
Hypersolvers: Toward Fast
Continuous–Depth Models

Supplementary Material

Table of Contents
A Theoretical Results 14

A.1 Proof of Theorem 1 . 14
A.2 Proof of Proposition 1 . 14

B Further Discussion 15
B.1 Software implementation . 15
B.2 Adversarial training . 15

C Experimental Details 16
C.1 Additional Experiments . 16
C.2 Image Classification . 16
C.3 Continuous Normalizing Flows . 18

A Theoretical Results

A.1 Proof of Theorem 1

Theorem 1 (Hypersolver Local Truncation Error). If gω is a O(δ) approximator ofR, i.e.
∀k ∈ N≤K ‖R(sk, z(sk), z(sk+1)− gθ(ε, sk,x, z(sk))‖2 ≤ O(δ),

then, the local truncation error ek of the hypersolver is O(δεp+1).

Proof. We can directly compute the local truncation error for the hypersolver as
ek = ‖z(sk+1)− z(sk)− εψ(sk, x, z(sk))− εp+1gω(ε, sk, x, z(sk))‖2

Thus,
ek = εp+1‖R(sk, z(sk), z(sk+1))− gω(ε, sk, x, z(sk))‖2
≤ O(δεp+1)

A.2 Proof of Proposition 1

Proposition 1 (Vector field training sensitivity). Let the model parameters θt be updated according
to the gradient-based optimizer step θt+1 = θt + ηΓ(∇θLt), η > 0 to minimize a loss function Lt
and let fθt be Lipsichitz w.r.t. θ. Then,

∀z ∈ Rnz , ‖∆fθt(s,x, z)‖2 ≤ ηLθ‖Γ(∇θL)‖2
being Lθ the Lipschitz constant.

Proof. For the Lipschitz continuity of fθ, it holds
∀θ, θ′ ∈ Rnθ ‖fθ − fθ′‖2 ≤ Lθ‖θ − θ′‖2

Thus,
‖∆fθt(x)‖2 := ‖fθt+1(x)− fθt(x)‖2 ≤ Lθ‖θt+1 − θt‖2 = ηLθ‖Γ(∇θL)‖2

14

B Further Discussion

B.1 Software implementation

We provide PyTorch (Paszke et al., 2017) code showcasing a general hypersolver template:

class HyperSolver(HyperSolverTemplate):
def __init__(self, f, g, base_solver):

super().__init__(f, g)
self.base_solver = base_solver
self.p = self.base_solver.order

def forward(self, ds, dz, z):
"Calculates single residual"
ds = ds*torch.ones([*z.shape[:1], 1 , *z.shape[2:]]).to(z)
z = torch.cat([z, dz, ds], 1)
z = self.g(z)
return z

def base_residuals(self, base_traj, s_span):
"Computes residuals of `base_solver` on `base_traj`"
ds = s_span[1] - s_span[0]
fi = torch.cat([self.base_solver(s, base_traj[i], self.f, ds)[None,:,:]

for i, s in enumerate(s_span[:-1])
])

return (base_traj[1:] - base_traj[:-1] - ds*fi)/ds**(self.p + 1)

def hypersolver_residuals(self, base_traj, s_span):
"Applies the hypersolver on `base_traj` to compute residuals"
ds = (s_span[1] - s_span[0]).expand(*base_traj[:-1].shape)
dz = torch.cat([self.f(s, base_traj[i])[None,:,:]

for i, s in enumerate(s_span[:-1])
])

residuals = torch.cat([self(ds_[0,0], dz_, z_)[None]
for ds_, dz_, z_ in zip(ds, dz, base_traj[:-1])
], 0)

return residuals

def odeint(self, s_span, z, use_residual=True):
"Solves the ODE in `s_span`"
traj = torch.zeros(len(s_span), *z.shape); traj[0] = z
for i, s in enumerate(s_span[:-1]):

ds = s_span[i+1] - s_span[i]
dz = self.f(s, z)
if use_residual: z = z + ds*self.base_solver(s, z, self.f, ds)

+ ds**(self.p + 1) * self(ds, dz, z)
else: z = z + ds*self.base_solver(s, z, self.f, ds)
traj[i+1] = z

return traj

B.2 Adversarial training

Stiffness in differential equations is an important problem of practical relevance as it often requires de-
velopment of specialized solution methods (Shampine & Gear, 1979; Cash, 2003). While challenging
to fully characterize, stiffness occurs when adaptive–step solvers require a high number of solution
steps to maintain the error below specified tolerances, in regions where the solution appears otherwise
relatively smooth. Indeed, stiff ODEs are generally difficult to solve accurately for fixed–step solvers.
Direct adversarial training allows fθ(s) to find and exploit common weaknesses of numerical methods,
which in turn improves hypersolver resilience to a wider class of dynamics.

15

0 20 40 60 80 100
10−4

10−1

102

NFE
E(
k
)
[l
o
g]

Euler RK-4 Midpoint HyperEuler

Figure 8: Pareto comparison of different solvers in the trajectory tracking task.

10 20 30 40
0

50

100

150

200

NFEs

M
A
P
E
(M

N
IS
T
)

Terminal Error

Euler HyperEuler Midpoint RK4

10 20 30 40
0

20

40

60

80

100

NFEs

M
A
P
E
(C

IF
A
R
10
)

Figure 9: MAPE–NFE pareto fronts of different ODE solvers on MNIST and CIFAR10 test sets.
HyperEuler shows higher pareto efficiency for low function evaluations (NFEs) even over higher–
order methods.

C Experimental Details

Computational resources The experiments have been carried out on a machine equipped with a
single NVIDIA Tesla V100 GPU and an eight–core Intel Xeon processor. In addition, we measure
wall–clock speedups on a few additional hardware setups and found the results to be consistent.

C.1 Additional Experiments

Trajectory tracking To evaluate the effectiveness of the trajectory fitting method, we consider a
Galërkin Neural ODE (Massaroli et al., 2020b) tasked to tracking of a periodic signal β(s). The
Neural ODE is optimized with an integral loss of the type (z(s)− β(s))2 in the integration domain
S := [0, 1]. After the initial training of the model, we fit a three–layer HyperEuler of hidden
dimensions 64, 64, 64 using a trajectory fitting approach.

Fig. 8 shows that the pareto efficiency in terms of global truncation error E(k) is preserved when
training with trajectory fitting. In the 10 - 25 NFE range, HyperEuler results more efficient than
higher–order solvers such as midpoint and RK4.

C.2 Image Classification

We report a detailed discussion on the hyperparameter and architectural choices made for the image
classification experiments. Further pareto efficiency experimental results, measured in NFEs instead
of MACs, are provided in Fig. 9. We omit test accuracy loss NFE pareto fronts since hypersolvers
avoid test accuracy losses altogether as shown in the main text.

Training hyperparameters On MNIST, we optimized Neural ODEs for 20 epochs with batch size
32 utilizing the Adam optimizer with learning rate 3−3 and a cosine annealing scheduler down to
10−4 at the end of training. On CIFAR10, we utilized a similar strategy, with 20 epochs, batch size
32 and the same optimizer.

16

The HyperEuler hypersolver has been trained utilizing fitting the residuals of the Dormand–
Prince solver (dopri5) (Dormand & Prince, 1980) with absolute and relative tolerances set to 10−4.
We use the AdamW (Loshchilov & Hutter, 2017) optimizer with lr = 10−2 and a cosine annealing
schedule down to 5 ∗ 10−4.

The hypersolver training is subdivided into two phases, proceeding as follows. First, we stabilize
the optimization by pretrainining the hypersolver on the trajectories generated from a single batch
for several iterations, usually 10. After this initial phase, the data batch is swapped every 10 iterations.
This allows the hypersolver to generalize by having access to trajectories generated from different
batches of the training set.

We experimented with different numbers of iterations for hypersolver training. Convergence has
been observed in as quickly as 5000 iterations, corresponding to less than 3 epochs of the MNIST
training dataset with batch size 32. In practice, 15000 iterations (or 10 epochs) is sufficient to produce
results comparable to the ones shown in Figure 3. A similar discussion applies to CIFAR10.

Architectural details In the following, we report PyTorch code defining the Neural ODE and
hypersolver architectures in full. The code snippets are followed by a text description for accessi-
bility. In MNIST, the architecture takes the form

f = nn.Sequential(nn.Conv2d(32, 46, 3, padding=1),
nn.Softplus(),
nn.Conv2d(46, 46, 3, padding=1),
nn.Softplus(),
nn.Conv2d(46, 32, 3, padding=1))

nde = NeuralODE(f)

model = nn.Sequential(nn.BatchNorm2d(1),
Augmenter(augment_func=nn.Conv2d(1, 31, 3, padding=1)),
nde,
nn.AvgPool2d(28),
nn.Flatten(),
nn.Linear(32, 10))

where the input–augmented layer (Massaroli et al., 2020b) Neural ODE fθ is defined as a sequence
of convolutional layers of channel dimensions 12, 64, 12 and kernel size 3. The complete architecture
is then composed of the above defined Neural ODE with a deconvolution layer, and a linear fully–
connected layer to output the classification probabilities.

The HyperEuler architecture gω is simpler and is composed of only a two–layer CNN with
parametric–ReLU (PReLU) (He et al., 2015) activation. The input layer channel dimension is
25 whereas the input to fθ, z(0) is only augmented to 12 channels. This is because gω takes a
concatenation of z, fθ(z), s which yields 12 + 12 + 1 channels.

g = nn.Sequential(nn.Conv2d(32+32+1, 32, 3, stride=1, padding=1),
nn.PReLU(),
nn.Conv2d(32, 32, 3, padding=1),
nn.PReLU(),
nn.Conv2d(32, 32, 3, padding=1))

For the CIFAR10 experiments, on the other hand, fθ and the complete architectures are defined as

f = nn.Sequential(nn.Conv2d(20, 50, 3, padding=1),
nn.Softplus(),
nn.Conv2d(50, 50, 3, padding=1),
nn.Softplus(),
nn.Conv2d(50, 20, 3, padding=1))

nde = NeuralODE(f)

17

model = nn.Sequential(nn.BatchNorm2d(3),
nn.Conv2d(3, 20, 3, padding=1),
nde,
nn.AdaptiveAvgPool2d(2),
nn.Flatten(),
nn.Linear(20*4, 10))

The tt HyperEuler architecture is

g = nn.Sequential(nn.Conv2d(20+20+1, 32, 3, padding=1),
nn.PReLU(),
nn.Conv2d(32, 32, 3, padding=1),
nn.PReLU(),
nn.Conv2d(32, 20, 3, padding=1))

It should be noted that even though the Neural ODEs achieve comparable results as (Dupont et al.,
2019; Massaroli et al., 2020b), the focus of these experiments has not been optimizing fθ for task–
performance. Indeed, we observed that HyperEuler obtains similar results to those shown in the
main body of the paper and in Figures 3 and 9 across a variety of different fθ. The setup for base
solver generalization experiments has been the same as MNIST experiments, with the only major
difference being a choice of HyperMidpoint and an evaluation across different base solvers.

Results To highlight the efficacy of hypersolvers, we utilize the following metrics

• Absolute error of the numerical solution at different solution mesh points. These results
provide qualitative proof of the higher solution accuracy of hypersolvers across different
types of data samples.

• Mean absolute percentage error (MAPE) of the terminal solution. Pareto efficiency of
hypersolver numerical solutions.

• Average test accuracy decrement. We measure the average (across samples) accuracy lost
by a transition away from dopri5. The objective has been to show that outside of solution
accuracy, hypersolvers offer pareto efficiency over other solvers in terms of task–specific
metrics.

C.3 Continuous Normalizing Flows

We optimize continuous normalizing flows (CNF) (Chen et al., 2018) on density estimation tasks,
closely following the setup of (Grathwohl et al., 2018). For a complete reference on normalizing
flows we refer to (Kobyzev et al., 2019).

In particular, the training for the two–dimensional tasks is carried out for 3000 iterations with an
Adam optimizer set to constant learning rate 10−3. The CNF is constructed with a three–layer MLP
of hidden dimensions 128, 128, 128 and the corresponding ODE is solved with dopri5 with absolute
and relative tolerances set to 10−5 for an accurate forward propagation of the log–density change
(Chen et al., 2018). We consider several standard two–dimensional densities following (Grathwohl
et al., 2018), namely pinwheel, rings, checkerboard and a modified, more challenging circles
where the annuli are connected by three curves.

After this initial step, we train an Heun hypersolver for 30000 iterations of residual fitting on backward
trajectories utilizing a similar strategy as discussed in the previous subsection. Namely, we leverage
AdamW (Loshchilov & Hutter, 2017) with lr = 5−3, weight decay 10−6 and a two–stage training
where the data–sample generating the residuals is switched after every 100 iterations.

18

	
	Theoretical Results
	Proof of Theorem 1
	Proof of Proposition 1

	Further Discussion
	Software implementation
	Adversarial training

	Experimental Details
	Additional Experiments
	Image Classification
	Continuous Normalizing Flows

