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Abstract

In unsupervised domain adaptation, existing theory focuses on situations where the
source and target domains are close. In practice, conditional entropy minimization
and pseudo-labeling work even when the domain shifts are much larger than those
analyzed by existing theory. We identify and analyze one particular setting where
the domain shift can be large, but these algorithms provably work: certain spurious
features correlate with the label in the source domain but are independent of the
label in the target. Our analysis considers linear classification where the spurious
features are Gaussian and the non-spurious features are a mixture of log-concave
distributions. For this setting, we prove that entropy minimization on unlabeled
target data will avoid using the spurious feature if initialized with a decently
accurate source classifier, even though the objective is non-convex and contains
multiple bad local minima using the spurious features. We verify our theory for
spurious domain shift tasks on semi-synthetic Celeb-A and MNIST datasets. Our
results suggest that practitioners collect and self-train on large, diverse datasets to
reduce biases in classifiers even if labeling is impractical.

1 Introduction

Reliable machine learning systems need to generalize to test distributions that are different from the
training distribution. However, the test performance of machine learning models often significantly
degrades as the test domain drifts away from the training domain. Various approaches have been
proposed to adapt the models to new domains [37, 10, 38] but theoretical understanding of these
algorithms is limited. Prior theoretical works focus on settings where the target domain is sufficiently
close to the source domain [5, 29, 17, 34]. To theoretically study realistic scenarios where domain
shifts can be much larger, we need to leverage additional structure of the shifts.

Towards this goal, we propose to study a particular structured domain shift for which unsupervised
domain adaptation is provably feasible: in the source domain, a subset of “spurious” features correlate
with the label, whereas in the unlabeled target data, these features are independent of the label. In
real-world training data, these spurious correlations can occur due to biased sampling or artifacts in
crowd-sourcing [14]. For example, we may have a labeled dataset for recidivism prediction where
race correlates with recurrence of crime due to sample selection bias, but this correlation does not
hold on the population. Models which learn spurious correlations can generalize poorly on population
data which does not have these biases [23]. In these settings, it could be impractical to acquire labels
for an unbiased sub-sample of the population, but unlabeled data is often available.

We prove that in certain settings, perhaps surprisingly, self-training on unlabeled target data can avoid
using these spurious features. Our theoretical results apply to two closely-related popular algorithms:
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self-training [20] and conditional entropy minimization [13]. In practice, self-training has achieved
competitive or state-of-the-art results in unsupervised domain adaptation [22, 44, 30], but there are
few theoretical analyses of self-training when there is domain shift.

Our theoretical setting and analysis are consistent with recent large-scale empirical results by Xie et al.
[42], which suggest that self-training on a more diverse unlabeled dataset can improve the robustness
of a model, potentially by avoiding using spurious correlations. These results and our theory help
emphasize the value of a large and diverse unlabeled dataset, even if labeled data is scarce.

Formally, we assume that each input consists of two subsets of features, denoted by x1 and x2.
x1 is the “signal” feature that determines the label y in the target distribution. x2 is the spurious
feature that correlates with the label y in the source domain, but x2 is independent of (x1, y) in
the target domain. For a first-cut result, we consider binary classification and linear models on the
features (x1, x2), where the spurious feature x2 is a multivariate Gaussian and x1 is a mixture of
log-concave distributions. We aim to show that, initialized with some classifier trained on the source
data, self-training on the unlabeled target will remove usage of the spurious feature x2.

A challenge in the analysis is that self-training on an unlabeled loss can possibly harm, rather than
help, target accuracy by amplifying the mistakes of source classifier (see Section 3.1). The classical
idea of co-training [8] deals with this by assuming the mistakes of the classifier are independent of
x, reducing the problem to learning from noisy labels. However, in our setting the source classifier
makes biased mistakes which depend on x, and self-training potentially reinforces these biases if
there are no additional assumptions. For example, we require initialization with a decently accurate
source classifier, and we empirically verify the necessity of this assumption in Section 5.

Our main contribution (Theorem 3.1) is to prove that self-training and conditional min entropy using
finite unlabeled data converge to a solution that has 0 coefficients on the spurious feature x2, assuming
the following: 1. the signal x1 is a mixture of well-separated log-concave distributions and 2. the
initial source classifier is decently accurate on target data and avoids relying too heavily on the
spurious feature. In a simpler setting where x1 is a univariate Gaussian, we show that self-training
using a decently accurate source classifier converges to the Bayes optimal solution (Theorem 3.2).

We run simulations on semi-synthetic colored MNIST [19] and celebA [21] datasets to verify the
insights from our theory and show that they apply to multi-layer neural networks and datasets where
the spurious features are not necessarily a subset of the input coordinates (Section 5).

1.1 Related Work

Self-training methods have achieved state-of-the-art results for semi-supervised learning [42, 32, 20],
adversarial robustness [22, 44, 30], and unsupervised domain adaptation [22, 44, 30], but there is
little understanding of when and why these methods work under domain shifts. Two popular forms of
self-training are pseudolabeling [20] and conditional entropy minimization [13], which have been
observed to be closely connected [2, 20, 30, 7]. We show that our analysis applies to both entropy
minimization and a version of pseudo-labeling where we initialize the student model with the teacher
model and re-label after each gradient step (Proposition D.1).

Kumar et al. [18] examine self-training for domain adaptation, but under strong assumptions: that
P (X|Y ) is an isotropic Gaussian, that entropy minimization converges to the nearest local minima,
and infinite unlabeled data. They use a symmetry argument that requires all these assumptions. In
our setting, the signal x1 can be a mixture of many log-concave, log-smooth distributions, and we
show that self-training does in fact converge with only finite unlabeled data, even though the loss
landscape is non-convex. These require new, more general, proof techniques.

Domain adaptation and semi-supervised learning theory: Importance weighting [29, 17, 34] is a
popular way to deal with covariate shift but these methods assume that P (Y | X) is the same for
the source and target, which may not hold when there are spurious correlations in the source but not
target. Additionally, sample complexity bounds for importance weighting depend on the expected
density ratios between the source and target, which can often scale exponentially in the dimension.
Our finite sample guarantees only depend on properties of the target distribution (assuming a decently
accurate source classifier) and are agnostic to this density ratio. The theory of H∆H-divergence
lower bounds target accuracy of a classifier in terms of source accuracy if some distance between the
domains is small [6]; Zhang et al. [43] extend this distance measure to multiclass classification. In
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contrast, we show self-training can improve accuracy under our structured domain shift, even when
the shift is potentially large. Other theoretical papers on semi-supervised learning focus on analyzing
when unlabeled data can help, but do not analyze domain shift [27, 31, 5, 4].

Co-training [8] is an algorithm that can leverage unlabeled data when the input features can be split
into (x1, x2) that are conditionally independent given the label. Co-training assumes this grouping is
known a-priori, and that either group can be used to predict the label accurately. In our setting, the
spurious feature cannot be used to predict the label accurately in the target domain, and the algorithm
does not have access to the grouping between spurious and signal features.

Spurious and non-robust features. Many works seek to identify causal features invariant across
domains [3, 26, 15]. Spurious features are also related to adversarial examples, which can possibly
be attributed to non-robust features that can predict the label but are brittle under domain shift [16].

A number of papers theoretically analyze the connection between adversarial robustness and accuracy
or generalization for linear classifiers in simple Gaussian settings [36, 28, 39]. Carmon et al. [9]
show that self-training on unlabeled data can improve adversarially robust generalization for linear
models in a Gaussian setting. Though these research questions are orthogonal to ours, one technical
contribution of our work is that our analysis extends to more general distributions than Gaussians.

Fairness. Spurious correlations in datasets can lead to unfair predictions when protected attributes
are involved. Our work shows that self-training can potentially employ unlabeled population samples
to overcome bias in labeled data [12, 35].

2 Setup

Model. We consider a linear model ŷ = w>x where w = (w1, w2) and x = (x1, x2) with
w1, x1 ∈ Rd1 and w2, x2 ∈ Rd2 . We assume that the spurious features x2 have Gaussian distribution
with covariance Σ2 � 0, so the target data (x, y) ∼ Dtg is generated by

y
unif∼ {±1}, and x1 ∼ Dtg,1(·|y)

x2 ∼ N (~0,Σ2),Σ2 ∈ Rd2×d2 (2.1)

for some distribution Dtg,1 over Rd1 . Note that x2 is a spurious feature because it is independent
of the label y. Our results and analysis also transfer to a “scrambled setup” [3] where we observe
z = Sx for some rotation matrix S ∈ R(d1+d2)×(d1+d2). This follows as a direct consequence of the
rotational invariance of the algorithm (2.3) and our assumptions.

Min-entropy objective. The min-entropy objective on a target unlabeled example is defined as
`ent(w

>x) where `ent(t) = H((1 + exp(−t))−1) and H is the binary entropy function.

For mathematical convenience, we consider an approximation `exp(t) = exp(−|t|), which is com-
monly used in the literature for studying the logistic loss [33]. `exp approximates `ent up to a constant
factor and exhibits the same tail behavior (Figure 10). We experimentally validate in Section E.5 that
training using `exp achieves the same effect for the algorithms we analyze. The population unlabeled
objective on the target distribution that we consider is

L(w) , E
x∼Dtg

`exp(w
>x) (2.2)

whereDtg denotes the distribution in the target domain. We mainly focus on analyzing the population
loss for simplicity, but in our main results (Theorems 3.1 and 3.2) we also give finite-sample
guarantees. We analyze the following equivalent algorithms for self-training.

Entropy minimization. We initialize w from a source classifier ws and run projected gradient
descent on the entropy objective:2

w0 = ws and wt+1 =
wt − η∇L(wt)

‖wt − η∇L(wt)‖2
(2.3)

2We project to the unit ball for simplicity, as the loss `exp is not scale-invariant.
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Figure 1: Cases where entropy minimization fails to remove w2. Left (Example 3.1): When w1 = 0, w>x is
distributed as a Gaussian. Increasing w2, which increases this variance (e.g, going from the purple to green
curve) decreases L(w) by forcing every prediction further from 0. This means that entropy minimization causes
reliance on the spurious feature to increase. Right (Example 3.2): Distribution of w>1 x1 in a hard case for
general distributions. If there is a lot of mass of w>1 x1 concentrated near the boundaries (i.e, ±µ for some large
µ→∞) and a small amount of mass near 0, the loss could be small but the classifier will not want to shrink
‖w2‖2.

Pseudo-labeling. We consider a variant of pseudo-labeling where we label the target data using the
classifier from the previous iteration and run projected gradient descent on the supervised loss

Lt+1
pseudo(w) , E

x∼Dtg
`exp(w

>x, yt) (2.4)

where yt = sgn (wt
>
x) and `exp(t, y) = exp (−ty). The algorithm is the same as 2.3 with L(w)

replaced by Lt+1
pseudo(w). Note that this is different from some versions of pseudo-labeling, which

train for many rounds of gradient descent before re-labeling. We observe that the two algorithms
above are equivalent because the iterates are the same (see Section D.3 for the formal proof).

3 Overview of Main Results

We would like to show that entropy minimization (2.3) drives the spurious feature w2 to 0. However,
this is somewhat surprising and challenging to prove because nothing in the loss or algorithm explicitly
enforces a decrease in ‖w2‖2. Indeed, without additional assumptions on the target distribution Dtg
and the initial source classifier ws, we show that entropy minimization can actually cause ‖w2‖2 to
increase because self-training can reinforce existing biases in the source classifier.

Examples 3.1 and 3.2 highlight cases where entropy minimization can fail, which motivates our
assumptions of separation (Assumption 3.1) and that x1 is a mixture of sliced log concave distributions.
Under these assumptions, our main Theorem 3.1 shows that entropy minimization (2.3) initialized
with a decently accurate source classifier drives the coefficient of the spurious feature, w2, to 0. For a
simpler Gaussian setting, Theorem 3.2 shows that entropy minimization with a sufficiently accurate
source classifier converges to the Bayes optimal classifier.

3.1 Failure cases of self-training

We highlight cases where self-training increases reliance on the spurious features, justifying our
assumptions in Section 3.2.

Example 3.1 (No contribution from signal, i.e. w>1 x1 = 0.). See Figure 1 (Left). For simplicity,
suppose that d1 = d2 = 1, and suppose that w1 = 0, so the signal feature is not used. In this case,
increasing |w2| drives every prediction further from 0, decreasing the expected loss L(w). Thus, in
this example the min-entropy loss actually encourages the weight on the spurious feature, |w2|, to
increase. Note that this is not trivially true when w1 is nonzero.

In a realistic scenario, it’s unlikely that w>1 x1 = 0 for all examples because then the source accuracy
on the target domain is very poor. So a priori, if we assume the source accuracy is decent (which
implies L(ws) is small), we may avoid the pathological case above. However, this is not sufficient.
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Example 3.2 (Initial L(ws) is small, but self-training still increases ‖w2‖2.). See Figure 1 (Right).
Suppose that restricting to the signal feature, we have a mixture of perfectly and extremely confidently
predicted examples, and a small amount of unconfident examples as in Example 3.1. The majority
group of confident examples is already perfectly predicted with no incentive to remove w2 (because
the loss gradient is near 0), and the minority group encourages ‖w2‖2 to increase as in Example 3.1,
so the overall effect is for ‖w2‖2 to increase though L(w) is small.

For self-training to succeed, the correctly and confidently predicted examples must help remove the
spurious features. As demonstrated above, this requires some continuum between confidently and
unconfidently predicted examples. This motivates the log-concavity and smoothness assumptions,
which guarantees that the sample distribution is not supported on too many extremely isolated clusters.

3.2 Mixtures of log-concave and log-smooth distributions

To avoid the failure cases above, we make realistic assumptions which are plausible in real-world
data distributions. We start by defining a variant of log-concave and log-smooth distributions.
Definition 3.1 (sliced log-concavity, log-smoothness). A distribution over Rd with density p is α-
log-concave for α > 0 if ∇2 log p(t) � −α · Id×d, and is β-log-smooth if ‖∇2 log p(t)‖op≤ β. A
distribution p over Rd is sliced α-log-concave or sliced β-log-smooth if for any unit vector v, the
random variable v>x with x ∼ p is α-log-concave or β-log-smooth, respectively.

A 1 dimensional density that is not Gaussian which satisfies these assumptions is p(x) ∝ exp(−x2 +
cosx). This density is 1-log concave and 3-log smooth. Now we state our main assumption that x1

consists of a mixture of sliced-log-concave and smooth distributions with sufficient separation.
Assumption 3.1 (Separation assumption on the data). We assume that the distribution of x1 in
the target domain, denoted by Dtg,1, is a mixture of K sliced α-log-concave and β-log-smooth
distributions. (The reader can think of α, β and K as absolute constants for simplicity.) Let
τ1, . . . , τK denote the probability of each mixture and τ = mini τK . We assume that these mixtures
are sufficiently separated in the sense that for scalar κ (that depends on α and β), there exists
(w1, 0) ∈ Rd1+d2 such that L((w1, 0)) ≤ τκ.

We formally define κ in Section B.1. When α and β are of constant scale, κ is also a constant.
Assumption 3.1 is always satisfied if the means of each mixture distribution in Dtg,1 are sufficiently
bounded from 0. We can see why Assumption 3.1 is a separation condition by considering the case
when there exists (w1, 0) with good classification accuracy on x1. Obtaining good classification
accuracy is only possible if the means of different classes are sufficiently far from 0 and also on
opposite sides of 0, resulting in separation between the two classes.

The sliced log-concavity ensures that each mixture component of w>1 x1 is uni-modal, with upper
bound α on its “width”. Likewise, the sliced log-smoothness condition ensures that each component
is not too narrow. These conditions rule out the hard distribution in Figure 1 (right), as each of
the three components change quite sharply, violating log-smoothness. Next, we assume the source
classifier is decently accurate and has bounded usage of the spurious feature.
Assumption 3.2 (Source classifier is decently accurate, doesn’t rely too much on spurious features.).
We assume that the source classifier has a significant mass in the space of the signal x1 in the sense
that ‖ws

1‖2≥ 1/2. We further assume that either Σ2 is sufficiently small or ws
2, the initialization in

the spurious feature space, is sufficiently small, in the sense that

σ2 = ws>
2 Σ2w

s
2 ≤ c ·min{1, α/β2, β−1, (β/|log β|)−1}

for some sufficiently small universal constant c (e.g., c = 0.03 can work.) Furthermore, we assume the
source classifier ws has small entropy bound L(ws) ≤ τκ, where κ is the constant in Assumption 3.1.

The conditions on ‖ws
1‖2 and σ can be satisfied if ws

2 is not too large. The following theorem
shows that under our assumptions, entropy minimization succeeds in removing the spurious w2.
Theorem 3.1 (Main result). In the setting above, suppose Assumptions 3.1 and 3.2 hold and L
is smooth.3 If we run Algorithm (2.3) initialized with ws with sufficiently small step size η, after

3As there is a discontinuity in d
dt
`exp(t) at t = 0, we need to assume smoothness. This regularity condition

is easy to satisfy; for example, it holds if Dtg,1 is a mixture of Gaussians.
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O(log 1
ε ) iterations, we will obtain ŵ with very small usage of spurious features, i.e. ‖ŵ2‖2≤ ε. The

same conclusion holds with probability 1− δ in the finite sample setting with O( 1
ε4 log 1

δ ) unlabeled
samples from Dtg.

Above, the notationO(·) hides dependencies on α, β,Σ2, and other distribution-dependent parameters.
The interpretation of Theorem 3.1 is that self-training can take a source classifier that has decent
accuracy on the target and de-noise it completely, improving target accuracy by removing spurious
extrapolations. The main proof of Theorem 3.1 is given in Section B. We provide proof intuitions in
Section 4. In Section B.4, we show we can ensure convergence to an approximate local minimum of
the objective min‖w1‖2≤1 L((w1, 0)) by adding Gaussian noise to the gradient updates.

Special case: mixtures of Gaussians. We provide a slightly stronger analysis of Algorithm 2.3
when the signal x1 is a one-dimensional Gaussian mixture, i.e. we set Dtg,1(·|y) = N (yγ, σ2

1). Let

σ̃min, σ̃max denote the minimum and maximum eigenvalues of Σ̃ ,

(
σ2

1 0
0 Σ2

)
.

We analyze a slightly more general variant of Algorithm 2.3 which projects to the R-norm ball rather
than unit ball. We now show that starting from an initial source classifier with sufficiently high
accuracy on the target domain, self-training will avoid using the spurious feature and converge to
the Bayes optimal classifier. Note that this is a stronger statement than Theorem 3.1, which does not
bound the final target accuracy of the classifier.
Theorem 3.2. In the setting above, suppose we are given a classifier (trained on a source distri-
bution) ws with ‖ws‖≤ R and 0-1 error on the target domain at most ρ = 1

2 erfc
(
r(Rσ̃max)√

2Rσ̃min

)
.4

(r is a function as defined in Section A). Then Algorithm 2.3 converges to wK satisfying wK1 ≥√
R2 − ε2 and ‖wK2 ‖2≤ ε within K = O(log 1

ε ) iterations. For the finite sample setting, the same
conclusion holds with probability 1− δ using O( 1

ε4 log 1
δ ) samples.

As above, O(·) hides dependencies in R, σ̃min, σ̃max, ρ, d2. In particular, w converges to (R, 0), the
classifier in {w : ‖w‖2≤ R} with the best possible accuracy. The full proof is in Section A.

4 Overview of Analysis

We will summarize the key intuitions for proving Theorems 3.1 and Theorem 3.2. The main ingredient
is to show that the min entropy objective encourages a decrease in ‖w2‖2, as stated below:
Lemma 4.1. In the setting of Theorem 3.2, suppose that the classifier w has at most ρ error on the
target. Then 〈∇w2

L(w), w2〉 ≥ 0. This same conclusion holds in the setting of Theorem 3.1 for any
w satisfying the conditions in Assumption 3.2.

The consequence of Lemma 4.1 is that one step of gradient descent on the loss function L(w) shrinks
the norm of w2. This leads to the conclusion of Theorems 3.1 and 3.2, modulo a few other nuances
such as showing that the conditions of Lemma 4.1 hold for all the iterates, which is done inductively.
We also show that ‖w1‖2 increases after one gradient step (Lemma A.2), so the norm of w2 still
decreases after re-normalization. To prove Lemma 4.1, we first express the objective as follows:

L(w) = E
x1

[
E
x2

`exp(w
>
1 x1 + w>2 x2)

]
(4.1)

Note that w>2 x2 has Gaussian distribution with mean zero and variance σ2 , w>2 Σ2w2. Let
gσ(t) = Ez∼N (0,σ2)[`(t+z)] denote the convolution of `exp withN (0, σ2). Then we can rewrite the
loss as L(w) = Ew>1 x1

[
gσ(w>1 x1)

]
, so∇w2L(w) = ∂L(w)

∂σ · ∂σ∂w2
= ∂L(w)

∂σ · 2Σ2w2, which implies
〈∇w2

L(w), w2〉 = 2w>2 Σ2w2
∂
∂σL(w). As Σ2 � 0, proving Lemma 4.1 is equivalent to proving

∂
∂σL(w) ≥ 0. Letting µ , w>1 x1, we have ∂

∂σL(w) = Eµ[qσ(µ)] where qσ(µ) = ∂
∂σ g(µ). We now

investigate when qσ(µ) ≥ 0. As visualized in Figure 2, qσ(µ) < 0 for µ near 0.

Case when µ� σ: Recall that gσ(µ) = Ez∼N (µ,σ2) [`exp(z)] is the average of the entropy function
over a Gaussian distribution. When µ is sufficiently large, most of the mass of the Gaussian

4erfc (t) = 2
π

∫∞
t

exp (−x2)dx.
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Figure 2: Analyzing dependence of L on σ. Left: µ� σ. A visual depiction of why qσ(µ) > 0 when µ� σ.
Conditioned on µ = w>1 x1, w>x is Gaussian with mean µ. As µ� σ, most of its mass is in the region where
`exp is convex. By Jensen’s inequality, driving σ to 0 decreases the loss in this region. Right: plot of qσ(µ).
The function qσ(µ) will be convolved with p, the distribution over µ. To guarantee E [qσ(µ)] ≥ 0, we would
like to µ has as large amount of mass right to the positive root and left to the negative root of qσ(·) as possible.

distribution N (µ, σ2) is on the positive side of the real line, where the function `exp is convex. For
convex functions f , Jensen’s inequality tells us Ez∼N (µ,σ2)[f(µ)] > f(µ) if σ > 0. As decreasing σ
decreases the expected loss, we can see that qσ(µ) > 0. This is visualized in Figure 2 (left).

General case: We plot qσ(µ) as a function of µ for various choices of σ in Figure 2 (right). We can
see from the figure that for any σ > 0, there is a threshold r(σ) (defined in (A.1)) such that for any
|µ|> r(σ), qσ(µ) > 0. In Lemma A.4, we bound this value r(σ) in terms of σ.

For the Gaussian setting, we can compute Eµ [qσ(µ)] exactly and show it is positive for sufficiently
accurate classifiers. For the general case (Theorem 3.1), it is difficult to bound this expectation
because the expression for qσ(µ) is complicated. Intuitively, our argument for why Eµ[qσ(µ)] > 0 is
as follows: log-concavity and smoothness of each mixture component in µ ensures that the densities
are uni-modal and do not change too fast. Thus, when L(w) is sufficiently small, the mass of
each component is spread over the real line, with most of the mass in the middle where qσ(µ) is
significantly positive, guaranteeing Eµ[qσ(µ)] > 0. To formalize this, we use a second order Taylor
expansion of the log density of µ and bound the error incurred by the expansion using smoothness
and concavity. This analysis is presented in Section B.

In Section C, we prove finite sample guarantees by showing that the gradient updates on the population
and sample loss are similar (∇L̂(w) ≈ ∇L(w) for all w, where L̂(w) is the empirical loss).

5 Experiments

We validate our theory in a variety of empirical settings. We study a more general setting with
nonlinear models where the signal x1 and spurious feature x2 are not distinct dimensions of the data.
Using a semi-synthetic colored MNIST dataset, we verify that 1. self-training avoids using spurious
features in a manner consistent with our theory and 2. as our theory predicts, self-training can harm
performance when the source classifier is not sufficiently accurate. We also confirm our theoretical
conclusions on a celebA dataset modified to have spurious correlations in training data but not in test.

Next, we investigate the connection between entropy minimization (2.3) and a variant of pseudo-
labeling (2.4). We demonstrate that entropy minimization can converge to better target accuracy
within a fixed wall clock time-budget, suggesting that practitioners may benefit from pseudo-labeling
with more rounds and fewer epochs per round (Section E.3). In Section E.4 we verify that our
conclusions hold for more common variants of pseudo-labeling in a toy Gaussian setting.

Colored MNIST. We create colored variants of the MNIST dataset [19] where the shape of the digit
is the signal feature and the color is the spurious feature. In the first variant, denoted CMNIST10,
there are 10 classes. Color correlates with the label in the source with probability p = 0.95, but is
uncorrelated with the label in the target. In the second variant, denoted CMNIST2, we group digits
into two classes: 0-4 and 5-9, which allows detailed investigation of our theory. Color correlates with
the class label in the source but not in the target using a construction described in detail in Section E.1.
We train 3-layer feed-forward network on the source, and use this to initialize entropy minimization
(Algorithm 2.3) on unlabeled target data. Evaluation is performed on held-out target samples.
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Table 1: Accuracy of models on the target before/after self-training, demonstrating that self-training can boost
target accuracy under our structured domain shift. The exception is CMNIST10 with 0.97 probability of
correlation between color and class. Here self-training decreases accuracy because initial accuracy is poor (only
72%), justifying our assumption of a decently accurate source classifier.

CELEBA CMNIST10 (P = 0.95) CMNIST2 CMNIST10 (P = 0.97)

TRAINED ON SOURCE 81% 82% 94% 72%
AFTER SELF-TRAINING 88% 91% 96% 67%

Table 2: Number of test examples explainable by our theory. See text for definitions and interpretation.

-/+ +/- +/+ -/- TOTAL

EXPLAINABLE 271 45 8785 150 9251
TOTAL 349 86 9286 279 10000

CelebA dataset. Inspired by [15], we partition the celebA dataset [21] so that gender correlates
perfectly with hair color in source data (Figure 7a) but not in the target (Figure 7b). We train a neural
net to predict gender by first training on source data alone and then performing self-training with
unlabeled target data. During self-training, we add the labeled source loss to the min-entropy loss on
target data. (Section E.2 has more details.)

Self-training improves target accuracy. Table 1 shows that with a decently accurate source classi-
fier, self-training on unlabeled target data leads to substantial improvements in the target domain. For
example, on celebA the classifier achieves 81% accuracy before self-training and 88% after. This
suggests that practitioners can potentially avoid overfitting to spurious correlations by self-training
on large unlabeled datasets in the target domain.

Self-training requires decent source classifier accuracy to succeed. We test whether self-training
is effective when the source classifier is bad by increasing the correlation between label and spurious
color feature from 0.95 to 0.97 for CMNIST10. The resulting source classifier only obtains 72%
initial accuracy on target data, which drops to 67% after self-training (see Table 1, last column,
and plots in Section E.1). This shows that our assumption that the source classifier has to obtain
non-trivial target accuracy (with bounded usage of the spurious feature) is also necessary in practice.

Self-training reduces reliance on the spurious features. In the CelebA experiment, test predictions
corrected by self-training were mostly mistaken due to the spurious correlation. Figure 7c, a random
sample of the corrected examples, consists of mostly blond females, non-blond males, and subjects
with hats or irregular hairstyles.

For 2-class colored MNIST, let µS(x1), σS(x1) denote the mean and standard deviation of the
source classifier conditioned on grayscale image x1, with color distributed independently of x1.
Define µT (x1), σT (x1) similarly for the classifier after self-training. Our theory suggests that
sgnµS(x1) = sgnµT (x1), |µS(x1)|< |µT (x1)|, and σS(x1) > σT (x1), and we say a test example
is explainable by our theory if this holds. We divide the test examples into four categories: “-/+",
“+/-", “+/+", “-/-", where, for example, “-/+" indicates source classifier was wrong but corrected by
self-training. Table 2 summarizes the number of explainable examples in each category, showing that
for the majority (> 90%) of examples, entropy minimization works due to the reason we hypothesized.
In Section E.1, we provide additional detailed analyses of the influence of the spurious color feature
on the prediction before and after self-training.

6 Conclusion

We study the impact of self-training under domain shift. We show that when there are spurious
correlations in the source domain which are not present in the target, self-training leverages the
unlabeled target data to avoid relying on these spurious correlations. Our analysis highlights several
conditions for self-training to work in theory, such as good separation between classes and a decently
accurate source classifier. Our experiments support that 1) these theoretical requirements can capture
the initial conditions needed for self-training to work and 2) under these initial conditions, self-
training can indeed prevent the model from using spurious features in ways predicted by our theory. It
is an interesting question for future work to explore other settings we can analyze with our framework.
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Broader Impact

Our work promotes robustness and fairness in machine learning. First, we study algorithms that make
machine learning models robust when deployed in the real world. Second, our work addresses the
scenario where the target domain is under-resourced and hence collecting labels is difficult. Third,
our theoretical work guides efforts to mitigate dataset bias. We demonstrate that curating a diverse
pool of unlabeled data from the true population can help combating existing bias in labeled datasets.
We give conditions for when bias will be mitigated and when it will be reinforced or amplified by
popular algorithms used in practice. We take a first step towards understanding and preventing the
adverse effects of self-training.
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A Warmup: Proofs for Gaussian Setting (Theorem 3.2)

We will define the function r in Theorem 3.2 as follows:

r(σ) =

σ2 + σ
√

2 log 4
√

2√
πσ
, if 0 < σ ≤ 4

√
2√
π
.

2σ2, if σ > 4
√

2√
π
.

(A.1)

The algorithm that we consider is a variant of Algorithm 2.3 which more generally projects to the
R-norm ball rather than unit ball: wt+1 = R wt−η∇L(wt)

‖wt−η∇L(wt)‖ . Now define

a =
√

2Rσ̃min erfc−1 (2ρ) = r(Rσ̃max)

S = {w : w1γ ≥ a, ||w||2≤ R}. (A.2)

where the function r is defined in Lemma A.4. We first observe that the condition that classifier w
has at most 1− ρ error corresponds directly to w ∈ §.
Lemma A.1. In the setting of Theorem 3.2, suppose some classifier w has at least 1− ρ accuracy in
the sense that Prx,y

[
sgn (w>x) = y

]
≥ 1− ρ and ||w||2≤ R. Then w1γ ≥ a.

Proof of Lemma A.1. Let σ̃2 = w>Σ̃w. We have Rσ̃min ≤ σ̃ ≤ Rσ̃max.

Pr
y∼{±1},z∼N (~0,σ̃2)

[sgn (yw1γ + z) = y] ≥ 1− ρ

⇐⇒ Pr
z∼N (~0,σ̃2)

[w1γ + z ≥ 0] ≥ 1− ρ

⇐⇒ erfc
(
w1γ√

2σ̃

)
≤ 2ρ

=⇒ w1γ ≥ a

Next, our proof of Theorem 3.2 will be based on the following two lemmas. The first lemma shows
that w1 is increasing, and the second shows that ‖w2‖2 is decreasing at a fast enough rate.

Lemma A.2. In the setting of Theorems 3.1 and 3.2, for any w ∈ S,

〈∇w1L(w), w1〉 < 0.

Proof. Recall the definition
gσ(µ) = Ez∼N (µ,σ2) [`exp(z)]

Now we can compute

〈∇w1L(w), w1〉 = Ex1

[
g′σ(w>1 x1)x>1 w1

]
= Ex1

[
g′σ(w>1 x1)w>1 x1

]
< 0

since g′σ(µ) and µ always have opposite signs.

Lemma A.3. In the same setting as in Lemma A.2, we have that for any w ∈ S,

〈∇w2
L(w), w2〉 ≥ c||w2||22

for some constant c dependent only on R, γ, σ̃min, σ̃max.

This lemma relies on the following bound stating that for |µ|> r(σ), qσ(µ) > 0.

Lemma A.4. Define r(σ) as in (A.1). Then for |µ|≥ r(σ), qσ(µ) ≥ 1
4σ`exp(µ) > 0.

We prove this lemma in Section D.1. We also require the following claim that qσ̃(w1γ) is lower
bounded by some positive constant for all w ∈ S.

12



Claim A.1. Define the function r(σ) as in Lemma A.4. Suppose a ≤ µ ≤ Rγ. Then for all w ∈ S,

∂gσ̃(w1γ)

∂σ̃
≥ c1

for some constant c1 dependent only on R, γ, σ̃min, σ̃max.

Proof of Claim A.1. We note that r and q satisfy the following properties:

1. r(σ) is a monotonically increasing increasing function.

2. qσ(µ) = ∂gσ̃(w1γ)
∂σ̃ > 0 for all µ ≥ r(σ). (See Lemma A.4 for proof.)

For arbitrary σ̃ ∈ [Rσ̃min, Rσ̃max], µ ≥ a = r(Rσ̃max) ensures that µ ≥ r(σ̃) by property 1. By
property 2, q(σ̃, µ) > 0. Setting c1 = minσ̃∈[Rσ̃min,Rσ̃max],µ∈[a,Rγ] qσ(µ) finishes the proof. c1 is
dependent only on R, γ, σ̃min, σ̃max.

Proof of Lemma A.3. Using the fact that x1 is a uni-variate mixture of Gaussians, and therefore w>x
is itself a mixture of two Gaussians with variance σ̃2, we have

L(w) = Ey∼{±1},z∼N (0,σ̃2)[lexp (yw1γ + z)]

=
1

2
(gσ̃(w1γ) + gσ̃(−w1γ))

= gσ̃(w1γ)

Now we differentiate with respect to w2 to obtain

∇w2L(w) =
∂L(w)

∂σ̃
· ∂σ̃
∂w2

=
∂gσ̃(w1γ)

∂σ̃
· 2Σ2w2

We now use the lower bound on ∂gσ̃(w1γ)
∂σ̃ given by Claim A.1. This gives

〈∇w2L(w), w2〉 ≥ 2c1σ̃min||w2||22.

Setting c = 2c1σ̃min finishes the proof.

We can now complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Define w̃t+1 = wt − η∇L(wt). By Lemma A.1, w0
1γ ≥ a. Note that by

assumption a > r(Rσ̃max). By Lemma A.2 and A.3, at iteration t ≥ 0, taking constant step size η,

|w̃t+1
1 | > |wt1|

||w̃t+1
2 ||22 = ||wt2 − η∇w2

L(w)|w=wt ||22
= ||wt2||22+η2||∇w2L(w)|w=wt ||22
− 2η〈∇w2

L(w)|w=wt , w
t
2〉

By Lemma A.3,
∇w2

L(w) = qσ(w)(µ(w)) · 2Σ2w2

for some continuous function qσ(µ) where σ(w)2 = w>2 Σ2w2, µ(w) = w1γ over compact set S.
Therefore q is bounded. Suppose |q|≤ c2 for all w ∈ S, then

||∇w2L(w)|w=wt ||22≤ 4c22σ̃
2
max||wt2||22.

Therefore ||w̃t+1
2 ||22≤ c′||wt2||22 for some constant c′ < 1 for appropriate choice of η. As |w̃t+1

1 |>
|wt1|, renormalization results in some constant factor decrease in ‖wt2‖2. Therefore ||wt2||22≤ ε when
t ≥ K = O(log

(
1
ε

)
).
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B Missing Proofs for Theorem 3.1

Define the following function depending on parameters ρ, ν defined later:

κ̃(ρ, ν) , min

{ √
π

4
√
ρ

(p?(ρ, ν))1− ν
4ρ

(
ν

2
√
π

) ν
4ρ

,

√
ν

8
√

2π(
√
ρ+
√

2)
exp

(
−
(√

ρ+ 4

2
√
ν

)2
)}
(B.1)

for

p?(ρ, ν) ,

√
ν

2
√
π

min

{
1,

√
ν
√
ρ

( √
π

44
√

2ρ

) 8ρ
ν

}

Now we choose the constant κ in Assumptions 3.1 and 3.2 to be κ(β, α) , mina∈[1,4] κ̃(aβ, aα).

Throughout the proof, we will use p to refer to the density of µ = w>1 x1, and define s(µ) ,
∂
∂µ log p(µ) = p′(µ)

p(µ) . Throughout our proofs, we use ν, ρ to refer to parameters such that p is ν-log-

concave and ρ-log-smooth. By Assumption 3.1, we have that the density of w>1 x1

‖w1‖2 is α-log-concave
and β-log-smooth, so we can choose ν = α/‖w1‖22 and ρ = β/‖w1‖22 by the linear transformation
formula of a probability density. We use σ = w>2 Σ2w2 to be the variance of the output of the current
classifier restricted to the spurious coordinates.

B.1 Proof overview

We will argue that if the initial conditions in Assumption 3.2 hold, then they will continue to hold
throughout training. Furthermore, under these initial conditions, the loss gradient will force ‖w2‖2 to
decrease.

The following three lemmas which analyze a single update of the algorithm will form the main
technical core of our proof. They will be used to show that when the loss is sufficiently small, the
norm of w2 is always decreasing. The first lemma states that if the loss is small, then p cannot have a
large density at 0.

Lemma B.1. In the setting of Theorem 3.1, suppose that K = 1. When L(w) ≤ κ̃(ρ, ν), we must
have

L(w) ≥
√
π

4
√
ρ
p(0)1− ν

4ρ

( √
ν

2
√
π

) ν
4ρ

(B.2)

As a consequence, when L(w) ≤ κ̃(ρ, ν), we have:

p(0) ≤ p?(ρ, ν)

Next, observe thatw2 will decrease if ∂
∂σL(w) > 0. The following lemma lower bounds ∂

∂σL(w) > 0

in terms of p(0), showing that if p(0) is small, ∂
∂σL(w) will be positive.

Lemma B.2. In the setting of Lemma B.1, we have

∂

∂σ
L(w) ≥ p(0)σ

( √
π

11
√
ρ

( √
ν

2p(0)
√
π

) ν
4ρ

− 2
√

2 max

{
1,

( √
ρ

2p(0)
√
π

) ν
8ρ

})
(B.3)

Finally, this next lemma combines the two lemmas above to show that when the loss is sufficiently
small, w2 is always shrinking.

Lemma B.3. In the setting of Lemma B.1, when L(w) ≤ κ̃(ρ, ν) for κ̃(ρ, ν) defined in (B.1), we
have

∂

∂σ
L(w) ≥ σp(0)1− ν

4ρ

√
π

22
√
ρ

( √
ν

2
√
π

) ν
4ρ

> 0
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Proof of Lemma B.3. Define a1 ,
√
π

11
√
ρ

( √
ν

2p(0)
√
π

) ν
4ρ

, a2 , 2
√

2 max

{
1,
( √

ρ

2p(0)
√
π

) ν
8ρ

}
, so that

the right hand side of (B.3) becomes p(0)σ(a1 − a2).

Now we apply Lemma B.1 to conclude that when L(w) ≤ κ̃(ρ, ν), p(0) ≤ p?(ρ, ν). Note that

when p(0) ≤
√
ν

2
√
π

min

{( √
π

44
√

2ρ

) 4ρ
ν

,
√
ν√
ρ

( √
π

44
√

2ρ

) 8ρ
ν

}
, we must have a1 ≥ 2a2 by the definitions

of a1, a2. Furthermore, the r.h.s. of this bound is lower-bounded by p?(ρ, ν). As a result, when
p(0) ≤ p?, by Lemma B.2, we have ∂

∂σL(w) ≥ p(0)σ a12 . Applying the definition of a1 gives the
desired result.

B.2 Proof of Lemmas B.1

The following claim will be useful for proving both Lemma B.1 and Lemma B.2.

Claim B.1. Recall that we defined s(µ) = ∂
∂µ log p(µ) = p′(µ)

p(µ) . The following bound holds:∫ ∞
0

exp

(
|s(0)|

2
δ − ρ

2
δ2

)
dδ ≥

√
π
√
ρ

( √
ν

2p(0)
√
π

) ν
4ρ

Proof of Claim B.1. From Lemma D.3, we start with∫ ∞
0

exp

(
|s(0)|

2
δ − ρ

2
δ2

)
dδ ≥

√
π exp

(
s(0)2

4ρ

)
√
ρ

Now we apply the lower bound s(0)2 ≥ ν log
( √

ν
2p(0)

√
π

)
and obtain∫ ∞

0

exp

(
|s(0)|

2
δ − ρ

2
δ2

)
dδ ≥

√
π
√
ρ

exp

(
ν

4ρ
log

( √
ν

2p(0)
√
π

))
≥
√
π
√
ρ

( √
ν

2p(0)
√
π

) ν
4ρ

Our starting point is to first lower bound L(w) in terms of p(0) and s(0).
Claim B.2. The following lower bound on the loss L(w) holds:

L(w) ≥ 0.25p(0)

∫ ∞
0

exp
(

(|s(0)|−1)δ − ρ

2
δ2
)
dδ

Proof of Claim B.2. Without loss of generality, assume that s(0) ≥ 0 (otherwise, by symmetry of
`exp the same arguments hold). Then we have

L(w) =

∫ ∞
−∞

p(δ)gσ(δ)dδ

≥ p(0)

∫ ∞
−∞

exp
(
s(0)δ − ρ

2
δ2
)
gσ(δ) (by log-smoothness)

≥ 0.25p(0)

∫ ∞
−∞

exp
(
s(0)δ − ρ

2
δ2
)
`exp(δ)dδ (by Lemma D.1)

≥ 0.25p(0)

∫ ∞
0

exp
(

(|s(0)|−1)δ − ρ

2
δ2
)
dδ (substituting `exp(δ) = exp(−δ) for δ ≥ 0)

Now the loss is symmetric around 0, so the same argument would also work for s(0) < 0. Thus, we
obtain the desired result.

Next, we argue that if L(w) is bounded above by some threshold, then s(0) will be large in absolute
value.
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Claim B.3. Suppose that our classifier w satisfies the following loss bound:

L(w) ≤
√
ν

8
√

2π(
√
ρ+
√

2)
exp

(
−
(√

ρ+ 4

2
√
ν

)2
)

(B.4)

Then |s(0)|≥
√
ρ

2 + 2.

Proof of Claim B.3. Assume for the sake of contradiction that |s(0)|≤
√
ρ

2 + 2. First, we consider
the case when s(0) ∈ [1,

√
ρ

2 + 2]. In this case, by Lemma D.3, we have

p(0) ≥
√
ν

2
√
π

exp

(
−
(√

ρ+ 4

2
√
ν

)2
)

Furthermore, in this case we also have |s(0)|−1 > 0, so we can apply (D.7) from Claim D.2.
Plugging into Claim B.2, we obtain

L(w) ≥ 0.25p(0)

√
π exp

(
(|s(0)|−1)2

ρ

)
√
ρ

≥
√
ν

8
√
ρ

exp

(
−
(√

ρ+ 4

2
√
ν

)2
)

In the other case where 0 ≤ |s(0)|≤ 1, by Claim D.2 and Claim B.2, we first have

L(w) ≥ 0.25

√
π
√
ρ
p(0) exp

(
(|s(0)|−1)2

ρ

)(
erf
(
s(0)− 1
√
ρ

)
+ 1

)
Now applying the lower bound on p(0) from Lemma D.3, we have

L(w) ≥
√
ν

8
√
ρ

exp(−s(0)2/ν) exp

(
(|s(0)|−1)2

ρ

)(
erf
(
s(0)− 1
√
ρ

)
+ 1

)
Now by Claim D.3, we have

erf
(
|s(0)|−1
√
ρ

)
+ 1 ≥ 1√

π

exp
(
− (|s(0)|−1)2

ρ

)
√

2 + 2(1− |s(0)|)/√ρ
Thus, we have

L(w) ≥
√
ν

8
√
π(
√

2ρ+ 2(1− |s(0)|))
exp

(
−s(0)2

ν

)
≥

√
ν

8(
√

2πρ+ 2
√
π)

exp(−1/ν)

Combining the two cases allows us to conclude that if |s(0)|<
√
ρ

2 + 2, the loss must satisfy

L(w) ≥ min

{ √
ν

8
√
ρ

exp

(
−
(√

ρ+ 4

2
√
ν

)2
)
,

√
ν

8(
√

2πρ+ 2
√
π)

exp(−1/ν)

}
Now we note that the r.h.s. of the above equation is lower bounded by the r.h.s of (B.4). Thus, the
loss would violate (B.4), a contradiction.

Proof of Lemma B.1. First, by Claim B.3, when L(w) ≤ κ̃(ρ, ν), we must have |s(0)|≥
√
ρ

2 + 2.
Now we lower bound the loss in terms of p(0). Starting from Claim B.2, we have

L(w) ≥ 0.25p(0)

∫ ∞
0

exp
(

(|s(0)|−1)δ − ρ

2
δ2
)
dδ

≥ 0.25p(0)

∫ ∞
0

exp

(
|s(0)|

2
δ − ρ

2
δ2

)
dδ (since |s(0)|≥ 2)
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Now applying Claim B.1, we obtain

L(w) ≥ 0.25

√
π
√
ρ
p(0)

( √
ν

2p(0)
√
π

) ν
4ρ

≥ 0.25

√
π
√
ρ
p(0)1− ν

4ρ

( √
ν

2
√
π

) ν
4ρ

This completes the first part of the lemma. For the second part, we note that if L(w) ≤ κ̃(ρ, ν), then
L(w) is bounded above by the r.h.s. of (B.2) with p?(ρ, ν) substituted for p(0) by the definition of
κ̃(ρ, ν). Combined with the first part of the lemma, this immediately gives p(0) ≤ p?(ρ, ν).

B.3 Proof of Lemma B.2

We rely on the following lemma which lower bounds ∂
∂σL(w).

Lemma B.4. Suppose σ ≤ 4
√

2√
π

satisfies γ?σ ≤ min
{

1, 1
4
√
ρ

}
for γ?σ , σ2 + σ

√
2 log 4

√
2√
πσ

. Then

the following lower bound on the derivative ∂
∂σL(w) holds:

∂

∂σ
L(w) ≥

p(0)

(
σ

11

∫ ∞
0

exp

((
|s(0)|−

√
ρ

4
− 1

)
δ − ρ

2
δ2

)
dδ − 2

√
2 exp

(
s(0)2

ν + σ−2

)
1√

ν + σ−2

)
(B.5)

Proof of Lemma B.4. We compute ∂
∂σL(w) in two parts:

∂

∂σ
L(w) =

∫
|µ|≤γ?σ

p(µ)
∂

∂σ
gσ(µ) +

∫
|µ|>γ?σ

p(µ)
∂

∂σ
gσ(µ) (B.6)

For |µ|≤ γ?σ , we lower bound the integral using (D.2) in Lemma D.1. For |µ|> γ?σ , we lower bound
the integral using Lemma A.4. By (D.2), we have∫

|µ|≤γ?σ
p(µ)

∂

∂σ
gσ(µ) ≥ −

√
2

π

∫
|µ|≤γ?σ

p(µ) exp

(
− µ2

2σ2

)
dµ

≥ −
√

2

π

∫
|δ|≤γ?σ

p(0) exp
(
s(0)δ − ν

2
δ2
)

exp

(
− δ2

2σ2

)
dδ

(by log-strong concavity)

≥ −p(0)

√
2

π

∫ ∞
−∞

exp

(
s(0)δ −

(
ν

2
+

1

2σ2

)
δ2

)
dδ

= −p(0)2
√

2 exp

(
s(0)2

ν + σ−2

)
1√

ν + σ−2
(B.7)

We obtained the last equation via Claim D.2. Now we lower bound the second integral in (B.6).
By Lemma A.4, ∂

∂σ gσ(µ) ≥ σ
4 `exp(µ) > 0 for |µ|> γ?σ. Assume without loss of generality that

s(0) > 0 (so we restrict our attention to µ > γ?σ > 0). By symmetry, our arguments still hold if
s(0) < 0. Now we have∫
|µ|>γ?σ

p(µ)
∂

∂σ
gσ(µ) >

∫
δ>0

p(γ?σ + δ)
∂

∂σ
gσ(γ?σ + δ)

≥ σ

4

∫
δ>0

p(γ?σ + δ)`exp(γ
?
σ + δ)

≥ p(0)σ

4

∫
δ>0

exp
(
s(0)(γ?σ + δ)− ρ

2
(δ + γ?σ)2

)
exp(−δ − γ?σ)dδ (B.8)
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Now we note that for γ?σ satisfying
√
ργ?σ ≤ 1

4 and δ > 0, we have

s(0)(γ?σ + δ)− ρ

2
(δ + γ?σ)2 > s(0)δ − ρ

2
δ2 − ρδγ?σ −

ρ

2
γ?σ

2 ≥
(
s(0)−

√
ρ

4

)
δ − ρ

2
δ2 − 1

32

As a result, plugging this back into (B.8) gives∫
|µ|>γ?σ

p(µ)
∂

∂σ
gσ(µ) > exp

(
−γ?σ −

1

32

)
p(0)σ

4

∫ ∞
0

exp

((
s(0)−

√
ρ

4
− 1

)
δ − ρ

2
δ2

)
dδ

(B.9)

Now we use the fact that γ?σ ≤ 1 to lower bound exp(−γ?σ). Finally, we obtain (B.5) by combin-
ing (B.7) and (B.9).

Now we complete the proof of Lemma B.2.

Proof of Lemma B.2. Now we proceed to lower bound ∂
∂σL(w). Our starting point is Lemma B.4.

We will lower bound the first integral:∫ ∞
0

exp

((
|s(0)|−

√
ρ

4
− 1

)
δ − ρ

2
δ2

)
dδ ≥

∫ ∞
0

exp

((
|s(0)|

2

)
δ − ρ

2
δ2

)
dδ

(using |s(0)|≥
√
ρ

2 + 2)

≥
√
π
√
ρ

( √
ν

2p(0)
√
π

) ν
4ρ

(from Claim B.1)

Applying this with equation (B.5) in Lemma B.4, we obtain

∂

∂σ
L(w) ≥ p(0)

(
σ
√
π

11
√
ρ

( √
ν

2p(0)
√
π

) ν
4ρ

− 2
√

2 exp

(
s(0)2

ν + σ−2

)
1√

ν + σ−2

)
(B.10)

Now we lower bound the second term in (B.10). By applying the upper bound on s(0) in Lemma D.3,
we obtain

exp

(
s(0)2

ν + σ−2

)
≤ exp

(
ρ

ν + σ−2
log

( √
ρ

2p(0)
√
π

))
≤
( √

ρ

2p(0)
√
π

) ρ

ν+σ−2

Plugging this back into (B.10) and observing that 1√
ν+σ−2

≤ σ, we obtain

∂

∂σ
L(w) ≥ p(0)σ

( √
π

11
√
ρ

( √
ν

2p(0)
√
π

) ν
4ρ

− 2
√

2

( √
ρ

2p(0)
√
π

) ρ

ν+σ−2

)

Now suppose that the condition σ2ρ2/ν ≤ 1/8 holds. Then ρ
ν+σ−2 <

ν
8ρ , so

( √
ρ

2p(0)
√
π

) ρ

ν+σ−2

≤

max

{
1,
( √

ρ

2p(0)
√
π

) ν
8ρ

}
. It follows that

∂

∂σ
L(w) ≥ p(0)σ

( √
π

11
√
ρ

( √
ν

2p(0)
√
π

) ν
4ρ

− 2
√

2 max

{
1,

( √
ρ

2p(0)
√
π

) ν
8ρ

})

B.4 Proof of Theorem 3.1

We first show that the loss must be lower-bounded by some constant depending only on the distribution
over x1 if w1 is bounded.
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Lemma B.5. For any w with ‖w1‖2≤ R, as long as σ ≤ 1 the following holds:

L(w) ≥ 0.25 exp(−REx1 [‖x1‖2])

Proof. We have

L(w) = Ex1 [gσ(w>1 x1)]

≥ Ex1 [gσ(‖w1‖2‖x1‖2)] (B.11)
≥ 0.25Ex1

[`exp(‖w1‖2‖x1‖2)] (by Lemma D.1)
≥ 0.25 exp(−REx1

[‖x1‖2])

The last line followed because `exp(µ) = exp(−µ) for positive µ. Since exp(−µ) is convex, we
applied Jensen’s inequality.

Next, we argue that p(0) must be lower-bounded by some constant depending only on the distribution
over x1 if w1 is bounded.
Lemma B.6. There exists some constant c1 which only depends on Ex1

[‖x1‖2], α, β such that for
all w satisfying σ ≤ 1/2 and 1/2 ≤ ‖w1‖2≤ 1, we have

p(0) ≥ c1

Proof. Fix µ̄ = log(4/L(w)). Then note that we must have∫ µ̄

−µ̄
p(µ)dµ+

∫
|µ|>µ̄

p(µ) max
|µ|>µ̄

gσ(µ) ≥ L(w).

Now note that since σ ≤ 1/2, Lemma B.6 tells us that gσ(µ) ≤ 2 exp(−µ). Thus, max|µ|>µ̄ gσ(µ) ≤
L(w)/2. Thus, we obtain∫ µ̄

−µ̄
p(µ)dµ+

(
1−

∫ µ̄

−µ̄
p(µ)dµ

)
L(w)

2
≥ L(w)

This gives ∫ µ̄

−µ̄
p(µ)dµ ≥ L(w)/2

1− L(w)/2

Thus, we can conclude that there exists µ′ ∈ [−µ̄, µ̄] such that p(µ′) ≥ L(w)
2µ̄(2−L(w)) .

Now we apply Lemma D.3 to obtain

|s(µ′)|≤

√
ρ log

(√
ρµ̄(2− L(w))

L(w)
√
π

)
Now we apply Claim D.1 to conclude that

p(0) ≥ p(µ′) exp
(
−|s(µ′)|µ̄− ρ

2
µ̄2
)

Now note that s(µ′), p(µ′), µ̄ depend only on L(w) which is upper bounded by 1 and lower bounded
by some function of Ex1 [‖x1‖2] by Lemma B.5. Furthermore, ρ ∈ [β, 2β]. Thus, s(µ′), p(µ′), µ̄ are
all upper and lower bounded by some function of Ex1 [‖x1‖2]. As a result, the same applies to p(0),
giving us the desired statement.

Proof of Theorem 3.1. We start with proving the case when K = 1. First, we note that
w>1 ∇w1L(w) < 0 by using the same argument as Lemma A.2. Furthermore, for all ‖w1‖2∈ [1/2, 1],
the upper bound on σ required for Lemmas B.1, B.2, and B.3 are all satisfied by Assumption 3.2.
Thus, if L(ws) ≤ κ(β, α) = mina∈[1,4] κ̃(aβ, aα), then initially the loss upper bound for Lem-
mas B.1, B.2, and B.3 are satisfied. Combining this with Lemma B.6, we get that ∂

∂σL(w) ≥ c1σ
for the constant c1 defined in Lemma B.6. Furthermore, the loss L(w) is also always decreasing
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for sufficiently small choice of step size. As a result, the following invariants hold throughout the
optimization algorithm: ‖w1‖2 is non-decreasing, σ is non-increasing, and L(w) ≤ κ(β, α). Thus,
the initial conditions Lemmas B.1, B.2, and B.3 will always hold, so we can conclude using the same
argument as in Lemma A.3 that ‖w2‖2 is always decreasing with rate c2‖w2‖2, where c2 is some
value depending on α, β, and the data distribution. This implies that w2 converges to 0, providing the
first statement in Theorem 3.1.

Finally, in the case that K > 1, we observe that when Assumption 3.2 is satisfied, we must have
Li(w) ≤ κ(β, α) for all i, where Li(w) is the expectation of the loss conditioned on the i-th mixture
component. Thus, this immediately reduces to the K = 1 case.

To prove convergence of noisy gradient descent to an approximate local minimum of the objective

min
‖w1‖2≤1

L((w1, 0)) (B.12)

we also assume that L((w1, w2)) is twice-differentiable, and furthermore there exists C such that
∇w1L((w1, w2)),∇2

w1
L((w1, w2)) are Lipschitz in w2 for ‖w2‖2≤ C, ‖w1‖2≤ 1.

We will first formally define an (ε, γ)-approximate local minimum of (B.12). Define Pw⊥1 , I−w1w
>
1

‖w1‖22
to be the projection onto the space orthogonal to w1. Then an (ε, γ)-approximate local minimum
of (B.12) is a point w1 : ‖w1‖2≤ 1 satisfying:

1. ‖w1‖2≥ 1− ε.
2. ‖Pw⊥1 ∇w1L((w1, 0))‖2≤ ε.

3. Pw⊥1 ∇
2
w1
L((w1, 0))Pw⊥1 − (w>1 ∇w1

L((w1, 0)))Pw⊥1 � −γI .

Note that the first condition simply reflects the fact that all true local minima of (B.12) will satisfy
‖w1‖2= 1 and therefore lie on the unit sphere Sd1−1, as scaling up the weights only decreases the
objective. The second two conditions essentially adapt the classical conditions for approximate local
minima (see [25, 1]) to the setting where the domain is a Riemannian manifold (in our case, the unit
sphere Sd1−1). In particular, they replace the standard gradient and Hessian with the gradient and
Hessian on a Riemannian manifold, in the special case when the manifold is the unit sphere. In other
words, they capture the intuition in order for w1 to be a local minimizer of the constrained objective,
the only local change to w1 which decreases the loss should be increasing its norm.

To conclude convergence to an approximate local minimum, we note that by the argument of [11],
there are sufficiently small step size and additive noise such that for any choice of ε, the algorithm
converges to an (ε, γ)-approximate local minimizer of the objective min‖w‖2≤1 L(w1, w2) (defined
in the same manner) satisfying ‖w2‖2≤ ε. By the regularity conditions on L, this is also a (C ′ε, C ′γ)-
approximate local minimizer of the purified objective for some C ′ depending on the regularity
conditions.
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C Proofs for finite sample setting

Given n samples X1, ..., Xn define the empirical loss L̂ on unlabeled data as:

L̂(w) =
1

n

n∑
i=1

`exp(w
TXi)

We analyze self-training on the empirical loss, which begins with a classifier ws, and does projected
gradient descent on L̂ with learning rate η.

w0 = ws

wt+1 = R
wt − η∇L̂(wt)

‖wt − η∇L̂(wt)‖2
Recap of analysis in infinite setting: In the infinite sample case, gradient descent moves in direction
−∇L(w), and we show that ‖w2‖2→ 0 as we self-train. If the loss were convex, we could just
analyze the minima and show it had the desired property that ‖w‖2= 0. Standard results in convex
analysis would then show convergence. Since the loss is non-convex, the core of the proof is to bound
certain directional gradients. In particular, we showed that 〈∇w1L(w), w1〉 < 0 , 〈∇w2L(w), w2〉 ≥
c21‖w2‖22, and ‖∇L(w)‖22≤ c22‖w‖22. Using this, we analyzed the gradient descent iterates and showed
that ‖w2‖2 decreased by a multiplicative factor at each step of self-training.

Finite sample proof overview: With finite samples, gradient descent instead moves in direction
−∇L̂(w) where L̂(w) is the empirical loss on n samples. Here w2 won’t go to exactly 0, but to a very
small value: we will show ||w2||2→ τ with high probability if we use Õ(1/τ4) samples. At a high
level, we will show a uniform concentration bound which shows that the empirical gradient ∇L̂(w)
and population gradient ∇L(w) are close for all w (Lemma C.1). In Theorem C.1, this lets us show
that 〈∇w1L̂(w), w1〉 , 〈∇w2L̂(w), w2〉, and ‖∇L̂(w)‖22 are similar to the population versions above
with L(w) instead of L̂(w). We use this to show that ‖w‖2 will keep decreasing until ‖w‖2≤ τ , and
will then stabilize and stay below ‖τ‖ forever.

Notation: To avoid defining too many constants, we use big-O notation in the following sense that is
different from the standard computer science usage but common in learning theory proofs. When
we use O(e) in an expression, we mean that expression e can be replaced by cee for some universal
constant ce that does not depend on any problem parameters (like δ, σmin, γ, etc)—it is literally just
some number like say 67/32, but explicitly putting the numbers everywhere makes expressions messy.
For sub-Gaussian, sub-exponential, we will use notation and standard results from [40], in particular
the norm of a sub-Gaussian random variable (Definition 2.5.6), equivalent properties of sub-Gaussian
random variables (Proposition 2.5.2), the relationship between sub-Gaussian and sub-exponential
random variables (Lemma 2.7.6), and Bernstein’s inequality for sub-exponential random variables
(Theorem 2.8.1).

We define the empirical expectation Ê for any function f over the n samples X1, . . . Xn:

Ê[f(X)] =
1

n

n∑
i=1

f(Xi)

C.1 Results

Our first Lemma shows that the empirical gradients ∇L̂(w) and population gradient ∇L(w) are
close for all w, if the distribution is sub-Gaussian. We will show later that Gaussian distributions and
mixtures of K log-concave distributions are indeed sub-Gaussian. Data that is normalized will also
satisfy the sub-Gaussian assumption.

Lemma C.1. Let π : Rd → Rd′ be a projection operator with d′ ≤ d, that is π is a d′-by-d matrix
where each row of π is orthnormal, and suppose the distribution X ∼ p(x) satisfies that ‖X‖2 is
sub-Gaussian with norm B (equivalently, variance parameter B2). Suppose we choose:

n = Õ
( d
ε2
R2B2 log 1/δ

)
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Where we hide terms that are logarithmic in 1
ε2 , B, R, and d in the big-O here to highlight the

prominent terms, but give the full version in the proof. Then, with probability ≥ 1− δ, for all w with
||w||2≤ R, we have:

|Ê[l′(w>X)π(w)>π(X)]− E[l′(w>X)π(w)>π(X)]| ≤ ε (C.1)

Proof. We will use a discretization argument. We first show the concentration in Equation C.1 for
fixed w using the fact that the distribution is sub-Gaussian and then applying Hoeffding’s inequality.
We will then construct an ε-cover of the R-ball (in `2 norm) and use union bound so that the
concentration holds for each member of the ε-cover. Finally, we will show that the concentration
holds for all w with ||w||2≤ R. Let h(w,X) = l′(w>X)π(w)>π(X).

Step 1: Concentration for single w: First, we have:

|h(w,X)| = |l′(w>X)π(w)>π(X)|
≤ |π(w)>π(X)|
≤ ||π(w)||2||π(X)||2
≤ ||w||2||X||2
≤ R||X||2

We want to bound Ê[h(w,X)]−E[h(w,X)]. Since ||X||2 is sub-Gaussian with norm B, h(w,X) is
sub-Gaussian with norm RB, it then follows that h(w,X)− E[h(w,X)] is a mean 0 sub-Gaussian
random variable with norm 2RB. So the average, Ê[h(w,X)] − E[h(w,X)] is mean 0 and sub-
Gaussian with norm 2RB/

√
n. By the sub-Gaussian tail bound, we then get that with probability at

least 1− δ/5:

|Ê[h(w,X)]− E[h(w,X)]| ≤ O
( 1√

n
RB
√

log(1/δ)
)

To control the RHS to be less than ε/3 with probability at least 1− δ/5, it suffices to choose:

n = O
( 1

ε2
R2B2 log(1/δ)

)
Note that this is only for a single w.

Step 2: κ-covering: We will now construct a κ-covering consisting of M vectors w. We will want
the above inequality to hold for all M vectors—to do this we will apply union bound. More precisely,
a standard covering argument tells us that we can choose M with logM ≤ d log(1 + (2R)/κ)
and M vectors w1, . . . , wM s.t. for any w with ||w||2≤ R, there exists wi with ||wi||2≤ R and
||wi − w||2≤ κ. By union bound, we have that if we choose:

n = O
( 1

ε2
R2B2(logM + log(1/δ))

)
Then for all wi the empirical concentration holds, that is with probability at least 1 − δ/5, for all
w = wi:

|Ê[h(w,X)]− E[h(w,X)]| ≤ ε/3
It now remains to choose κ so that we can show this for all w (not just w = wi).

Step 3: Handling all w by hoosing κ small: To extend the result to all w (not just w = wi), we
consider arbitrary w,w′ with ||w||2, ||w′||2≤ R and ||w − w′||2≤ κ. We want to show that the
difference in their directional derivatives is not too large. More precisely, we would like to show that
with probability ≥ 1− δ/5, for all such w,w′:

|E[h(w′, X)]− E[h(w,X)]|≤ ε/3 (C.2)

And similarly for its empirical counterpart, Ê. This then proves the main claim, because for any w
with ||w||2≤ R, we can choose some wi in the κ-cover above. We then have:

Ê[h(w,X)]− E[h(w,X)] ≤|Ê[h(w,X)]− Ê[h(wi, X)]|

+|Ê[h(wi, X)]− E[h(wi, X)]|
+|E[h(wi, X)]− E[h(w,X)]|
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And each of the terms in the RHS will be bounded above by ε/3, so the LHS will be bounded above
by ε. To show Equation C.2, we first write:

h(w′, X)− h(w,X) =(l′(w′
>
X)π(w′)>π(X)− l′(w>X)π(w′)>π(X))

+(l′(w>X)π(w′)>π(X)− l′(w>X)π(w)>π(X))

Using Cauchy-Schwarz, and using the fact that l′(r) ≤ 1 for all r and that l′ is 1-Lipschitz, we can
show for the first term in the RHS:

|l′(w′>X)π(w′)>π(X)− l′(w>X)π(w′)>π(X)|≤ κR||X||22
And for the second term in the RHS:

|l′(w>X)π(w′)>π(X)− l′(w>X)π(w)>π(X)|≤ κ||X||2
Combining the above 2 inequalities:

|h(w′, X)− h(w,X)|≤ κR||X||22+κ||X||2

We will show below that E[||X||2] = O(B), Ê[||X||2] = O(B), E[||X||22] = O(B2), Ê[||X||22] =
O(B2) (for the empirical expectations, this will hold with probability at least 1− δ/5. Assuming this
for now, this gives us that it suffices to choose κ such that:

1

κ
≥ 1

ε
[RB2 +B]

In which case, Equation C.2 and its empirical counterpart hold. In total, this means we require n to
be:

n = O
( 1

ε2
R2B2

(
d log [1 +

R2B2 +RB

ε
] + log(1/δ)

))
Or omitting log terms except in 1/δ (we keep 1/δ to make the dependence on the probability explicit):

n = Õ
( d
ε2
R2B2 log(1/δ)

)
Bounding the norm and norm-squared: Finally, we bound the expectations of the norm and norm-
squared of X , which we used above. By taking integrals, since X is sub-Gaussian with norm B, we
can show that:

E[||X||2] ≤ O(B)

E[||X||22] ≤ O(B2)

Next, we will like to bound the empirical means of these quantities. Since ||X||2 is sub-Gaussian
with norm B. This means that ||X||2−E[||X||2] is mean 0 and sub-Gaussian with norm 2B. So for
the average of n iid samples, we have that with probability ≥ 1− δ:

Ê[||X||2] ≤ E[||X||2] +O(
B√
n

√
log

1

δ
)

As long as we choose n ≥ O(log(1/δ)), we have with probability at least 1− δ/5:

Ê[||X||2] ≤ O(B)

Squares of sub-Gaussian random variables are sub-exponential, so ||X||22 is sub-exponential with
sub-exponential norm O(B2). Then, ||X||22−E[||X||22] is sub-exponential with sub-exponential norm
O(B2). Then by Bernstein’s inequality for sub-exponentials, as long as we choose n ≥ O(log(1/δ)),
we have with probability at least 1− δ/5:

Ê[||X||22] ≤ E[||X||22] +O(B2) ≤ O(B2)

The main theorem of this section shows that for a sub-Gaussian distribution, if we have bounds on
〈∇w1L(w), w1〉 , 〈∇w2L(w), w2〉, and ‖∇L(w)‖22 for the population, but do entropy minimization
on the empirical samples, we will still converge with ||w2||≤ τ . We will later instantiate these bounds
for the Gaussian setting and the more general log-concave setting.
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Theorem C.1. Suppose that for all w, 〈∇w1L(w), w1〉 < 0 , 〈∇w2L(w), w2〉 ≥ c1‖w2‖22, and
‖∇L(w)‖22≤ c22‖w‖22, for some c1, c2 > 0 where c1, c2 are not a function of w. Let τ < 0.5 be the
desired norm for the spurious feature w2, that is, we want ||w2||2≤ τ after running self-training. Let

ε = O(c1τ
2), and choose n = Õ

(
1
ε2R

2B2 log(1/δ)
)

according to the Lemma C.1 such that with

probability ≥ 1− δ, for all w with ||w||2≤ max(R, 1) the empirical gradients along both w1 and
w2 are near the true gradient:

|Ê[l′(w>X)w>1 x1]− E[l′(w>X)w>1 x1]| ≤ ε

|Ê[l′(w>X)w>2 x2]− E[l′(w>X)w>2 x2]| ≤ ε
Then if initially ||w0

2||2≤ 0.5, self-training with step size η = O( c1
c22

), will converge to ||w2||2≤ τ .
Specifically, if at step t, ||wt2||2≥ τ/2, then the norm of w2 shrinks by a multiplicative factor and
rapidly reduces to less than τ/2:

||wt+1
2 ||22<

(
1−O

(c1
c2

)2)
||wt2||22

Furthermore, once this has happened, the norm stabilizes: if ||wt2||2< τ/2, then ||wt+1
2 ||2≤ τ .

Proof. We note that 〈∇w2
L(w), w2〉 = E[l′(w>X)w>2 x2], 〈∇w2

L̂(w), w2〉 = Ê[l′(w>X)w>2 x2],
and similarly for w1. So we have for all w with ||w||2≤ max(R, 1):

|〈∇w1
L(w), w1〉 − 〈∇w1

L̂(w), w1〉| ≤ ε (C.3)

|〈∇w2
L(w), w2〉 − 〈∇w2

L̂(w), w2〉| ≤ ε (C.4)
Step 1: Bounding empirical gradients: The main optimization analysis requires us to bound 3
quantities: 〈∇w2

L̂(w), w2〉, 〈∇w1
L̂(w), w1〉, and ||∇w2

L̂(w)||22, which we first do.

Equation C.4 gives us a bound on the empirical gradient along w2:

〈∇w2L̂(w), w2〉 ≥ c1||w2||22−ε
Equation C.3 this gives us a bound on the empirical gradient along w1:

〈∇w1L̂(w), w1〉 < ε

Finally, we bound ||∇w2L̂(w)||22:

||∇w2L̂(w)||2 = ( max
||v||2≤1

〈v,∇w2
L̂(w)〉)2

≤ ( max
||v||2≤1

〈v,∇w2L(w)〉+ ε)
2

= (||∇w2L(w)||2+ε)
2

= 2||∇w2
L(w)||22+2ε2

≤ 2c22||w2||22+2ε2

Where in the first line we used the variational form of the 2-norm, second line we used Equation C.4,
in the third line we used the variational form of the 2-norm again, fourth line we used the fact that
(a+ b)2 ≤ 2a2 + 2b2, and in the fifth line we used the bound on ||∇w2

L(w)||22 in the asssumption of
the theorem.

Step 2: Show w2 decreases and stabilizes: Our updates involve taking a gradient descent step, and
then projecting back to the sphere, ‖w‖2≤ R. Define w̃t+1 = wt− η∇L(wt) to be the iterate before
projecting. Then, we have:

||w̃t+1
2 ||22 = ||wt2 − η∇w2

L̂(w)|w=wt ||22
= ||wt2||22+η2||∇w2

L̂(w)|w=wt ||22
− 2η〈∇w2L̂(w)|w=wt , w

t
2〉

≤ (1 + 2η2c22 − 2ηc1)||wt2||22+(2η2ε2 + 2ηε)
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We choose η as:
η =

c1
c22

Which gives us:

||w̃t+1
2 ||22≤

(
1− 1

2

c21
c22

)
||wt2||22+(2η2ε2 + 2ηε)

Since the norm is always non-negative, we note that c21/c
2
2 ≤ 2. To control the error terms, we choose

ε as:
ε =

1

48
c1τ

2

Then, we get,

2η2ε2 + 2ηε ≤ 1

4

c21
c22

(τ/2)2

In other words, if ||wt2||2≥ τ/2, then the norm decreases:

||w̃t+1
2 ||22≤

(
1− 1

4

c21
c22

)
||wt2||22

And if ||wt2||2< τ/2, then the norm stabilizes:

||w̃t+1
2 ||22≤ ||wt2||22+

1

2
(τ/2)2 ≤ 3

2
(τ/2)2

Step 3: Show w1 does not decrease much: We have shown that w̃2
t+1 is smaller than wt. Next, we

need to deal with the renormalization step to show that wt+1
2 is also smaller than wt2. We will show

that w̃1 cannot decrease by too much, so that after renormalization, the norm of w2 is still decreasing
sufficiently. We have:

||w̃t+1
1 ||22 = ||wt1 − η∇w1

L̂(w)|w=wt ||22
≥ ||wt1||22−2η〈∇w1

L̂(w)|w=wt , w
t
1〉

≥ ||wt1||22−2ηε

From our choise of η and ε, we can show that ηε is actually very small. In particular, with some
algebra, we can show that

2ηε <
1

24

c21
c22
≤ 1

12

In effect, the decrease in the norm of w1 is at least 10 times smaller than the decrease in the norm
of w2. Now we note that since at all times t, ||wt2||≤ 0.5, we have ||wt1||≥ ||wt2||. So w1 is larger
and decreases by a much smaller amount, which means that after renormalizing w2 still decreases
by around the same amount. Formally, with a bit of algebra, we get that if ||wt2||2≥ τ/2, then after
renormalizing,

||wt+1
2 ||22≤

(
1− 1

10

c21
c22

)
||wt2||22

And on the other hand, if ||wt2||2< τ/2 then after renormalizing, ||wt+1
2 ||22< τ2. This completes the

proof.

C.2 Applying the finite sample results

We now instantiate the above Theorem C.1 for the Guassian setting.

Proof of Theorem 3.2 finite sample guarantee. By Lemma A.3, 〈∇w2L(w), w2〉 ≥ O(σ̃min||w2||22).
By Lemma A.2, 〈∇w1L(w), w1〉 < 0 . In the proof of Theorem 3.2 we showed ‖∇L(w)‖22≤
O(σ̃2

max‖w‖22). Furthermore, ‖X‖2 is sub-Gaussian with norm O(γ + σ̃min
√
d).Applying Theo-

rem C.1, we get that if we choose

n = Õ
( 1

τ4

R2(γ + σ̃2
maxd)

σ̃2
min

log(1/δ)
)
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then after t iterations, if for all t ≥ T , where

T = O
( σ̃2

max

σ̃2
min

log
R

τ

)
We will have ‖wt2‖≤ τ . Furthermore, since w1 is 1-dimensional in this case and is non-negative
initially, from the proof of Theorem C.1, w1 after re-normalizing always increases and stays non-
negative. As such, w1 ≥

√
R2 − τ2.

Next, we instantiate the theorem for the mixture of K sliced log-concave setting:

Proof of Theorem 3.1 finite sample guarantee. In the population case proof of Theorem 3.1, we
showed that 〈∇w2L(w), w2〉 ≥ O(c1||w2||22), 〈∇w1L(w), w1〉 < 0 , and ‖∇L(w)‖22≤ O(c22‖w‖22).
Additionally, we note that a mixture of K sliced log-concave distributions is sub-Gaussian. So we get
that there exists some c, c′ that depends on the distribution, such that if we choose n ≥ c/τ4 samples
then after t iterations, for all T ≥ t, where T = O(log(R/τ)), we will have ‖wt2‖≤ τ .
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D Additional Missing Proofs

D.1 Bounds on `exp and derivatives

Proof of Lemma A.4. We can exactly compute the expression

(D.1)

qσ(µ) =
∂gσ(µ)

∂σ

=
1

2
exp

(
σ2

2

)
σ

[
exp (µ) erfc

(
σ√
2

+
µ√
2σ

)
+ exp (−µ) erfc

(
σ√
2
− µ√

2σ

)]
−
√

2

π
exp

(
− µ2

2σ2

)
As qσ(µ) and `exp are both symmetric around 0, we assume w.l.o.g. that µ ≥ 0. We first consider
σ ≤ 4

√
2√
π

. Since µ ≥ σ2, σ − µ/σ ≤ 0 so erfc((σ − µ/σ)/
√

2) ≥ 1. Thus, we have

qσ(µ) ≥ −
√

2

π
exp

(
− µ2

2σ2

)
+

1

2
σ exp

(
−µ+

σ2

2

)
Note that for µ ≥ γ?σ , we have

1

4
σ exp

(
−µ+

σ2

2

)
≥
√

2

π
exp

(
− µ2

2σ2

)
in which case we can obtain qσ(µ) ≥ 1

4σ exp
(
−µ+ σ2

2

)
by rearranging.

Now we consider σ > 4
√

2√
π

. Since µ ≥ 2σ2, we have erfc((σ − µ/σ)/
√

2) ≥ 1 and

−
√

2
π exp

(
− µ2

2σ2

)
≥ −

√
2
π `exp(µ). Therefore

qσ(µ) ≥ −
√

2

π
`exp(µ) +

1

2
σ`exp(µ) ≥ 1

4
σ`exp(µ)

Lemma D.1. For all µ, the following holds:

qσ(µ) =
∂

∂σ
gσ(µ) ≥ −

√
2

π
exp

(
− µ2

2σ2

)
(D.2)

Furthermore, for σ ≤ 1, we also have
gσ(µ) ≥ 0.25`exp(µ) (D.3)

Proof. To conclude (D.2), we simply use the fact that erfc is always positive, so only the last term
in (D.1) can be negative.

To conclude the second statement, assume without loss of generality that µ > 0. We first note that
with probability at least 0.68, 1 ≥ Z ≥ −1, and additionally, `exp(µ+ σZ) ≥ exp(−σ)`exp(µ) for
1 ≥ Z ≥ −1. When σ ≤ 1, we thus have gσ ≥ 0.25`exp(µ).

Lemma D.2. For all µ and σ ≤ 1/2, the following holds:
gσ(µ) ≤ 2`exp(µ)

Proof. Without loss of generality, assume that µ > 0. We note that we can upper bound `exp(µ) by
the loss function exp(−µ). It follows that

gσ(µ) ≤ 1√
2π

∫ ∞
−∞

exp

(
−µ− σZ − Z2

2

)
dZ (D.4)

= exp(−µ) exp(σ2)
√

2

As `exp is symmetric around 0, we could also apply the same argument to µ < 0 using exp(µ) as the
loss upper bound. This gives the desired result.
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D.2 Log-concave and smooth densities

Claim D.1. Let p : R→ R be any density such that log p is differentiable, ν-strongly concave, and
ρ-smooth. Define s(µ) , ∂

∂µ log p. Then for all µ ∈ R, the following hold:

p(µ+ δ) ≥ p(µ) exp
(
s(µ)δ − ρ

2
δ2
)

p(µ+ δ) ≤ p(µ) exp
(
s(µ)δ − ν

2
δ2
)

Proof. By strong concavity and smoothness, we have

log p(µ+ δ) ≥ log p(µ) +
∂

∂µ
log p(µ)δ − ρ

2
δ2

log p(µ+ δ) ≤ log p(µ) +
∂

∂µ
log p(µ)δ − ν

2
δ2

Exponentiating both sides and using the definition of s gives the desired result.

Lemma D.3. In the setting of Claim D.1, we have the following upper and lower bounds for s in
terms of p:

s2(µ) ≥ ν log

( √
ν

2p(µ)
√
π

)
s2(µ) ≤ ρ log

( √
ρ

2p(µ)
√
π

)
In other words, by rearranging,

p(µ) ≥
√
ν

2
√
π

exp(−s(µ)2/ν)

p(µ) ≤
√
ρ

2
√
π

exp(−s(µ)2/ρ)

Proof. First, from Claim D.1, we have

1 =

∫ ∞
−∞

p(µ+ δ)dδ ≤
∫ ∞
−∞

p(µ) exp
(
s(µ)δ − ν

2
δ2
)

=
2
√
πp(µ) exp(s(µ)2/ν)√

ν

Solving, we obtain

s2(µ) ≥ ν log

( √
ν

2p(µ)
√
π

)
Likewise, we can use the same reasoning to obtain

s2(µ) ≤ ρ log

( √
ρ

2p(µ)
√
π

)

Claim D.2. For any a ∈ R, b > 0, we have∫ ∞
−∞

exp(ax− bx2) =

√
2π exp(a2/2b)√

b
(D.5)

∫ ∞
0

exp(ax− bx2) =

√
π exp(a2/2b)

(
erf
(

a√
2b

)
+ 1
)

√
2b

(D.6)

Furthermore, when a ≥ 0, we additionally have∫ ∞
0

exp(ax− bx2) ∈

[√
π exp(a2/2b)√

2b
,

√
2π exp(a2/2b)√

b

]
(D.7)
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Proof. Equations (D.5) and (D.6) follow from direct computation. Equation (D.7) follows because
for a ≥ 0, 1 ≥ erf(a/

√
2b) ≥ 0.

Claim D.3. For a < 0,

1 + erf(a) >
2√
π

exp(−a2)

−a+
√
a2 + 2

≥ 1
√
π(
√

2− 2a)
exp(−a2)

Proof. We have 1 + erf(a) = 1− erf(−a) = 1− (1− erfc(−a)) = erfc(−a). Now as −a > 0, we
can apply the lower bound on erfc(−a) in [41] to obtain the desired result.

D.3 Equivalence between pseudo-labeling variant and entropy minimization

Proposition D.1. The pseudo-labeling algorithm above converges to the same solution as the entropy
minimization algorithm in (2.3).

Proof of Proposition D.1. We compute

∇wLt+1
pseudo(w)|w=wt = ∇w E

x∼Dtg
`exp(w

>x, sgn (wt
>
x))|w=wt

= − E
x∼Dtg

exp (−w>x · sgn (wt
>
x)) · sgn (wt

>
x)x|w=wt

= − E
x∼Dtg

exp (−w>x · sgn (w>x)) · sgn (w>x)x|w=wt

= ∇wL(w)|w=wt

Therefore for all t ≥ 0, pseudo-labeling algorithm has the same iterate as entropy minimization (2.3).
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E Additional experiments and details

E.1 Colored MNIST

Among 70K MNIST images, we split the source training / source test / target training / target test into
2:1:3:1. The model architecture is 3-layer feed-forward network with hidden layer sizes 128 and 64.
For training on source, we use SGD optimizer with learning rate 0.03, momentum 0.9, weight decay
0.002, and always train until convergence.

Additional construction and training details for 10-way MNIST. For each source image, with

probability p, we assign it a weight wunif∼ [0.1k, 0.1k + 0.1) when image is digit k; with probability

1− p, we assign wunif∼ [0, 1). Each target image is assigned wunif∼ [0, 1). We create two color channels
by scaling the gray-scale image with weights w and 1− w.

In entropy minimization phase, we perform full gradient descent on target training set, with learning
rate 0.03, momentum 0.9, weight decay 0.002, and train for 300 epochs when p = 0.95 and 50 epochs
when p = 0.97.

Detailed construction of binary colored MNIST. In this setup, we assign digits 0-4 label 0 and 5-9
label 1. For each gray-scale image, we first draw a Gaussian random variable w̃ ∼ N (0, (0.5/3)2). In
source domain, with probability p = 0.8, example with label k is assigned withw = 0.5+(2k−1)|w̃|;
with probability 0.2, w = 0.5 + w̃. In the target domain, we always have w = 0.5 + w̃. We create
two color channels by rescaling the original image with weights w and 1− w.

For training, we keep all other hyper-parameters the same as the 10-way setting and only reduce the
learning rate to 0.003.

Distribution of predictions conditioned on gray-scale image. We examine the effect of en-
tropy minimization on each test example in binary MNIST experiment. For each gray-scale
test image x1, we draw 1000 x2, i.e., w̃ ∼ N(0, (0.5/3)2), and plot the distribution of logits
f(x1, x2)y−f(x1, x2)1−y where y is the true label of x1. According to our theory, if the distribution
is concentrated around the positive side, entropy minimization would push the distribution to be more
concentrated and positive.

Examples classified wrongly by source classifier 5 (because they were on the negative tail of the
distribution) can be corrected due to this effect. Figure 3 is an example image where source classifier
was wrong before training on target but corrected due to the explanation we provide. Conversely,
examples classified right by source classifier (because they happen to be on the positive tail of the
distribution) can turn wrong due to entropy minimization (see Figure 4). The success of entropy
minimization relies on more examples concentrated on the positive than the negative side, i.e., source
classifier has non-trivial target accuracy.

Distribution of mean activation. Figure 5 shows the distribution of f(x1, x̄2) before and after
self-training for the binary MNIST experiment, where x̄2 indicates neutral color (w = 0.5). We see
that qualitatively, the empirical distribution of µ has increasing mass far away from 0 throughout
self-training, even for a multi-layer network. This is necessary for our theory, as seen in Figure 2.

Importance of non-trivial source classifier accuracy. We provide additional details on our study
of 10-way colored MNIST when the spurious correlation probability is p = 0.97. In this setting, the
source classifier has 98% test accuracy on source but only 72% on target. Entropy minimization
initialized at f̃ causes target accuracy to drop to 67% (see Figure 6 right).

E.2 CelebA dataset

We partition the celebA dataset [21] so that the source domain has a perfect correlation between
gender and hair color: 1250 blond males, 1749 non-blond females. The target domain has 57K
unlabeled examples with the same correlation between gender and hair color as in the original dataset
(Figure 7).

5A particular x̂2 is drawn for each x1 in the target test set. If f(x1, x̂2)y − f(x1, x̂2)1−y < 0, f makes a
wrong prediction.
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Figure 3: Distribution of f(x1, x2)y − f(x1, x2)1−y before (left) and after (right) self-training for a test image
whose prediction turned from wrong to correct. Green line shows f(x1, x̂2) turning positive for the particular
x̂2 in test set.

Figure 4: Distribution of f(x1, x2)y − f(x1, x2)1−y before (left) and after (right) self-training for a test image
whose prediction turned from right to wrong. Green line shows f(x1, x̂2) turning negative for the particular x̂2
in test set.

Figure 5: Distribution of f(x1, x̄2) before (left) and after (right) self-training across all test images x1 for
neutral color x̄2. Qualitatively the empirical distribution of µ has more mass far away from 0 after self-training
(which is the desired case for our theory, as seen in Figure 2).
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Figure 6: In the 10-way MNIST experiment, entropy minimization raises target test accuracy by 9% when
we initialize with a good source classifier (left) and decreases target accuracy when we initialize with a bad
source classifier (right). Left: Spurious correlation in source is p = 0.95 so source classifier obtains high target
accuracy; Right: Spurious correlation in source is p = 0.97 so source classifier does not learn the right features.

(a) Synthetic source data: blondness
perfectly correlates with the male
gender.

(b) Synthetic target data: each gen-
der has a variety of hair colors.

(c) Predictions corrected by self-
training were mostly mistaken due
to the spurious correlation.

Figure 7: In the synthetic CelebA experiment, the source has perfect correlation between hair color and gender,
and the target does not. A classifier trained only on the source domain uses the spurious correlation. However,
continuing to self-train on the unlabeled target domain reduces reliance on the spurious feature.

We use entropy minimization on this dataset with the Conv-Small model in [24]. The source classifier
has 94% accuracy on source data and 81% on target. After training on the sum of the source labeled
loss and target entropy loss, the target accuracy increases to 88%.

E.3 Connection between entropy minimization and stochastic pseudo-labeling

In Equation ?? we point out that entropy minimization is equivalent to a stochastic version of pseudo-
labeling where we update the pseudo-labels after every SGD step. In practice, pseudo-labels are
often updated for only a few rounds, and the student model is usually trained to convergence between
rounds [42]. In the 10-way MNIST experiment, we perform 3, 6, 30 rounds of pseudo-labeling
with 100, 50, and 10 epochs of training per round, interpolating between more common versions of
pseudo-labeling and entropy minimization. Figure 8 shows that entropy minimization converges to
better target accuracy within the same clock-time, suggesting that practitioners may benefit from
pseudo-labeling with more rounds and fewer epochs per round.

E.4 Toy Gaussian mixture setting

Generating data. We generate source examples in the following fashion: For each example
(x1, x2) ∈ R4, we first sample y uniformly from {−1, 1}, and then x1 ∈ R2 ∼ N (γy, I), where
γ is a random 2-dimensional vector. For the source examples, we then sample x̃2 ∼ N(~0, I). For
each coordinate i of x2 (i ∈ {1, 2}), with probability 0.8, we set (x2)i = y|(x̃2)i| (correlated); with
probability 0.2, we set (x2)i = (x̃2)i (uncorrelated). For target examples, we sample x2 ∼ N(~0, I).

The source training dataset, source test set, and target test set all have 10K examples.

Algorithms. We use entropy minimization as well as the following version of pseudo-labeling:
starting with the source classifier, we perform 200 rounds of pseudo-labeling with 50 epochs of
training in each round. We also set up a threshold τ = 0.1 where we throw out least-confident target
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Figure 8: In the 10-way MNIST experiment, 3 rounds of pseudo-labeling with 100 epochs per round (left), 6
rounds of pseudo-labeling with 50 epochs per round (middle), and 30 rounds of pseudo-labeling with 10 epochs
per round (right) increase in target accuracy.

example x with |w>x|< τ in each round to mimic most popular pseudo-labeling algorithms used in
practice [42]. We experiment on this version of pseudo-labeling algorithm because the version in
equation ?? is equivalent to entropy minimization.

For entropy minimization, we use a new batch of 10K target training examples in each epoch. We use
SGD optimizer with learning rate 1e-3 and normalize the linear model after each gradient step.

For pseudo-labeling, we use a new batch of 10K target examples in each round. Optimizer choices
are the same as entropy minimization.

Figure 9: Entropy minimization (left) and pseudo-labeling (right) increase target test accuracy from 95.9% to
97.5%, and reduce coefficients on two spurious coordinates from 0.33 to 0 in the Gaussian mixture experiment.

Improvement of target test accuracy and de-emphasis of spurious features. In the Gaussian
mixture experiment, the source classifier gets an accuracy of 95.9% on the target domain. Both
entropy minimization and pseudo-labeling algorithms raise the target accuracy to Bayes-optimal
while driving the coefficients w2 on spurious features x2 to 0 (Figure 9). Notably, even though we
use confidence thresholding and train for 50 epochs in each round, the model behavior still closely
tracks that of entropy minimization, as predicted by our theory.

E.5 Justification of approximation l(t) = exp(−|t|)

Self-training on target using `(t) = exp(−|t|) as an approximation for `ent(t) produces the same
effect for binary MNIST (see figure 11). We plot the training loss l(t) = exp(−|t|) and lent(t)
(Figure 12) to show that they track each other really well.
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Figure 10: Plot of exp(−|t|) and entropy loss. The losses are within a constant factor of each other and exhibit
the same tail behavior.

Figure 11: Target accuracy using l(t) = exp(−|t|) on binary MNIST dataset.

Figure 12: Left: Training loss using l(t) = exp(−|t|); Right: Entropy loss when training using l(t) =
exp(−|t|).
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