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Abstract

Determining whether inputs are out-of-distribution (OOD) is an essential building
block for safely deploying machine learning models in the open world. However,
previous methods relying on the softmax confidence score suffer from overconfi-
dent posterior distributions for OOD data. We propose a unified framework for
OOD detection that uses an energy score. We show that energy scores better distin-
guish in- and out-of-distribution samples than the traditional approach using the
softmax scores. Unlike softmax confidence scores, energy scores are theoretically
aligned with the probability density of the inputs and are less susceptible to the
overconfidence issue. Within this framework, energy can be flexibly used as a
scoring function for any pre-trained neural classifier as well as a trainable cost
function to shape the energy surface explicitly for OOD detection. On a CIFAR-10
pre-trained WideResNet, using the energy score reduces the average FPR (at TPR
95%) by 18.03% compared to the softmax confidence score. With energy-based
training, our method outperforms the state-of-the-art on common benchmarks.

1 Introduction

The real world is open and full of unknowns, presenting significant challenges for machine learning
models that must reliably handle diverse inputs. Out-of-distribution (OOD) uncertainty arises when
a machine learning model sees an input that differs from its training data, and thus should not be
predicted by the model. Determining whether inputs are out-of-distribution is an essential problem
for deploying ML in safety-critical applications such as rare disease identification. A plethora of
recent research has studied the issue of out-of-distribution detection [2, 3, 13–15, 19, 22, 23, 26].

Previous approaches rely on the softmax confidence score to safeguard against OOD inputs [13].
An input with a low softmax confidence score is classified as OOD. However, neural networks can
produce arbitrarily high softmax confidence for inputs far away from the training data [29]. Such a
failure mode occurs since the softmax posterior distribution can have a label-overfitted output space,
which makes the softmax confidence score suboptimal for OOD detection.

In this paper, we propose to detect OOD inputs using an energy score, and provide both mathematical
insights and empirical evidence that the energy score is superior to both a softmax-based score and
generative-based methods. The energy-based model [20] maps each input to a single scalar that is
lower for observed data and higher for unobserved ones. We show that the energy score is desirable
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for OOD detection since it is theoretically aligned with the probability density of the input—samples
with higher energies can be interpreted as data with a lower likelihood of occurrence. In contrast,
we show mathematically that the softmax confidence score is a biased scoring function that is not
aligned with the density of the inputs and hence is not suitable for OOD detection.

Importantly, the energy score can be derived from a purely discriminative classification model without
relying on a density estimator explicitly, and therefore circumvents the difficult optimization process
in training generative models. This is in contrast with JEM [11], which derives the likelihood score
log p(x) from a generative modeling perspective. JEM’s objective can be intractable and unstable
to optimize in practice, as it requires the estimation of the normalized densities over the entire
input space to maximize the likelihood. Moreover, while JEM only utilizes in-distribution data, our
framework allows exploiting both the in-distribution and the auxiliary outlier data to shape the energy
gap flexibly between the training and OOD data, a learning method that is much more effective than
JEM or Outlier Exposure [14].

Contributions. We propose a unified framework using an energy score for OOD detection.1 We show
that one can flexibly use energy as both a scoring function for any pre-trained neural classifier (without
re-training), and a trainable cost function to fine-tune the classification model. We demonstrate the
effectiveness of energy function for OOD detection for both use cases.

• At inference time, we show that energy can conveniently replace softmax confidence for any
pre-trained neural network. We show that the energy score outperforms the softmax confi-
dence score [13] on common OOD evaluation benchmarks. For example, on WideResNet,
the energy score reduces the average FPR (at 95% TPR) by 18.03% on CIFAR-10 compared
to using the softmax confidence score. Existing approaches using pre-trained models may
have several hyperparameters to be tuned and sometimes require additional data. In contrast,
the energy score is a parameter-free measure, which is easy to use and implement, and in
many cases, achieves comparable or even better performance.

• At training time, we propose an energy-bounded learning objective to fine-tune the network.
The learning process shapes the energy surface to assign low energy values to the in-
distribution data and higher energy values to OOD training data. Specifically, we regularize
the energy using two square hinge loss terms, which explicitly create the energy gap
between in- and out-of-distribution training data. We show that the energy fine-tuned model
outperforms the previous state-of-the-art method evaluated on six OOD datasets. Compared
to the softmax-based fine-tuning approach [14], our method reduces the average FPR (at
95% TPR) by 10.55% on CIFAR-100. This fine-tuning leads to improved OOD detection
performance while maintaining similar classification accuracy on in-distribution data.

The rest of the paper is organized as follows. Section 2 provides the background of energy-based
models. In Section 3, we present our method of using energy score for OOD detection, and experi-
mental results in Section 4. Section 5 provides an comprehensive literature review on OOD detection
and energy-based learning. We conclude in Section 6, with discussion on broader impact in Section 7.

2 Background: Energy-based Models

The essence of the energy-based model (EBM) [20] is to build a function E(x) : RD ! R that maps
each point x of an input space to a single, non-probabilistic scalar called the energy. A collection of
energy values could be turned into a probability density p(x) through the Gibbs distribution:

p(y | x) = e�E(x,y)/T

R
y0 e�E(x,y0)/T

=
e�E(x,y)/T

e�E(x)/T
, (1)

where the denominator
R
y0 e�E(x,y0)/T is called the partition function, which marginalizes over y,

and T is the temperature parameter. The Helmholtz free energy E(x) of a given data point x 2 RD

can be expressed as the negative of the log partition function:

E(x) = �T · log
Z

y0
e�E(x,y0)/T (2)

1Our code is publicly available to facilitate reproducible research: https://github.com/wetliu/
energy_ood.
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Figure 1: Energy-based out-of-distribution detection framework. The energy can be used as a scoring function
for any pre-trained neural network (without re-training), or used as a trainable cost function to fine-tune the
classification model. During inference time, for a given input x, the energy score E(x; f) is calculated for a
neural network f(x). The OOD detector will classify the input as OOD if the negative energy score is smaller
than the threshold value.

Energy Function The energy-based model has an inherent connection with modern machine learning,
especially discriminative models. To see this, we consider a discriminative neural classifier f(x) :
RD ! RK , which maps an input x 2 RD to K real-valued numbers known as logits. These logits
are used to derive a categorical distribution using the softmax function:

p(y | x) = efy(x)/T
PK

i efi(x)/T
, (3)

where fy(x) indicates the yth index of f(x), i.e., the logit corresponding to the yth class label.

By connecting Eq. 1 and Eq. 3, we can define an energy for a given input (x, y) as E(x, y) = �fy(x).
More importantly, without changing the parameterization of the neural network f(x), we can express
the free energy function E(x; f) over x 2 RD in terms of the denominator of the softmax activation:

E(x; f) = �T · log
KX

i

efi(x)/T . (4)

3 Energy-based Out-of-distribution Detection

We propose a unified framework using an energy score for OOD detection, where the differences
of energies between in- and out-of-distribution allow effective differentiation. The energy score
mitigates a critical problem of softmax confidence with arbitrarily high values for OOD examples [12].
In the following, we first describe using energy as an OOD score for pre-trained models, and the
connection between the energy and softmax scores (Section 3.1). We then describe how to use energy
as a trainable cost function for model fine-tuning (Section 3.2).

3.1 Energy as Inference-time OOD Score

Out-of-distribution detection is a binary classification problem that relies on a score to differentiate
between in- and out-of-distribution examples. A scoring function should produce values that are
distinguishable between in- and out-of-distribution. A natural choice is to use the density function of
the data p(x) and consider examples with low likelihood to be OOD. While it is possible to obtain
the density function for a discriminative model by resorting to the energy-based model [11, 20]:

p(x) =
e�E(x;f)/T

R
x e

�E(x;f)/T
, (5)

the normalized densities Z =
R
x e

�E(x;f)/T (with respect to x) can be intractable to compute or
even reliably estimate over the input space.
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(a) softmax scores 1.0 vs. 0.99
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(b) negative energy scores: 11.19 vs. 7.11

Figure 2: (a) Softmax and (b) logit outputs of two samples calculated on a CIFAR-10 pre-trained WideResNet.
The out-of-distribution sample is from SVHN. For (a), the softmax confidence scores are 1.0 and 0.99 for the in-
and out-of-distribution examples. In contrast, the energy scores calculated from logit are E(xin) = �11.19,
E(xout) = �7.11. While softmax confidence scores are almost identical for in- and out-distribution samples,
energy scores provide more meaningful information with which to differentiate them.

To mitigate the challenge, our key observation is that the absence of the normalization does not affect
the OOD detection at all. A data point with a higher probability of occurrence is equivalent to having
lower energy. To see this, we can take the logarithm of both sides of Eq. 5,

log p(x) = �E(x; f)/T � logZ.| {z }
constant for all x

The equation above suggests that �E(x; f) is in fact linearly aligned with the log likelihood func-
tion, which is desirable for OOD detection. Examples with higher energies (lower likelihood) are
considered as OOD inputs. Specifically, we propose using the energy function E(x; f) in Eq. 4 for
OOD detection:

G(x; ⌧, f) =

⇢
0 if � E(x; f)  ⌧,
1 if � E(x; f) > ⌧,

(6)

where ⌧ is the energy threshold. In practice, we choose the threshold using in-distribution data so that
a high fraction of inputs are correctly classified by the OOD detector G(x). Here we use negative
energy scores, �E(x; f), to align with the conventional definition where positive (in-distribution)
samples have higher scores. The energy score is non-probabilistic in nature, which can be conveniently
calculated via the logsumexp operator. Unlike JEM [11], our method does not require estimating
the density Z explicitly, as Z is sample-independent and does not affect the overall energy score
distribution.
Energy Score vs. Softmax Score Our method can be used as a simple and effective replacement for
the softmax confidence score [13] for any pre-trained neural network. To see this, we first derive a
mathematical connection between the energy score and the softmax confidence score:

max
y

p(y | x) = max
y

efy(x)P
i e

fi(x)
=

ef
max(x)

P
i e

fi(x)

=
1P

i e
fi(x)�fmax(x)

=) logmax
y

p(y | x) = E(x; f(x) � fmax(x)) = E(x; f) + fmax(x),

when T = 1. This reveals that the log of the softmax confidence score is in fact equivalent to a special
case of the free energy score, where all the logits are shifted by their maximum logit value. Since
fmax(x) tends to be higher and E(x; f) tends to be lower for in-distribution data, the shifting results
in a biased scoring function that is no longer proportional to the probability density p(x) for x 2 RD:

logmax
y

p(y | x) = � log p(x) + fmax(x) � logZ| {z }
Not constant. Larger for in-dist x

6/ � log p(x).
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(c) FPR95: 4.36
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Figure 3: (a & b) Distribution of softmax scores vs. energy scores from pre-trained WideResNet. We contrast
the score distribution from fine-tuned models using Outlier Exposure [14] (c) and our energy-bounded learning
(d). We use negative energy scores for (b & d) to align with the convention that positive (in-distribution) samples
have higher scores. Using energy score leads to an overall smoother distribution (b & d), and is less susceptible
to the spiky distribution that softmax exhibits for in-distribution data (a & c).

As a result, unlike the energy score, which is well aligned with density p(x), the softmax confidence
score is less able to reliably distinguish in- and out-of-distribution examples. To illustrate with a real
example, Figure 2 shows one example from the SVHN dataset (OOD) and another example from
the in-distribution data CIFAR-10. While their softmax confidence scores are almost identical (1.0
vs 0.99), the negative energy scores are more distinguishable (11.19 vs. 7.11). Thus, working in
the original logit space (energy score) instead of the shifted logit space (softmax score) yields more
useful information for each sample. We show in our experimental results in Section 4.2 that energy
score is a superior metric for OOD detection than the softmax score.

3.2 Energy-bounded Learning for OOD Detection

While energy score can be useful for a pre-trained neural network, the energy gap between in- and
out-of-distribution might not always be optimal for differentiation. Therefore, we also propose an
energy-bounded learning objective, where the neural network is fine-tuned to explicitly create an
energy gap by assigning lower energies to the in-distribution data, and higher energies to the OOD
data. The learning process allows greater flexibility in contrastively shaping the energy surface,
resulting in more distinguishable in- and out-of-distribution data. Specifically, our energy-based
classifier is trained using the following objective:

min
✓

E(x,y)⇠Dtrain
in

[� logFy(x)] + � · Lenergy (7)

where F (x) is the softmax output of the classification model and Dtrain
in is the in-distribution train-

ing data. The overall training objective combines the standard cross-entropy loss, along with a
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OOD FPR95 AUROC AUPR
fine-tune? dataset

Dtest
in Dtest

out # " "

WideResNet
CIFAR-10 7

Softmax score [13] / Energy score (ours)

iSUN 56.03 / 33.68 89.83 / 92.62 97.74 / 98.27
Places365 59.48 / 40.14 88.20 / 89.89 97.10 / 97.30
Texture 59.28 / 52.79 88.50 / 85.22 97.16 / 95.41
SVHN 48.49 / 35.59 91.89 / 90.96 98.27 / 97.64
LSUN-Crop 30.80 / 8.26 95.65 / 98.35 99.13 / 99.66
LSUN-Resize 52.15 / 27.58 91.37 / 94.24 98.12 / 98.67
average 51.04 / 33.01 90.90 / 91.88 97.92 / 97.83

WideResNet
CIFAR-10 3

OE fine-tune [14] / Energy fine-tune (ours)

iSUN 6.32 / 1.60 98.85 / 99.33 99.77 / 99.87
Places365 19.07 / 9.00 96.16 / 97.48 99.06 / 99.35
Texture 12.94 / 5.34 97.73 / 98.56 99.52 / 99.68
SVHN 4.36 / 1.04 98.63 / 99.41 99.74 / 99.89
LSUN-Crop 2.89 / 1.67 99.49 / 99.32 99.90 / 99.86
LSUN-Resize 5.59 / 1.25 98.94 / 99.39 99.79 / 99.88
average 8.53 / 3.32 98.30 / 98.92 99.63 / 99.75

Table 1: OOD detection performance comparison using softmax-based vs. energy-based approaches. We use
WideResNet [47] to train on the in-distribution dataset CIFAR-10. We show results for both using the pretrained
model (top) and applying fine-tuning (bottom). All values are percentages. " indicates larger values are better,
and # indicates smaller values are better. Bold numbers are superior results.

regularization loss defined in terms of energy:

Lenergy = E(xin,y)⇠Dtrain
in

(max(0, E(xin) � min))
2 (8)

+ Exout⇠Dtrain
out

(max(0,mout � E(xout)))
2 (9)

where Dtrain
out is the unlabeled auxiliary OOD training data [38]. In particular, we regularize the energy

using two squared hinge loss terms2 with separate margin hyperparameters min and mout. In one term,
the model penalizes in-distribution samples that produce energy higher than the specified margin
parameter min. Similarly, in another term, the model penalizes the out-of-distribution samples with
energy lower than the margin parameter mout. In other words, the loss function penalizes the samples
with energy E(x) 2 [min,mout]. Once the model is fine-tuned, the downstream OOD detection is
similar to our description in Section 3.1.

4 Experimental Results

In this section, we describe our experimental setup (Section 4.1) and demonstrate the effectiveness of
our method on a wide range of OOD evaluation benchmarks. We also conduct an ablation analysis
that leads to an improved understanding of our approach (Section 4.2).

4.1 Setup

In-distribution Datasets We use the SVHN [28], CIFAR-10 [18], and CIFAR-100 [18] datasets as
in-distribution data. We use the standard split, and denote the training and test set by Dtrain

in and Dtest
in ,

respectively.
Out-of-distribution Datasets For the OOD test dataset Dtest

out , we use six common benchmarks:
Textures [5], SVHN [28], Places365 [49], LSUN-Crop [46], LSUN-Resize [46], and iSUN [45].
The pixel values of all the images are normalized through z-normalization in which the parameters are
dependent on the network type. For the auxiliary outlier dataset, we use 80 Million Tiny Images [38],
which is a large-scale, diverse dataset scraped from the web. We remove all examples in this dataset
that appear in CIFAR-10 and CIFAR-100.

2We also explored using a hinge loss such as max(0, E(xin) � E(xout) + m) through a single constant
margin parameter m. While the difference between E(xin) and E(xout) can be stable, their values do not
stabilize. Optimization is more flexible and the training process is more stable with two separate hinge loss
terms.
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Dtest
in Method

FPR95 AUROC AUPR In-dist
Test Error

# " " #

CIFAR-10
(WideResNet)

Softmax score [13] 51.04 90.90 97.92 5.16
Energy score (ours) 33.01 91.88 97.83 5.16
ODIN [23] 35.71 91.09 97.62 5.16
Mahalanobis [22] 37.08 93.27 98.49 5.16
OE [14] 8.53 98.30 99.63 5.32
Energy fine-tuning (ours) 3.32 98.92 99.75 4.87

CIFAR-100
(WideResNet)

Softmax score [13] 80.41 75.53 93.93 24.04
Energy score (ours) 73.60 79.56 94.87 24.04
ODIN [23] 74.64 77.43 94.23 24.04
Mahalanobis [22] 54.04 84.12 95.88 24.04
OE [14] 58.10 85.19 96.40 24.30
Energy fine-tuning (ours) 47.55 88.46 97.10 24.58

Table 2: Comparison with discriminative-based OOD detection methods. " indicates larger values are better,
and # indicates smaller values are better. All values are percentages and are averaged over the six OOD test
datasets described in section 4.1. Bold numbers are superior results. Detailed results for each OOD test dataset
can be found in Appendix A.

Evaluation Metrics We measure the following metrics: (1) the false positive rate (FPR95) of OOD
examples when true positive rate of in-distribution examples is at 95%; (2) the area under the receiver
operating characteristic curve (AUROC); and (3) the area under the precision-recall curve (AUPR).
Training Details We use WideResNet [47] to train the image classification models. For energy
fine-tuning, the weight � of Lenergy is 0.1. We use the same training setting as in Hendryks et al. [14],
where the number of epochs is 10, the initial learning rate is 0.001 with cosine decay [24], and
the batch size is 128 for in-distribution data and 256 for unlabeled OOD training data. We use the
validation set as in Hendrycks et al. [14] to determine the hyperparameters: min is chosen from
{�3,�5,�7}, and mout is chosen from {�15,�19,�23,�27} that minimize FPR95. The ranges
of min and mout can be chosen around the mean of energy scores from a pre-trained model for in- and
out-of-distribution samples respectively. We provide the optimal margin parameters in Appendix B.

4.2 Results

Does energy-based OOD detection work better than the softmax-based approach? We begin
by assessing the improvement of energy score over the softmax score. Table 1 contains a detailed
comparison for CIFAR-10. For inference-time OOD detection (without fine-tuning), we compare
with the softmax confidence score baseline [13]. We show that using energy score reduces the
average FPR95 by 18.03% compared to the baseline on CIFAR-10. Additional results on SVHN as
in-distribution data are provided in Table 6, where we show the energy score consistently outperforms
the softmax score by 8.69% (FPR95).

We also consider energy fine-tuning and compare with Outlier Exposure (OE) [14], which regularizes
the softmax probabilities to be uniform distribution for outlier training data. For both approaches,
we fine-tune on the same data and use the same training configurations in terms of learning rate and
batch size. Our energy fine-tuned model reduces the FPR95 by 5.20% on CIFAR-10 compared to
OE. The improvement is more pronounced on complex datasets such as CIFAR-100, where we show
a 10.55% improvement over OE.

To gain further insights, we compare the energy score distribution for in- and out-of-distribution data.
Figure 3 compares the energy and softmax score histogram distributions, derived from pre-trained
as well as fine-tuned networks. The energy scores calculated from a pre-trained network on both
training and OOD data naturally form smooth distributions (see Figure 3(b)). In contrast, softmax
scores for both in- and out-of-distribution data concentrate on high values, as shown in Figure 3(a).
Overall our experiments show that using energy makes the scores more distinguishable between in-
and out-of-distributions, and as a result, enables more effective OOD detection.
How does our approach compare to competitive OOD detection methods? In Table 2, we
compare our work against discriminative OOD detection methods that are competitive in literature.
All the numbers reported are averaged over six OOD test datasets. We provide detailed results for
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Dtest
in Method pre-trained? SVHN CIFAR-100 CelebA

CIFAR-10

Class-conditional Glow [17] 7 0.64 0.65 0.54
IGEBM [8] 7 0.43 0.54 0.69
JEM-softmax [11] 7 0.89 0.87 0.79
JEM-likelihood [11] 7 0.67 0.67 0.75
Energy score (ours) 3 0.91 0.87 0.78
Energy fine-tuning (ours) 7 0.99 0.94 1.00

Table 3: Comparison with generative-based models for OOD detection. Values are AUROC.

each dataset in Appendix A. We note that existing approaches using a pre-trained model have several
hyperparameters that need to be tuned, sometimes with the help of additional data and a classifier to
be trained (such as Mahalanobis [22]). In contrast, using an energy score on a pre-trained network
is parameter-free, easy to use and deploy, and in many cases, achieves comparable or even better
performance.

In Table 3, we also compare with state-of-the-art hybrid models that incorporated generative model-
ing [8, 11, 17]. These approaches are stronger baselines than pure generative-modeling-based OOD
detection methods [4, 27, 32], due to the use of labeling information during training. In both cases
(with and without fine-tuning), our energy-based method outperforms hybrid models.
How does temperature scaling affect the energy-based OOD detector? Previous work ODIN [23]
showed both empirically and theoretically that temperature scaling improves out-of-distribution
detection. Inspired by this, we also evaluate how the temperature parameter T affects the performance
of our energy-based detector. Applying a temperature T > 1 rescales the logit vector f(x) by 1/T .
Figure 4 in Appendix A shows how the FPR95 changes as we increase the temperature from T = 1
to T = 1000. Interestingly, using larger T leads to more uniformly distributed predictions and makes
the energy scores less distinguishable between in- and out-of-distribution examples. Our result means
that the energy score can be used parameter-free by simply setting T = 1.
How do the margin parameters affect the performance? Figure 4(b) shows how the performance
of energy fine-tuning (measured by FPR) changes with different margin parameters of min and
mout on WideResNet. Overall the method is not very sensitive to mout in the range chosen. As
expected, imposing too small of an energy margin min for in-distribution data may lead to difficulty
in optimization and degradation in performance.
Does energy fine-tuning affect the classification accuracy of the neural network? For the
inference-time use case, our method does not change the parameters of the pre-trained neural
network f(x) and preserves its accuracy. For energy fine-tuned models, we compare classification
accuracy of f(x) with other methods in Table 2. When trained on WideResNet with CIFAR-10 as
in-distribution, our energy fine-tuned model achieves a test error of 4.98% on CIFAR-10, compared
to the OE fine-tuned model’s 5.32% and the pre-trained model’s 5.16%. Overall this fine-tuning
leads to improved OOD detection performance while maintaining almost comparable classification
accuracy on in-distribution data.

5 Related Work

Out-of-distribution uncertainty for pre-trained models The softmax confidence score has become
a common baseline for OOD detection [13]. A theoretical investigation [12] shows that neural
networks with ReLU activation can produce arbitrarily high softmax confidence for OOD inputs.
Several works attempt to improve the OOD uncertainty estimation by using deep ensembles [19],
the ODIN score [23], the Mahalanobis distance [22], and generalized ODIN score [15]. DeVries
and Taylor [6] propose to learn the confidence score by attaching an auxiliary branch to a pre-
trained classifier and deriving an OOD score. However, previous methods are either computationally
expensive or require tuning many hyper-parameters. In contrast, in our work, the energy score can be
used as a parameter-free measurement, which is easy to use in an OOD-agnostic setting.
Out-of-distribution detection with model fine-tuning While it is impossible to anticipate the
exact OOD test distribution, previous methods have explored using artificially synthesized data
from GANs [21] or unlabeled data [14] as auxiliary OOD training data. Auxiliary data allows the
model to be explicitly regularized through fine-tuning, producing lower confidence on anomalous
examples [2, 9, 25, 26, 36]. A loss function is used to force the predictive distribution of OOD
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samples toward uniform distribution [14,21]. Recently, Mohseni et al. [26] explore training by adding
additional background classes for OOD score. Chen et al. [3] propose informative outlier mining by
selectively training on auxiliary OOD data that induces uncertain OOD scores, which improves the
OOD detection performance on both clean and perturbed adversarial OOD inputs. In our work, we
instead regularize the network to produce higher energy on anomalous inputs. Our approach does not
alter the semantic class space and can be used both with and without auxiliary OOD data.

Generative Modeling Based Out-of-distribution Detection. Generative models [7, 16, 33, 37, 39]
can be alternative approaches for detecting OOD examples, as they directly estimate the in-distribution
density and can declare a test sample to be out-of-distribution if it lies in the low-density regions.
However, as shown by Nalisnick et al. [27], deep generative models can assign a high likelihood
to out-of-distribution data. Deep generative models can be more effective for out-of-distribution
detection using improved metrics [4], including the likelihood ratio [32, 35]. Though our work
is based on discriminative classification models, we show that energy scores can be theoretically
interpreted from a data density perspective. More importantly, generative-based models can be
prohibitively challenging to train and optimize, especially on large and complex datasets. In contrast,
our method relies on a discriminative classifier, which can be much easier to optimize using standard
SGD. Our method therefore inherits the merits of generative-based approaches, while circumventing
the difficult optimization process in training generative models.
Energy-based learning Energy-based machine learning models date back to Boltzmann machines [1,
34], networks of units with an energy defined for the overall network. Energy-based learning [20,
30, 31] provides a unified framework for many probabilistic and non-probabilistic approaches to
learning. Recent work [48] also demonstrated using energy functions to train GANs [10], where
the discriminator uses energy values to differentiate between real and generated images. Xie et
al. [41] first showed that a generative random field model can be derived from a discriminative neural
networks. In subsequent works, Xie et al. [40, 42–44] explored using EBMs for video generation and
3D shape pattern generation. While Grathwohl et al. [11] explored using JEM for OOD detection,
their optimization objective estimates the joint distribution p(x, y) from a generative perspective; they
use standard probabilistic scores in downstream OOD detection. In contrast, our training objective is
purely discriminative, and we show that non-probabilistic energy scores can be directly used as a
scoring function for OOD detection. Moreover, JEM requires estimating the normalized densities,
which can be challenging and unstable to compute. In contrast, our formulation does not require
proper normalization and allows greater flexibility in optimization. Perhaps most importantly, our
training objective directly optimizes for the energy gap between in- and out-of-distribution, which
fits naturally with the proposed OOD detector that relies on energy score.

6 Conclusion and Outlook
In this work, we propose an energy-based framework for out-of-distribution detection. We show
that energy score is a simple and promising replacement of the softmax confidence score. The key
idea is to use a non-probabilistic energy function that attributes lower values to in-distribution data
and higher values to out-of-distribution data. Unlike softmax confidence scores, the energy scores
are provably aligned with the density of inputs, and as a result, yield substantially improved OOD
detection performance. For future work, we would like to explore using energy-based OOD detection
beyond image classification tasks. Our approach can be valuable to other machine learning tasks such
as active learning. We hope future research will increase the attention toward a broader view of OOD
uncertainty estimation from an energy-based perspective.

7 Broader Impact
Our project aims to improve the dependability and trustworthiness of modern machine learning
models. This stands to benefit a wide range of fields and societal activities. We believe out-of-
distribution uncertainty estimation is an increasingly critical component of systems that range from
consumer and business applications (e.g., digital content understanding) to transportation (e.g., driver
assistance systems and autonomous vehicles), and to health care (e.g., rare disease identification).
Through this work and by releasing our code, we hope to provide machine learning researchers a new
methodological perspective and offer machine learning practitioners an easy-to-use tool that renders
safety against anomalies in the open world. While we do not anticipate any negative consequences to
our work, we hope to continue to improve and build on our framework in future work.
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