] - ®*
which is directly implied from Lemma 3:

® 02

L
mﬂ<@——HW® g”+" (1n@@%+m3~;. (22)

Using Lemma 4 that shows h; < 4L2,b;/(uan) +2L3e;, the bound in (22) yields that

Ly o3,
ars <at—fEHV<I>(wt)|| i o bt+771L et—%(l—mL@)gﬁn 7®7 (23)
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Next, we employ the result of Lemma 5 which establishes a contraction bound on the b; sequence.
Putting together with (23) implies that

Pi=ag + ﬁbml

<a- 1 (1 B)E|ve(w,)|’

2L? 412
+ﬂ m 12 +(1—,UJQT]2’H) (1+n1 12) bt
Buan Hamn

_ (7721 (1-mLs) - 77%% (L1 +Lg + Qnngl))gt

+ (771L% +B(mL}+ 772L§1)) et

2
+ (Lq> +B8(Ly + Lo+ 2772L21)) + 772L2§ 24)

We begin simplifying the above bound by first considering the first two terms in RHS of (24). We can
show that the function ®(-) is u1-PL [31], which implies that

__ 2 __ %
E[ve@w,)|” > 2mE[®(w;)] - ®* = 2u1a:. (25)
Therefore, for any 3 < 1/2 we have
1
ar - (1 B)E|ve(w,)|” (1 - Qulm)ah (26)

which implies the coefficient of a; in (24) is bounded by 1 — % wu1m . Next, the coefficient of 5b; in
(24) can be bounded as follows:

2L2 412 LiL 2 2L2 2
m 12 + (1= pamon) [ 1+m 12 1o 1o [ HaTp2nt 21 —4(1 - pamon)
Buan Han pen \mLiLy BLiLy L1L
(a) LiL
d1-n, 112
H2n
(b) 1
<1- 5#17717 27
where (a) holds for our choice of 5 and assumin n + 2y Li b) is implies from
h holds f hoice of 3 and g“z’” >1+(4+2) 2 p
the fact that
LiLy
m-n L L
1#2 _2( 1)( 2)>1 (28)
M1 K1)\ H2T

Now that we have bounded the coefficients of a; and Bb; in (24), rearranging the terms and using the
assumption 7o < 1/ Lo simplifies the contraction on P; as follows

1 m ~ =~ i—/ﬁ CT,?U L2
Pu < (1 - 2#1771) P= B (1-mlp) g+ Loeornf 272 4ng2pod, (29)
where we picked the following notations for convenient of the exposition
- . L2
Ly = (1+BymLY+ BnaLyy, Ly =(1+B)La+BLy+2872 (30)
2

Next, we use Lemma 6 which for 32n? (7 — 1)2L? < 1 provides an upper bound on e; with respect to
g:. We can write

t—1

1
Pt+1<(1—2M1771)Pt—2(1 771L/3)9t+20771LB(T )Y a
l=t.+1

- N 2 oL L
+1677%L/3(7'—1)2p2+477%L/3(T—1)(n+1)0—“’+ Tﬂ—w-i—ng;ﬁai. 31)
n n
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We have shown in Lemma 7 that how a such contraction sequence converges. In particular, let us
pick the following notations and apply the result of Lemma 7 to contraction in (31)

L=1Lg,
1
T=1-- ,
2#1711
B=20Lg(T-1),
- o Ls o2 L
T = 1607 La(r - 1)2p% + 42 Ls(r - 1) (n + 1)7 o ;’ Tw 42 63, (32)
It implies that if the step-sizes satisfy the following condition
. 80Ls(T -1
m | Ls+ p(r=1) — <1, (33)
mpa (1= 3pam)
then we have
. -
1 L L 2 miL
P < (1 - Hlﬁl) Py+ 32171—5(7' -1)2p? +8771 B (T D(n+ 1) T 26w 7]—2—2[30@,
2 11 Ml noonp

(34)

which concludes the proof of Theorem 1. Note to hold this result, in addition to condition (33), we
have assumed the following constraints on the step-sizes as well

L3
LiLy

2 2
meLa <1, 32p2(r-1)2L2<1, 12170 59, (4 + ) (35)

mLiLsy B

Appendix D Proof of Theorem 2

We begin the proof by combining the results of Lemmas 3 and 4 which yields that for every iteration
t=0,--,7T -1 we have

2L¢> 0'2

.
(36)

__ _ 2 2L
E[@(wt+1)]—E[<I>(wt)]s—%EHVfI)(wt)” —%(1—7}1L¢)gt+mu by +m1 Le; + 1

Summing up all the T" inequalities in (36) for ¢ = 0,---, T — 1 and dividing by 7" yields the following

1 (Ela@n)] - a@) < -2 1 5 e|vaa)|

].T 1
(1 771L<1>)* th

2
+771—7“’. 37)
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Next we use Lemmas 8 and then Lemma 9 to replace the terms % ZtT=51 b; and % ZtT=61 e; and rewrite
the above bound in terms of % Z;‘F:_Ol g¢. It yields that

1 _ _ m 4L12L2
T(E[<I><wT)J—<b<wo>)s—2(1—n pe ) 5 Efvao|’

7721 (1 m (L +40L(r-1) )) th

8L3,L2 2 ~ 413, -
L 1232€1+62 1677%L(7-—1)2 771L7+m772 leLU?p,
772 s T 2 Mo
(38)
where we adopt the following short-hand notations

= 3 3 L3

L=2n mL? + n2L21, L= SLa+ L1 + L21 (39)
2

Finally, we use the assumption 71 (L + 40L(7 — 1)?) < 1 to remove the term % Y1oo! g¢ and apply

Z; < 2%2 to simply the bound and conclude the proof:

1= 2 4Ag  4L2 € +é2
T S E|ve(w:)| < T + 2 7122 i? T2 64 L(T - 1)2p?
=0

o2 Lo2 2
+16m L(T - 1)(n + 1)—“} +2m L= + 2 Lyo7,. (40)
n ’171

Appendix E  Proof of Useful Lemmas

E.1 Proof of Lemma 1

Proof of all four cases in the claim is simple. We derive the proof for the fourth one as an instance.
Recall definition of the global function f, that is

1 i i
fw,0) =~ 3 (w4, (41)
i€[n]
Therefore, the gradient of f with respect to W is
)
agr [ (w, ) 1 Vo [l (w ( h)

V f(w, V) = 5 (42)
o fw, ) T\ pm))

We can then write for any w, ¥ = (ap1;--; 1,b”) v = (¢’1' --;2p"™") and using Assumption 3 that

[0 5 (w0, )= f (w0, 9. = — Z Hw (w, )~V w0,

len

P e
i€[n]
L2
= Zfw-v[.. 43)

E.2 Proof of Lemma 2

The detailed proof can be found in [32], Lemma A.5. Note that in our case, according to Lemma
1 the function f has Lipschitz gradients with constants Ly, L1a/\/n, L21/\/n, La/n; implying the
Lipschitz gradient parameter of the function ® to be

(L12/v/n)(La1/y/n) S L+ L12L21' ad)
2u9 2npg

L¢:L1+
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E.3 Proof of Lemma 3

We invoke Lemma 2 which shows that the gradient of the function ®(-) is Le-Lipschitz. We can
write

_ _ SN _ Lo, _
<I>('wt+1) - (I)(’ll]t) < (V@(wt),le - wt) + %Hwﬂ_l = thQ
2

1 C i
> Ve f'(wi,r)
" ie[n]

)

1 S pigqoi Lo
= —m | Ve (w,), - z Vo f (wta'l/Jt)) +77% 5
i€[n]

(45)
where we use the update rule of FedRobust and note that the difference of averaged models can be
written as Wy, — Wy = —171% Yie[n] Vw ¥ (w},2by). Moreover, since the stochastic gradients V, f*
are unbiased and variance-bounded by o2, we can take expectation from both sides of (45) and
further simplify it as follows

L@ 0'2

2

In above, we used the inequality 2(a, b) = |a||? + |b|? - |a - b|? as well as the notations for g; and
h; as defined in Table 1.

E[®(wiy1) - E[® ('wt)]<——E||V<I> t)” +771 t—*(l mLa)ge+ni— (46)

E.4 Proof of Lemma 4

We begin bounding h; by adding/subtracting the term V., f (w0, ¥;) and use the inequality |a+b|? <
2|a||? + 2| b|? to write
2
1 Qg i
hy =E|V®(w;) - — Z Vo [ (wy, ;)
M ie[n]
2
__ _ 2 o 1 . L
<2E|VO(W,) - Vo f (We, Uy)|” + 2B | Vo f (W1, Ty) - - Y Vel (wi, ) 47)
i€[n]
The first term in RHS of (47) can be bounded as follows:
_ _ 2 S _ 2
E|[VO(W,) - Ve f(We, U)||” = E| Vo f (@e, U* (W) = Vo f (We, Ty) ||
@ L2 . . 2
< —12E||\I/ () - U,
® 2L3 B
“2E[®(w,) - f(we, )]
H2m
) 2L2
© 252y, 48)
H2n

In above and to derive (a), we employ the result of Lemma 1 which shows that given Assumption 3,
the gradient function V,, f (w,-) is Li2/+/n Lipschitz. To derive (b), we use Assumption 4 (ii) and
lastly, (c) is implied from the definition of b;. The second term in RHS of (47) can be bounded by
noting that the local gradients V., f*(-, ") are L;-Lipschitz, which we can write

2

_ 1 ) S 1 o ) 1 ) S
E| Voo f (@1, %) = = > Vaof (wy,1)| =E|= > Vuf (@i, ¥;) — = Y Vel (wy,4})
" ie[n] T ieln] T ieln]
Li T
< ? [Z]EHwt_th
:L%Bt. (49)
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Finally, plugging (48) and (49) back in (47) implies the claim of the lemma, that is

413
he < —22b, + 2L3¢,. (50)
H2m

E.5 Proof of Lemma 5

We begin the proof by noting the definition of b; and use the fact that the gradients Vg f(w,-) are
%—Lipschitz (Refer to Lemma 1). We can accordingly write

Q(Wir1) = f(Wir1, Yir1) < P(Wis1) = f(Wer1, Vi) — (Vo f (Wii1, V), Ursr — W)
# 2  -0 51)
In this work, we define the inner product for any two matrices A, B as follows
(A, B) =Tr(A"B). (52)
Note that according to the ascent update rule of FedRobust in Algorithm 1, we can write
Vit~ Uy =100, f, (53)

where we adopt the following short-hand notation for the stochastic gradients at iteration ¢ with
respect to the maximization variables ¥y = (A}, 6})

(Ve wip) [ VaS(wp Ay 6y) Vst (wy A 67)
of=|_ : = : ~ : . (54)

Vo f"(wi,9r) ) \Vaf™(wi, AY,67) Vs f™(wi, Ay, 67)
We also denote the gradients by 0 f = E[ét f] where the expectation is with respect to the randomness
in stochastic gradients V. f*. According to Assumption 2, each of the local stochastic gradients
@1/1 fi(wi, p}) are variance-bounded by 012/). Therefore, we can bound the variance of 9, f as

E|O.f -0, f|% < nai. Now, we can plug these back in (51) which implies

O(Wii1) — Ef(Wii1, Vis1) < P(Wii1) — f(Wei1, Vo) - 7725||V‘1’f(w”1’ \I/t)“F - 7753207’2”
2
n - 1
" anHV\IIf(wHL ) - =0 f| - = (1- 772L2)HatfH% » 53)
n F 2n

where the expectation is with respect to the randomness of the stochastic gradients 0, f while
conditioning on all the randomness history. Now recall from Assumption 4 (ii) that — f (W1, ) is
po-PL implying that | Vg f (W1, ¥i)[|% > 2u2(P(Wis1) — f(Wes1, ¥4)). Moreover, assume that
72 < 1/ Lo to remove the last term in (55). Putting altogether implies that

_ _ _ o L
O (Wyi1) — Ef (Wer1, Vig1) < (1 - paman) (®(Wis1) — f(Weir, ¥p)) + 775720?#
2

n _ 1
+ 772‘ Vo f(Wi1,¥:) = =0 f (56)
2 n o
Next, we continue to bound the last term in RHS of (56). We can write
1 2 1 2
‘vq,fmm,wt) - atf‘ = = 3 |Vl @) - Vo f (i )|
n r i€[n]
L3 |- |12
<= Z Wi — Wy
% 5 o -
212 ;o2 2L3,,_
TN fwi - s T e —wl?, 67)
N ieln]
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where the first inequality above uses Assumption 3 on Lipschitz continuity of local gradients and
the second inequality simply uses the inequality |a + b||? < 2||a|? + 2| b||%. Next, let us bound the
term |w.1 — w¢|? in expectation as follows. Using the descent update rule in Algorithm 1 and

considering Assumption 2 on variance of the stochastic gradients V., f* we can write
2

LS G sl v

E|@e.1 - | = niE

i€[n]
2

ol 1 i g 202

<SIHE| = Y0 Ve (w;,¥})| +nf—2 "
i€[n]
2
o

=nigetni =, (58)

where we use the short-hand notation of g; also listed in Table 1. Plugging (58) back in (57) and
noting the notation e; = % Yie[n] E||w§ - Et”Q implies that

2
212 212, 212, o2

< T2l pp g, e T (59)
n n n n

1
E ‘V\I/f(’wtﬂ, U,) - ;@f

F

Before proceeding to bound more terms, let us recall what we have shown till this point. We plug (59)
back in (56), take the expectation with respect to all the sources of randomness and use the notation
b, = E[®(w;) - f(w¢, ¥;)] to conclude

brer < (1= pomen)E [@(Wee1) — f(Weer, Ut)]
2
0'
+maL3 ey +m2ma L3 gy + mime L3 2 oy (60)

To bound the term E [@(Eﬂl) - f(wWyyq, \Ilt)], we can decompose it to the following three terms:
O(wii1) — f(Wii1, V) = P(wy) — f(we, Vo) + f(wWs, V) — f(Wei1, Vs) + P(Wes1) - P(wy).
(61)

Given the Lipschitz gradient assumption for the local functions in Assumption 3 and using Lemma 1
on Lipschitz gradient for the global function, we can write

_ _ . _ . Ly, _
J(Wi, Wy) = f(Wi41, V) < ~(Voo [ (W, ¥t), Wii1 — W) + ?1Hwt+1 - th27 (62)

where w1 — Wi = —m% Zie[n] \a fi('wf;, @bz) Taking expectation from both sides of (62) implies
that

(a)
E[f(ﬁt,\lft)—f(ﬁtﬂ,\lft)] < 771E||wa(ﬁt,\11t)—V@(Et)”Q+771EHV<I>(ﬁt)H2
e Ly o2
(5ot

. 2L2 2Ly oy,

Ly
bt+771E||V‘I>(’wt)|| +(2+Th 5 )gt M5 5,
(63)

where in inequality () we use the inequality 2(a, b) <|a|*+|b|? and also the result in (58). To derive
(b), we use Assumptions 3 and 4 (ii), result of Lemma 1 and the notation b; = E[®(w;) - f (W, U})]
to write

EHV(I’(ﬁt) ~ Voo f (W, \I’t)Hz = EHwa(Eta U (wt)) = Vao f (Wi, ‘I’t)Hz

L2
<£E”\IJ*(Et)_\Ithiy
2L2

12E[‘I>( t) f(wtaqjt)]
M2

" pan

be. (64)
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We now have all the ingredients to conclude the claim of Lemma 5. To do so, we combine the
result of Lemma 3 which bounds the term E[®(w;;1)] - E[®(w;)], Lemma 4 that shows h; <
4L3,bt/(pan) +2L3e;, and the bound (63); plug back in (61) and then in (60) and conclude the claim
of the lemma, that is

ALY, m TN >
bepr < (1= poman) [ 1+m 1an bt+?E”V‘I’(wt)H +?(L1+L<I>+2772L21)9t
2

NN

2
Ow , 7

2
'
w (L2 + L2 e + % (Ly + Lo + 22 L3,) sy 2 Lo}, (65)

E.6 Proof of Lemma 6

To prove this lemma, we first need to establish an intermediate step, which is stated in the following.
Proposition 1. If Assumptions 1, 2 and 3 hold, then

-1 -1 2
o
ey <1607 (T - 1)L3 > e+ 1092(1 - 1) og+ Sni(r-1)%p* +4ni(r - 1)(n+ 1)—:
I=t.+1 I=t.+1

(66)

Proof of Proposition 1. Consider an iteration ¢t > 1 and let ¢, denote the index of the most recent
communication between the workers and the server, i.e. t. = HJT Therefore, all the workers share

the same local minimization model at iteration ¢, + 1, i.e. wtlc 1= = 'wfc +1 = Wt +1. According to
the update rule of FedRobust, we can write for each node ¢ that

wic+2 = wza—l - nl@wfl(wzltﬁl?'lbzﬁl)v

wi = wéq - Tllﬁwfi(wi—la d’i—l)' 67

Summing up all the equalities in (67) yields that
-1
wi=wi g -m Y, Vef (w,Y]). (68)
I=t.+1

Therefore, the difference of the local models wi and their average w; can be written as

T i S o g iy s 1 S o i
W, — Wy =W, 41— M Z Vel (W, ) = | Wee1 —m— Z Z Vo f? (W], 4])
l=to+1 N je[n]i=t.+1
t—1 B ) ) . 1 t-1 B ) . .
=-m| 2 Vef'(wid)-— > > Vel (w,¢))]. (69)
l=to+1 T je[n]l=to+1

This yields the following bound on each local deviation from the average E|lw! — w;||*:
2

-1 ) ) ) 1 t-1 . . .
2 Vel (wig))=— > 3 Vwf'(w], )

T — 2 2
EHwt—th =nE
I=t.+1 je[n]l=te+1

2 2

1 t-1 N ) . .
+2n7E - Y Vel (w],9))

je[n]l=te.+1

Z ﬁwfl(wll/‘/’;)

I=t.+1

<2E

2 2

(a) P ERIT
< MPE| Y Vel (wi, )| +207E
I=t.+1

>3 Vsl )

1
T je[n]1

T3 T4

2
Tw (70)

+ 2 (t—t.—-1)(n+1)-%
n
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where we used Assumption 2 to bound the variance of the stochastic gradients and derive (a). The
term 77 in (70) can simply be bounded as

2 2
1 t—1 ) . ) t-1 1 . . .
T4SE - Z Z vwfj(wljawlj) S(t_tc_l) Z E|- Z V,wfj(’wl],’l[}l]) (71)
je[n]l=te+1 t=to+1 || ™ je[n]

Note that ¢, denotes the latest server-worker communication before iteration ¢, hence ¢ — t. < 7 where
T is the duration of local updates in each round. Therefore, we have

2

t-1 1 R i . t-1
Ty<(r-1) 3 E[= ¥ Vul/(w],9])| <(=-1) ¥ a (72)
I=tc.+1 je[n] I=te+1
Now we proceed to bound the term 73 in (70) as follows:
2
t-1 S
T3:E Z waz(w;7¢ll)
I=t.+1
t-1 2
<(r=1) Y E|Vas (w]v)
I=t.+1
t-1 o . 2
<4(r=1) Y E|Vaf (wi,$]) - Vuf (@, v))|
I=t.+1
2

t—1 .
SAr-1) Y E|Vaf @) -~ Y Vol (@0 $])

I=t.+1 Jje[n]
2
t-1 1 o . 1 . . .
+4(1-1) Y E|= Y Vel (W,9]) - = Y, Vwf (w],9))
I=te+1 || ™ je[n] T je[n]
2
t-1 1 ) S
t4(r-1) S E[= S Vel (wl, ) (73)
I=to+1 || ™ je[n]

We can simply this bound by using Assumption 3 on Lipschitz gradients for the local objectives f's
and applying the notations for e; and g; to derive

Ty<a(r-1i3 Y Ewi - @[+ a(r - 1) ttilEHwai(wzﬂ/’zi)—wa(wla‘l’l)‘f

I=t.+1 l
t-1 t—1
+4(r-1LF > e+d(r-1) > g (74)
I=t.+1 I=t.+1

We can plug (72) and (74) into (70) and take the average of the both sides over 7 = 1,---,n. This
implies that

t-1 t-1 0_121;
e <16mi(r-1)L7 Y e +10pi(r-1) . gl+8nf(7'—1)2p2+477%(T—1)(n+1)7.
I=t.+1 l=t.+1

(75)

In above, we used the result of Proposition 2 that given Assumption 1, bounds the gradient diversity
LS ety [V f1(w, %) = Voo f (w, W) |* < p?, where p® = 3p% + 6L7, (€] + €3). We defer the proof

this proposition to the end of this section. This concludes the proof of Proposition 1. O

Having set the required intermediate steps, we resume the proof of Lemma 6. According to Proposition
1, we can write the term e; as follows

t—1 t—1
et < Cq Z er+Cy Z g +Cs (76)
l=t.+1 l=t.+1
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where we use the following short-hand coefficients
Cy =160 (r-1)L?
Cy =10n7 (T - 1)

2
C = 812(7 - 1)2p% + 42 (7 - 1) (n + 1) 2. 77
n
We can then write this bound for every iteration in [¢. + 1 : ¢], that is
e.+1=0
et.+2 < Creg 41+ Cogr 1+ Cs
et <Cq (etc+1 +eeet €t—1) +Cs (gtc+1 et gt—l) +Cs3. (78)
Summing all of the inequalities results in the following
-1 t-1 t-1
Yooea<Ci(rt=-1) > e+Co(r-1) Y g+Cs(r-1). (79)

I=t.+1 I=t.+1 I=t.+1
We can further rearrange the terms above and write

=1 CQ(T— 1) -1 03(7'— 1)

€< ———F—— g+—". (80)
l=tz£:+1 1—01(7‘—1)[:;1 ].—Cl(T—].)
Now, if we assume that C (7 — 1) < 1/2, then we get the following bound on Zf;tlc 1€l
t-1 t-1
Z e <2C(1-1) Z g1 +2C3(7-1) (81)
I=t.+1 l=tc+1
Plugging back in (99) and using the assumption C; (7 — 1) < 1/2 yields that
t-1 t-1
et <C1|2C5(7-1) Z g1 +2C3(7-1) |+ Cs Z g +Cs
l=t.+1 l=t.+1
-1
< 2C2 Z g+ 203, (82)
l=t.+1

which concludes the proof of Lemma 6. Lastly, we present the following proposition along with its
proof which we used this result to prove Proposition 1.

Proposition 2. An immediate implication of Assumptions 1 and 3 is that for any w,V, the diversity
of the local gradients is bounded in the following sense

1 ) ) 2
= Y |Val w0, ) - Vud (w, D)< 7, (83)
i€[n]
where we denote p* = 3p{j} +6L3,(e2 +€2).
Proof of Proposition 2. The proof is simply implied from Assumptions 1 and 3 by writing
1 . . 2 1 . o . 2
_ Z vafl(w’wl) _ v,wf(w, \I/)H <3— Z vafi(w,AZ,&) _ vwfl(w,I,O)H
M ieln] M ieln]
1 ; 2
+3— 3 || V' (w) = Vau f (w) |
" ie[n]
1
+3= 3 [ Vao f(w,1,0) - Vo f(w, )]

i€[n]

<3p7 + 6L7,(e] +€3). (84)

26



E.7 Proof of Lemma 7

[16] proves a similar claim for I" = 0. For completeness, we provide the proof for general case when
I' # 0. Let t. denote the index of the most recent communication round, i.e. £, = HJT We can write
t =t. +r where 1 <r < 7. Starting from r = 1, we can write

Prova €XPiy =5 (1=mL) gin +T
<YTP, 41 +7T, (85)
where the last inequality holds if
mL <1. (86)
We can continue for r = 2 as follows

1
P 3<TP 10— % (1-mL)gr.+2 +n; Bgr,+1 +T

(a) 2B
< Y2Py 4 - %T (1 -mL- mr) gt +T(1+T)
®) o
< TP +T(1+7) (87)
where (a) is due to the inequality P; o < TP 41 — ’7—21(1 —mL)gt.+1 + I and (b) holds if
2B
1-mL-m— >0, (88)
T
or equivalently
2B
We can continue the same argument up to r + 1 and write
Pyt ST P g +T(1+ Y 4+ T, (90)
if the step-size is as small as follows
2B r—
™ (LJrTT1 (1+T++ 7 2’))g1. 91)

Since 1+ +--+ Y72 < ﬁ, then the following condition implies all the previous ones on 7

2B
m (L + T1(1_T)) . (92)

Moreover, since T < 1, then the strongest condition on 7 is (92) when we put the largest possible
value for r which is 7, yielding
2B
L+ —m]. 93
(b ) .
Lastly, we note that 1 + Y + -+ + Tl < ﬁ in (90), and the claim is concluded.
E.8 Proof of Lemma 8

Recall the result of Lemma 5 in which we showed that if 75 < 1/ Lo, then the following contraction
bound on the sequence {b; }+>o holds:

ALR, m 2L 2
bt+1 < (1—u2n2n) 1+1]1 bt+ —E”V(I)(wt)H +*(L1 +Lq>+2772L21)gt
Lan 2 2
2 2 77% 2 0120 77% 2
+(mLT+n2L3) er + o (L1 + Lo +2m2L3;) el ?Lgaw, (94)
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and consider the coefficient of b; in above. A simple calculation yields that if the step-sizes satisfy
2
the condition 22 > 8512 , then we have
m Hamn

412
(1= paman) (1 + 1y — 2
H2m

1
) <1-gpatpn. 935)

Now, we denote v =1 - % pomen and apply (94) to all iterations ¢ = 0, ---,T" — 1, which yields that
2L3
bo < —2(%4—6%),
H2m
m — 12 77% 2 2 2
b < "ybo + EEHV(D('LUIL)” + ? (L1 + L + 21’)2L21) go + (1’}1L1 + 772L21) ()
o2 3
+ %ngi,

2
n
+ ?1 (L1 + Lq> + 2772.[/%1) 7

2
bT—l < ’YbT_Q + %E”v@(ﬁt)HQ + % (Ll + Lq> + 2772[/%1) gr-2 + (7’]1L% + nngl) eT_2

77% 2\ T 7]% 2
+—=(Ly+ Lo +2m2L5,) 2 + == Looy,. 96
9 ( 1 ® 72 21) " 9 20y, (96)
Taking the average of the 7" inequalities above yields that
1 T-1

213 1
(=g Bhes T 5 ZEmet)H

2

— 1 T-1
+%1(L1+Lq>+2772L§1)T Z t+(n1Lf+n2L§1)f > e
#=0 =0
U

2 2
+ %1 (Ly + Lo + 2772L§1) Tw | ELQ% 97)

We can further divide both sides of (97) by 1 — ~ and conclude

TZ 4L§ €%+6% +771

E|VD
T &30 T nopen T Z Ivemol
i —— (L1 + Lo + 20 L2 )—z_:g +il(mL2+nzL2 )sz_:let
T2 fon Yr& T2 p2m ! VT &
2 2
+n—li(L1+L¢+2ngL§1)wa+772£Ui- ©8)
N2 pan n 2T

E.9 Proof of Lemma 9

We begin by noting the result of Proposition 1 in which we showed the following bound on e;

-1 -1
e <Cr Y. e+Cy Y g +0Cs, (99)

l=t.+1 l=t.+1

where we defined the coefficients Cy, Co, C'3 in (77) and recall here for more convenient:

Cy =160 (T -1)L?
Cy = 10m3 (T - 1)
ag

2
. (100)

n

Cs = 817%(7' - 1)2/)2 +477f(7- -1)(n+1)
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Next, we apply this bound to each iteration ¢ = 0,---,7 — 1 as follows

€y = 0

€1 =0

ez <Ciep +Chg1 +C3

e, <Ci (61+"-+67_1)+C2(91+"'+gr—1)+C3
ers1 =0

erv2 <Cieri +Cogri +Cs

ear  <Cr(ers1+-+e2-1) +Co(gre1 +-+ gor1) + Cs

er.+1 =0

er.+2 < Crer 41 +Cagr.41 +C3 (101)

;3T—1 <Ch (6T6+1 +t+er_z) + Ca (gTC+1 ++groo) + Cs,

where T, = l%JT denote the index of the most recent communication between the workers and the
server before iteration 7". Summing the above inequalities yields that

T-1 T-1 T-1
e <Ci(r=1) Y ep+Co(r—-1) > gi +CsT. (102)
t=0 t=0 t=0

Now if we assume that C'y (1-1) =16ni (7 - 1)?L} < 1, the the claim is concluded by rearranging
the terms in (102):

1 T-1 1 T-1
= > e <205(t-1)= > g +2C5. (103)
T3 T i3
Appendix F  Proof of Theorem 3
Fix a distribution P and consider
max Ep[£(fuw (Ax +8))] = Al8l3 - AJA - I (104)

Assuming a 1-Lipschitz loss ¢ with 1-Lipschitz gradient, based on [36]’s Lemma 7 the above
function’s gradient with respect to ¢ has a Lipschitz constant bounded by

7

L l
Lip(V fo) = (H H’leo—) ; H ij lo-

i=1 j=1

Similarly, the expected loss’s derivative with respect to A will also be Lipschitz in the spectral norm
with a Lipschitz constant upper-bounded by

L Lo
BLip(Vfw) = B([T lwils) 3. [T lw;lo-
i=1 i=1j=1
Given weights in w, we denote the optimal solution for ¢ and A by d,, and A,,, respectively. To apply
the Pac-Bayes generalization analysis, we need to bound the change in d.,, A,, caused by perturbing
w to w + u. Note that since A > (1 + B) Lip(V f ), the maximization problem for optimizing
A, 0y 1s maximizing a strongly-concave objective whose solutions will satisfy:

5y = %E[w o Fur(AwX + 0],

Ay 1= %E[(V@o Fuo(AwX +6))X]

29



. d ) ; d ; .
which are norm-bounded by Llp(iof w) ¢ o /‘\‘w" lo and BLlp(ic’f w) ¢ anzll\\wn\\o’ respectively.
Therefore, for a norm-bounded perturbation w where |u; |, < 7 |w;|, we can write

!!5w+u—5 o+ A = A,

_”f [VE( e (AwsaX + Sura))] - *E[W(fw(A X+ 0w )],
ST s X o+ Gups0))XT] = SELTE (A X+ 60))XT]],

- ||§E[W( Furru (Ao X + Bup10)) = VO fun (A X + 8u)) ][
. H%E[(vg(fwm(AwWX + 0weu)) = VO fuo (DX + 62,)))X ]|

<| %E[W( Foru(RuweuX + 0usa)) = VO foo (AuosuX + 6]
+ | ELT U (X + Bup)) = T fan (X + G
. H%E[W(fw(AwX +0wra)) = VE(fu (A X +600)) ][
+H§E[<w( Fuoru(AwruX + us)) = VU fao (o X + 00X
. H%E[(vé(fw(/\wmx +8uwru)) ~ VE(fuo(AwX + 62 )X

| SEA (X + i) = T (X +5)DX ],
. (B+Dlip(Lo fu)
- A

@[]l 3 2212 51T J|>Z”“J'”]

[wille lw;llo

(H5w+u - 6w HZ + HAw+u - Aw Ho)

where the last inequality follows from Lemma 3 in [36]. As a result,

”611;+u - 5’wH2 + HAuHu - Aw Ho_
A [uilo | T e
S)\—(B+l)lip(éofw)|:(B+1)(3 (H” illo )Z[ H w;lo) _ ]:|

zHU j=1 j=1 |w; o

Then, we can bound the change in the loss function caused by perturbing w at any |x[2 < B with
any norm-bounded |u; |, < [ w; |

| fo s (A X + Susn) = fuo (Ao X + 60 |,

< froru(AwsraX + ) = foo (AuwsaX + S|
+ || foo (Awsu X + Susas) = fro (A X + G
+ || fas (A X + Suss) = foo (Ao X + 00) [,

- & il d
geB(U1 lwillo) Y o, * +B)(U Jew;]|,)

i=1

2 7

€ i[ Huz“U H 1) Z |u_7 ”o’]
A= (B+ ) Lip(Vfw) &' wills i

= j<1 1 |wjllo

Now, for a fixed weight vector w we consider a multivariate Gaussian distribution ) with zero-
mean and diagonal covaraince matrix for perturbation uw where each entry w; has standard deviation
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[ o

K; = ———=2——x with k chosen as
KM @il
T s L |- . X L i - (105)
8¢%Ly/2dlog(4dL) B(TTiZy il ) (1 + BTy Zict -1 [ o)
Also, for any w which satisfies || w; |, — |®; ]| < 7% |@;] >, we have Lip(£ o fu,) < e"?A(1-1) <
(1 -n/2)A. Therefore,
KL(PmeQ)
< Z le HF
i=1
; 2
(T @2 (1 + e o e [@5]0)” d e, )12
< O(LQBleog(dL) AL T - |ufl|§)
v = iz
(ME i) (1 + e S M Jwslo)” e 12
SO(L2B2dlog(dL) (T L) - ||wl|”§ )
2 i=1 [Wilg

Now we plug the above result into [36]’s Lemma 1, implying that given a fixed underlying distribution
P and any £ > 0 with probability at least 1 — & for any w satisfying ||w; |5 — [|; o] < 7% [w; s we
have

B2L2d1og(LA)A2 (TT2, |wil, £2, 20 )? 1 10g

=1 Jw; |2 3

my2(A = (1 + B) Lip(V fw))?

adV(w) ﬁadV(w) <O (106)

Now we use a cover of size O(g log M ) points where for any feasible |w;||, we can find a point a;
in the cover such that [|w; |, — a;| < ;- a;. As aresult, we can cover the space of feasible w;’s with
O((% log M) )LL) number of pomts. ThlS proves that for a fixed underlying distribution for every
& > 0, with probability at least £ > 0 for any feasible norm-bounded w we have

B2 Ldlog(La)\*(ITL, [wile Ty {13)” + Llog mEben)

=1 Jwil2

my2(A = (1+ B) Lip(Vlo fu))?

L34 (w) = L35 (w) <O

(107)
To apply the result to the network of n nodes, we apply a union bound to have the bound hold
simultaneously for the distribution of every node, which proves for every £ > 0 with probability at
least 1 — ¢ the average worst-case loss of the nodes satisfies the following margin-based bound:

7 2 2 nm O,
B2L2dlog(LA)N (T, [wil e Sy LR ) + Llog 2o

my2(A = (1 + B) Lip(V fu))?

adV(w) Eadv(’U)) <0

(108)
Therefore, the proof is complete.

Appendix G Proof of Theorem 4

Define random vector U = AX +4. According to the definition of optimal transport cost W.(Px, Py)
for quadratic c(x,u) = |x - ul3,

. 1 )
W.(Px,Py) = El-|X-U 109
( x U) Px,UGIII[l(IJI'}x,PU) [2H ”2] ( )
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where II( Px, Py) contains any joint distribution Px y with marginals Px, Py. One distribution in
II( Px, Py) is the joint distribution of (X, AX + §) implying that

1
WP, Pu) < SE[1X - AX - 03]

= SE[I( - )X - 3]

(a)
< E[J(1 - M)X[3] + 6]

O T((1 - AT - A)TE[XXT]) + 52

© ATe((T - AY(T = A)T) + |62
(d)

<A -AlE+]6]3

<max{\, 1}(|1 - A|F +[4]3).

In the above, (a) holds since for every two vectors uy, us we have |u; + uz|3 = [uy |3 + |uz |3 +
2uluy < 2(|ug |3 +[uz]3). (b) follows from the fact that E[[ (7 - A)X 3] = E[Tr((1 - A)XXT(I-
A)T) =Te((I - A)(I - A)TE[XXT]). (c) holds because of the theorem’s assumption implying that
E[XXT] < AL Last, (d) holds because we have Tr(AAT) = | A||% for every A. Therefore, the proof
is complete.
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