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Abstract

Conditional image generation is the task of generating diverse images using class
label information. Although many conditional Generative Adversarial Networks
(GAN) have shown realistic results, such methods consider pairwise relations
between the embedding of an image and the embedding of the corresponding
label (data-to-class relations) as the conditioning losses. In this paper, we propose
ContraGAN that considers relations between multiple image embeddings in the
same batch (data-to-data relations) as well as the data-to-class relations by using
a conditional contrastive loss. The discriminator of ContraGAN discriminates
the authenticity of given samples and minimizes a contrastive objective to learn
the relations between training images. Simultaneously, the generator tries to
generate realistic images that deceive the authenticity and have a low contrastive
loss. The experimental results show that ContraGAN outperforms state-of-the-art-
models by 7.3% and 7.7% on Tiny ImageNet and ImageNet datasets, respectively.
Besides, we experimentally demonstrate that contrastive learning helps to relieve
the overfitting of the discriminator. For a fair comparison, we re-implement twelve
state-of-the-art GANs using the PyTorch library. The software package is available
at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.

1 Introduction

Generative Adversarial Networks (GAN) [1] have introduced a new paradigm for realistic data gener-
ation. Many approaches have shown impressive improvements in un/conditional image generation
tasks [2, 3, 4, 5, 6, 7, 8, 9]. The studies on non-convexity of objective landscapes [10, 11, 12] and
gradient vanishing problems [3, 11, 13, 14] emphasize the instability of the adversarial dynamics.
Therefore, many approaches have tried to stabilize the training procedure by adopting well-behaved
objectives [3, 13, 15] and regularization techniques [4, 7, 16]. In particular, spectral normaliza-
tion [4] with a projection discriminator [17] made the first success in generating images of ImageNet
dataset [18]. SAGAN [5] shows using spectral normalization on both the generator and discriminator
can alleviate training instability of GANs. BigGAN [6] dramatically advances the quality of generated
images by scaling up the number of network parameters and batch size.

On this journey, conditioning class information for the generator and discriminator turns out to be the
secret behind realistic image generation [17, 19, 20]. ACGAN [19] validates this direction by training
a softmax classifier along with the discriminator. ProjGAN [17] utilizes a projection discriminator
with probabilistic model assumptions. Especially, ProjGAN shows surprising image synthesis results
and becomes the basic model adopted by SNGAN [4], SAGAN [7], BigGAN [6], CRGAN [7], and
LOGAN [9]. However, GANs with the projection discriminator have overfitting issues, which lead to
the collapse of adversarial training [21, 9, 22, 23]. The ACGAN is known to be unstable when the
number of classes increases [17, 19].
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In this paper, we propose a new conditional generative adversarial network framework, namely
Contrastive Generative Adversarial Networks(ContraGAN). Our approach is motivated by an
interpretation that ACGAN and ProjGAN utilizedata-to-classrelation as the conditioning losses.
Such losses only consider relations between the embedding of an image and the embedding of the
corresponding label. In contrast, ContraGAN is based on a conditional contrastive loss (2C loss) to
considerdata-to-datarelations in the same batch. ContraGAN pulls the multiple image embeddings
closer to each other when the class labels are the same, but it pushes far away otherwise. In this
manner, the discriminator can capture not onlydata-to-classbut alsodata-to-datarelations between
samples.

We perform image generation experiments on CIFAR10 [24], Tiny ImageNet [25], and ImageNet [18]
datasets using various backbone architectures, such as DCGAN [2], ResGAN [26, 16], and Big-
GAN [6] equipped with spectral normalization [4]. Through exhaustive experiments, we verify that
the proposed ContraGAN improves the state-of-the-art-models by 7.3% and 7.7% on Tiny ImageNet
and ImageNet datasets respectively, in terms of Frechet Inception Distance (FID) [27]. Also, Con-
traGAN gives comparable results (1.3% lower FID) on CIFAR10 with the art model [6]. Since
ContraGAN can learn plentiful data-to-data relations from a properly sized batch, it reduces FID
signi�cantly without hard negative and positive mining. Furthermore, we experimentally show that
2C loss alleviates the over�tting problem of the discriminator. In the ablation study, we demonstrate
that ContraGAN can bene�t from consistency regularization [7] that uses data augmentations.

In summary, the contributions of our work are as follows:

• We propose novel Contrastive Generative Adversarial Networks (ContraGAN) for condi-
tional image generation. ContraGAN is based on a novel conditional contrastive loss (2C
loss) that can learn both data-to-class and data-to-data relations.

• We experimentally demonstrate that ContraGAN improves state-of-the-art-results by 7.3%
and 7.7% on Tiny ImageNet and ImageNet datasets, respectively. Contrastive learning also
helps to relieve the over�tting problem of the discriminator.

• ContraGAN shows favorable results without data augmentations for consistency regulariza-
tion. If consistency regularization is applied, ContraGAN can give superior image generation
results.

• We provide implementations of twelve state-of-the-art GANs for a fair comparison. Our
implementation of the prior arts for CIFAR10 dataset achieves even better performances
than FID scores reported in the original papers.

2 Background

2.1 Generative Adversarial Networks

Generative adversarial networks (GAN) [1] are implicit generative models that use a generator and a
discriminator to synthesize realistic images. While the discriminator (D ) should distinguish whether
the given images are synthesized or not, the generator (G) tries to fool the discriminator by generating
realistic images from noise vectors. The objective of the adversarial training is as follows:

min
G

max
D

Ex � preal (x ) [log(D(x))] + Ez� p(z) [log(1 � D (G(z)))] ; (1)

wherepreal (x) is the real data distribution, andpz (z) is a prede�ned prior distribution, typically
multivariate Gaussian. Since the dynamics between the generator and discriminator is unstable, and
it is hard to achieve the Nash equilibrium [28], there are many objective functions [3, 13, 15, 29] and
regularization techniques [4, 7, 16, 21] to help networks to converge to a proper equilibrium.

2.2 Conditional GANs

One of the widely used strategies to synthesize realistic images is utilizing class label information.
Early approaches in this category are conditional variational auto-encoder (CVAE) [30] and con-
ditional generative adversarial networks [31]. These approaches concatenate a latent vector with
the label to manipulate the semantic characteristics of the generated image. Since DCGAN [2]
demonstrated high-resolution image generation, GANs utilizing class label information has shown
advanced performances [6, 7, 9, 8].
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(a) ACGAN [19] (b) ProjGAN [17] (c) ContraGAN (Ours)

Figure 1: Schematics of discriminators of three conditional GANs. (a) ACGAN [19] has an auxiliary
classi�er to guide the generator to synthesize well-classi�able images. (b) ProjGAN [17] improves
ACGAN by adding the inner product of an embedded image and the corresponding class embedding.
(c) Our approach extends ACGAN and ProjGAN with a conditional contrastive loss (2C loss).
ContraGAN considers multiple positive and negative pairs in the same batch. ContraGAN utilizes 2C
loss to update the generator as well.

The most common approach of conditional GANs is to inject label information into the generator
and discriminator. ACGAN [19] attaches an auxiliary classi�er on the top of convolutional layers
in the discriminator to distinguish the classes of images. An illustration of ACGAN is shown in
Fig. 1a. ProjGAN [17] points out that ACGAN is likely to generate easily classi�able images, and
the generated images are not diverse. ProjGAN proposes a projection discriminator to relieve the
issues (see Fig. 1b). However, these approaches do not explicitly consider data-to-data relations in the
training phase. Besides, the recent study by Wuet al. [9] discovers that BigGAN with the projection
discriminator [6] still suffers from the discriminator's over�tting and training collapse problems.

3 Method

We begin with analyzing that conditioning functions of ACGAN and ProjGAN can be interpreted
as pair-based losses that look at only data-to-class relations of training examples (Sec. 3.1). Then,
in order to consider both data-to-data and data-to-class relations, we devise a new conditional
contrastive loss (2C loss) (Sec. 3.2). Finally, we propose Contrastive Generative Adversarial Networks
(ContraGAN) for conditional image generation (Sec. 3.3).

3.1 Conditional GANs and Data-to-Class Relations

The goal of the discriminator in ACGAN is to classify the class of a given image and the sample's
authenticity. Using data-to-class relations, i.e., information about which class a given data belongs to,
the generator tries to generate fake images that can deceive the authenticity and are classi�ed as the
target labels. Since ACGAN uses a cross-entropy loss to classify the class of an image, we can regard
the conditioning loss of ACGAN as a pair-based loss that can consider only data-to-class relations
(see Fig. 2d). ProjGAN tries to maximize inner-product values between embeddings of real images
and the corresponding target embeddings while minimizing the inner-product values when the images
are fake. Since the discriminator of ProjGAN pushes and pulls the embeddings of images according
to the authenticity and class information, we can think of the conditioning objective of ProjGAN as a
pair-based loss that considers data-to-class relations (see Fig. 2e). Unlike ACGAN, which looks at
relations between a �xed one-hot vector and a sample, ProjGAN can consider more �exible relations
using a learnable class embedding, namely Proxy.

3.2 Conditional Contrastive Loss

To exploit data-to-data relations, we can adopt loss functions used in self-supervised [34] learning or
metric learning [32, 35, 36, 37, 38, 39]. In other words, our approach is toadd a metric learning or
self-supervised learning objectivein thediscriminatorandgeneratorto explicitly control distances
between embedded image features depending on the labels. Several metric learning losses, such
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(a) Triplet [32] (b) P-NCA [33] (c) NT-Xent [34] (d) ACGAN [19] (e) ProjGAN [17] (f) 2C loss (Ours)

Figure 2: Illustrative �gures visualize metric learning losses (a,b,c) and conditional GANs (d,e,f). The
color indicates the class label and the shape represents the role. (Square) the embedding of an image.
(Diamond) the embedding of an augmented image. (Circle) a reference image embedding. Each loss
is applied to the reference. (Star) the embedding of a class label. (Triangle) the one-hot encoding
of a class label. The thicknesses of red and blue lines represent the strength of pull and push force,
respectively. The loss function of ProjGAN lets the reference and the corresponding class embedding
be close to each other when the reference is real, but it pushes far away otherwise. Compared to
ACGAN and ProjGAN, 2C loss can consider both data-to-class and data-to-data relations between
training examples.

as contrastive loss [35], triplet loss [32], quadruplet loss [36], and N-pair loss [37] could be good
candidates. However, it is known that 1) mining informative triplets or quadruplets requires higher
training complexity, and 2) poor tuples make the training time longer. While the proxy-based
losses [33, 38, 39] relieves mining complexity using trainable class embedding vectors, such losses
do not explicitly take data-to-data relations [40] into account.

Before introducing the proposed 2C loss, we bring NT-Xent loss [34] to express our idea better.
Let X = f x 1; :::; x m g, wherex 2 RW � H be a randomly sampled minibatch of training images
andy = f y1; :::; ym g, wherey 2 R be the collection of corresponding class labels. Then, we
de�ne a deep neural network encoderS(x ) 2 Rk and a projection layer that embeds onto a new
unit hypersphereh : Rk �! Sd: Then, we can map the data space to the hypersphere using the
composition ofl = h(S(�)) . NT-Xent loss conducts random data augmentationsT on the training
dataX , and we denote it asA = f x 1; T(x 1); :::; x m ; T(x m )g = f a1; :::; a2m g. Using the above,
we can formulate NT-Xent loss as follows:

`(a i ; a j ; t) = � log
�

exp(l(a i )> l (a j )=t)
P 2m

k=1 1k6=i � exp(l(a i )> l (ak )=t)

�
; (6)

where the scalar valuet is a temperature to control push and pull force. In this work, we use the part
of the discriminator network (D � 1 ) before the fully connected layer as the encoder network (S) and
use multi-layer perceptrons parameterized by' as the projection head (h). As a result, we can map
the data space to the unit hypersphere usingl = h(D � 1(�)) .

However, Eq. (6) requires proper data augmentations and can not consider data-to-class relations of
training examples. To resolve these issues, we propose to use theembeddings of class labelsinstead
of using data augmentations. With a class embedding functione(y) : R �! Rd, Eq. (6) can be
formulated as follows:

`(x i ; yi ; t) = � log
�

exp(l(x i )> e(yi )=t)
exp(l(x i )> e(yi )=t) +

P m
k=1 1k6=i � exp(l(x i )> l (x k )=t)

�
: (7)

Eq. (7) pulls a reference samplex i nearer to the class embeddinge(yi ) and pushes the others away.
This scheme may push negative samples which have the same label asyi . Therefore, we make an
exception by adding cosine similarities of such negative samples in the numerator of Eq. (7). The
�nal loss function is as follows:

`2C(x i ; yi ; t) = � log
�

exp(l(x i )> e(yi )=t) +
P m

k=1 1yk =y i � exp(l(x i )> l (x k )=t)
exp(l(x i )> e(yi )=t) +

P m
k=1 1k6=i � exp(l(x i )> l (x k )=t)

�
: (8)

Eq. (8) is the proposed conditional contrastive loss (2C loss). Minimizing 2C loss will reduce
distances between the embeddings of images with the same labels while maximizing the others. 2C
loss explicitly considers the data-to-data relationsl(x i )> l (x k ) and data-to-class relationsl(x i )> e(yi )
without comprehensive mining of the training dataset and augmentations.
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Algorithm 1 : Training ContraGAN

Input: Learning rate:� 1; � 2. Adam hyperparameters [41]:� 1; � 2. Batch size:m. Temperature:t.
# of discriminator iterations per single generator iteration:ndis . Contrastive coef�cient:� .
Parameters of the generator, the discriminator, and the projection layer:(�; �; ' ).

Output: Optimized(�; �; ' ).

1: Initialize (�; �; ' )
2: for f 1; :::; # of training iterationsg do
3: for f 1; :::; ndis g do
4: Samplef (x i ; yreal

i )gm
i =1 � preal (x ; y)

5: Samplef z i gm
i =1 � p(z) andf yfake

i gm
i =1 � p(y)

6: L real
C  � 1

m

P m
i =1 `2C(x i ; yreal

i ; t) . Eq. (8) with real images.
7: L D  � 1

m

P m
i =1 f D � (G� (z i ; yfake

i ); yfake
i ) � D � (x i ; yreal

i )g + � L real
C

8: �; '  � Adam(L D ; � 1; � 1; � 2)
9: end for

10: Samplef z i gm
i =1 � p(z) andf yfake

i gm
i =1 � p(y)

11: L fake
C  � 1

m

P m
i =1 `2C(G� (z i ; yfake

i ); yfake
i ; t) . Eq. (8) with fake images.

12: L G  � � 1
m

P m
i =1 f D � (G� (z i ; yfake

i ); yfake
i )g + � L fake

C
13: �  � Adam(L G ; � 2; � 1; � 2)
14: end for

3.3 Contrastive Generative Adversarial Networks

With proposed 2C loss, we describe the framework, called ContraGAN and introduce training
procedures. Like the typical training procedures of GANs, ContraGAN has a discriminator training
step and a generator training step that compute an adversarial loss. With this foundation, ContraGAN
additionally calculates 2C loss using a set of real or fake images. Algorithm 1 shows the training
procedures of the proposed ContraGAN. A notable aspect is that 2C loss is computed usingm real
images in the discriminator training step andm generated images in the generator training step.

In this manner, the discriminator updates itself by minimizing the distances between real image
embeddings from the same class while maximizing it otherwise. By forcing the embeddings to relate
via 2C loss, the discriminator can learn the �ne-grained representations of real images. Similarly,
the generator exploits the knowledge of the discriminator, such as intra-class characteristics and
higher-order representations of the real images, to generate more realistic images.

3.4 Differences between 2C Loss and NT-Xent Loss

NT-Xent loss [34] is intended for unsupervised learning. It regards the augmented image as the
positive sample to consider data-to-data relations between an original image and the augmented image.
On the other hand, 2C loss utilizes weak supervision of label information. Therefore, compared with
2C loss, NT-Xent hardly gathers image embeddings of the same class, since there is no supervision
from the label information. Besides, NT-Xent loss requires extra data augmentations and additional
forward and backward propagations, which induce a few times of longer training time than the model
with 2C loss.

4 Experiments

4.1 Datasets and Evaluation Metric

We perform conditional image generation experiments with CIFAR10 [24], Tiny ImageNet [25], and
ImageNet [18] datasets to compare the proposed approach with other approaches.

CIFAR10 [24] is a widely used benchmark dataset in many image generation works [4, 6, 7, 8, 9, 17,
19], and it contains32� 32pixels of color images for 10 different classes. The dataset consists of
60,000 images in total. It is divided into 50,000 images for training and 10,000 images for testing.
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Tiny ImageNet [25] provides 120,000 color images in total. Image size is64� 64 pixels, and the
dataset consists of 200 categories. Each category has 600 images divided into 500, 50, and 50 samples
for training, validation, and testing, respectively. Tiny ImageNet has 10� smaller number of images
per class than CIFAR10, but it provides20� larger number of classes than CIFAR10. Compared to
CIFAR10, Tiny ImageNet is selected to test a more challenging scenario – the number of images per
class is not plentiful, but the network needs to learn more categories.

ImageNet[18] provides 1,281,167 and 50,000 color images for training and validation respectively,
and the dataset consists of 1,000 categories. We crop each image using a square box whose length is
the same as the shorter side of the image. The cropped images are rescaled to128� 128pixels.

Frechet Inception Distance (FID)is an evaluation metric used in all experiments in this paper. The
FID proposed by Heuselet al. [42] calculates Wasserstein-2 distance [43] between the features
obtained from real images and generated images using Inception-V3 network [44]. Since FID is the
distance between two distributions,lower FID indicatesbetterresults.

4.2 Software

There are various approaches that report strong FID scores, but it is not easy to reproduce the
results because detailed speci�cations for training or ways to measure the results are not clearly
stated. For instance, FID could be different depending on the choice of the reference images
(training, validation, or testing datasets could be used). Besides, FID score of prior work is not
consistent, depending on TensorFlow versions [45]. Therefore, we re-implement twelve state-of-
the-art GANs [2, 13, 15, 3, 16, 10, 19, 17, 4, 5, 6, 7] to validate the proposed ContraGAN under
the same condition. Our implementation carefully follows the principal concepts and the available
speci�cations in the prior work. Experimental results show that the results from our implementation
are superior to the numbers in the original papers [4, 6] for the experiments using CIFAR10 dataset.
We hope that our implementation would relieve efforts to compare various GAN pipelines.

4.3 Experimental Setup

To conduct a reliable assessment, all experiments that use CIFAR10 and Tiny ImageNet datasets are
performed three times with different random seeds, and we report means and standard deviations of
FIDs. Experiments using ImageNet are executed once, and we report the best performance during the
training. We calculate FID using CIFAR10's test images and the same amount of generated images.
For the experiments using Tiny ImageNet and ImageNet, we use the validation set with the same
amount of generated images. All FID values reported in our paper are calculated using the PyTorch
FID implementation [46].

Since spectral normalization [4] has become an essential element in modern GAN training, we use
hinge loss [15] and apply spectral normalization on all architectures used in our experiments. We
adopt modern architectures used in the papers: DCGAN [2, 4], ResGAN [26, 16], and BigGAN [6],
and all details about the architectures are described in the supplement.

Since the conditioning strategy used in the generator of ACGAN differs from that of ProjGAN, we
incorporate the generator's conditioning method in all experiments for a fair comparison. We use the
conditional coloring transform [47, 48, 17], which is the method adopted by the original ProjGAN.

Before conducting the main experiments, we investigate performance changes according to the type
of projection layerh in Eq. (8) and batch size. Although Chenet al. [34] reports that contrastive
learning can bene�t from a higher-dimensional projection and a larger batch size, we found that the
linear projection with batch size 64 for CIFAR10 and 1,024 for Tiny ImageNet performs the best.
For the dimension of the projection layer, we select 512 for CIFAR10, 768 for Tiny ImageNet, and
1,024 for ImageNet experiments. We do a grid search to �nd a proper temperature (t) used in Eq. 8
and experimentally found that the temperature of1:0 gives the best results. Detailed hyperparameter
settings used in our experiments are described in the supplement.

4.4 Evaluation Results

Effectiveness of 2C loss.We compare 2C loss with P-NCA loss [33], NT-Xent loss [34], and the
objective function formulated in Eq. 7. P-NCA loss [24] does not explicitly look at data-to-data
relations, and NT-Xent loss [25] (equivalent to Eq. 6) does not take data-to-class relations into account.
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Table 1: Experiments on the effectiveness of 2C loss. Considering both data-to-data and data-to-class
relations largely improves image generation results based on FID values. Mean� variance of FID is
reported, and lower is better.

Dataset Uncond. GAN [6] with P-NCA loss [33] with NT-Xent loss [34] with Eq.7 loss with 2C loss (ContraGAN)

CIFAR10 [24] 15.550� 1.955 15.350� 0.017 14.832� 0.695 10.886� 0.072 10.597� 0.273

Tiny ImageNet [25] 56.297� 1.499 47.867� 1.813 54.394� 9.982 33.488� 1.006 32.720� 1.084

Table 2: Experiments using CIFAR10 and Tiny ImageNet datasets. Using three backbone architectures
(DCGAN, ResGAN, and BigGAN), we test three approaches using different class conditioning
models (ACGAN, ProjGAN, and ContraGAN (ours)).

Dataset Backbone Method for class information conditioning
ACGAN [19] ProjGAN [17] ContraGAN (Ours)

CIFAR10 [24]
DCGAN [2, 4] 21.439� 0.581 19.524� 0.249 18.788� 0.571

ResGAN [26, 16] 11.588� 0.093 11.025� 0.177 11.334� 0.126
BigGAN [6] 10.697� 0.129 10.739� 0.016 10.597� 0.273

Tiny ImageNet [25] BigGAN [6] 88.628� 5.523 37.563� 4.390 32.720� 1.084

Table 3: Comparison with state-of-the-art GAN models. We mark `*' to FID values reported in the
original papers [4, 5, 7]. The other FID values are obtained from our implementation. We conduct
ImageNet [18] experiments with a batch size of 256.

Dataset SNResGAN [4] SAGAN [5] BigGAN [6] ContraGAN (Ours) Improvement

CIFAR10 [24] *17.5 17.127� 0.220 *14.73/10.739� 0.016 10.597� 0.273 *+28.1%/+1.3%

Tiny ImageNet [25] 47.055� 3.234 46.221� 3.655 31.771� 3.968 29.492� 1.296 +7.2%

ImageNet [18] - - 21.072 19.443 +7.7%

Our 2C loss can take advantage of both losses. Compared with the Eq. 7 loss, 2C loss considers cosine
similarities of negative samples whose labels are the same as the positive image. The experimental
results show that considering bothdata-to-classanddata-to-datarelations is effective and largely
enhances image generation performance on CIFAR10 and Tiny ImageNet dataset. Besides, removing
degenerating negative samples gives slightly better performances on CIFAR10 and Tiny ImageNet
datasets.

Comparison with other conditional GANs. We compare ContraGAN with ACGAN [19] and
ProjGAN [17], since these approaches are representative models using class information conditioning.
As shown in Table 2, our approach shows favorable performances in CIFAR10, but our approach
exhibits larger variations. Examples of generated images is shown in Fig. 4 (left). Experiments
with Tiny ImageNet indicate that our ContraGAN is more effective when the target dataset is in the
higher-dimensional space and has large inter-class variations.

Comparison with state-of-the-art models. We compare our method with SNResGAN [4],
SAGAN [5], and BigGAN [6]. All of these approaches adopt ProjGAN [17] for class informa-
tion conditioning. We conduct all experiments on Tiny ImageNet and ImageNet datasets using
the hyperparameter setting used in SAGAN [5]. We use our implementation of BigGAN for a fair
comparison and report the best FID values during training.

If we consider the most recent work, CRGAN [7], ICRGAN [8], and LOGAN [9] can generate
more realistic images than BigGAN. Compared to such approaches, we show that our framework
outperforms BigGAN by just adopting the proposed 2C loss. CRGAN and ICRGAN conduct
explicit data augmentations during the training, which requires additional gradient calculations for
backpropagation. Also, LOGAN needs one more feedforward and backpropagation processes for
latent optimization. It takes twice as much time to train the model than standard GANs.

As a result, we identify how ContraGAN performs without data augmentations or latent optimization.
Table 3 quantitatively shows that ContraGAN can synthesize images better than other state-of-the-
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