
A Appendix

A.1 Contents of Supplementary Materials

In addition to what is included in this Appendix, the supplementary material repository https://
github.com/ihsuy/Train-by-Reconnect also includes the code and pre-trained weights.
Detailed example usage of the code, e.g., training and validation script for reproducing the main
results of the paper, are also included. A table of contents and the explanation for usage are included
in README.md in the Supplementary Materials.

A.2 Supplementary Materials for Section 2: Similarity of Weight Profiles

...
......

Sort

(a) (b) (c) (d)

Figure 11: How to plot weight profiles. (a) Given weight vectors, (b) sort each weight vector in
ascending order, (c) create a scatter plot for each weight vector, and (d) hide the z-axis. For definitions
of terms, please refer to Section 2.

Complementary to Section 2, we present the weight profiles of pre-trained convolutional neural
networks on ImageNet [7], including VGG16 [43], VGG19 [43], ResNet50 [15], ResNet101 [15],
ResNet152 [15], ResNet152-V2 [16], DenseNet121 [18], DenseNet169 [18], DenseNet201 [18],
Xception [5], NASNet-Mobile [54], and NASNet-Large [54]. The pre-trained weights of the afore-
mentioned neural networks are downloaded directly from keras.applciations [4]. Since
compiling all of the weight profile images into one file may harm the reading experience, we only
show the weight profile of DenseNet121 here and store the rest of the images in a folder called
weight_profiles, which is included in the Supplementary Materials.

Figure 12: DenseNet121. The image can be zoomed in for details.

14

https://github.com/ihsuy/Train-by-Reconnect
https://github.com/ihsuy/Train-by-Reconnect

A.3 Supplementary Materials for Section 3: Is Permutation the Essence of Learning?

30

20

10

0

Adam+Dropout Adam+L2 Weight decaySGD
(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Epochs

Figure 13: Monitoring weight distributions, changes in the ranking distance (permutations), and
validation loss in the first weight matrix of the network. Each column title indicates the experimental
setting. Under each title from the top to bottom shows the evolution of: (Row 1) the weight distribu-
tions, shown as {15, 50, 85}th percentiles. Each percentile is displayed as 100 lines representing all
100 weight vectors. The 50th percentile is highlighted using red color. The maximum and minimum
weights are shown as single lines above and under the percentiles, respectively. (Row 2) ratio of the
mean and standard deviation of the ranking distance to the size of the weight vector, i.e., Dt/784 and
SD[Dt]/784. (Row 3) the trend of validation loss on 10,000 test images.

Experimental Setting We train a fully-connected DNN with two hidden layers (100 ReLU units
each) and an output layer with 10 softmax units using the cross-entropy loss on MNIST [26]. The
network is initialized with uniform random weights, as introduced in [14], and is trained using 60,000
training examples for 30 epochs with 50 examples per mini-batch. The network is validated on
10,000 test examples. The learning rates in all experiments are divided by 2 and 5 at the 10th and
20th epochs. In isolation, we train using the same architecture and initialization under four different
settings: 1) SGD (initial learning rate: 1e-1) with no regularization; 2) Adam (initial learning rate:
1e-3) with no regularization; 3) Adam (initial learning rate: 1e-3) with 0.4 and 0.3 dropout [45] on
the outputs of the first and second hidden layers; and 4) Adam (initial learning rate: 1e-3) with 2e-4
L2 regularization [24] on the weights associated with the first and second hidden layers.

Analysis We first study the evolutions of weight distributions in Figure 13 (a)~(d) and (i)~(l). The
most noticeable distinction is spotted between (b) and (d), where in (b) the distribution expands
but in (d), due to regularization, it collapses. On the other hand, (a) in comparison to (b) shows
much less expansion. This is likely because the gradient updates of SGD tend to be scaled uniformly
toward every dimension. A simplified example could be as follows. If we uniform-randomly update a
uniformly distributed initial weight matrix for n iterations, the resulting weight matrix would possess
the properties of an Irwin–Hall distribution in which the standard deviation grows asymptotically to√
n. Assuming that the updates in the actual training are sparse and their values are small, 30 epochs

(with learning rate decay) would have a comparatively insignificant effect on the weight distribution.
However, what we could learn from (a)~(d) is limited, e.g., despite demonstrating drastically different
behaviors in validation losses in (j) and (k), (b) and (c) show subtle differences.

Next, we study the statistics of ranking distances in Figure 3(e)~(h). We observe that the mean
distance, which is positively correlated with the total number of changes in ranking, might signify
the intensity of learning. For example, overall, (h) maintains a larger but more fluctuating mean
distance in comparison to (d), where the corresponding loss curve in (l) appears to be steeper and
more unstable in comparison to (k). By contrast, when the network enters the phase where only
a few permutations occur, we observe a flatter loss curve and milder fluctuations, signifying that
the learning is nearly saturated, e.g., in (i) and (k) after the 20th epoch. Moreover, we notice that
during such a saturated phase, any sharp jump in the mean distance could be a sign of overfitting.
We consider the possibility that the network has encountered training examples that, according to
its current knowledge, are outliers, despite that these examples were presented to the network many
times in past epochs. Such sudden jumps could suggest that the network begins to fit the rest of the

15

examples too well. As a result, more permutations are triggered to cope with such outliers, which
results in further overfitting. Parts (f) and (j) epitomize such a situation as follows. At around the
24th and 30th epochs, the sharp rise in the mean of the ranking distance predicts the deterioration in
validation loss, without any knowledge about the validation data.

Moreover, the behaviors of permutations show unique traits under different settings. For setting (1),
the trends seem highly random, especially at learning rate = 0.1. This is expected, because SGD uses
the update rule θ ← θ − α · ∇θL(θ, d) for learning rate α, weights θ, and loss function L; thus, the
updates occurring at each step are largely dependent on the randomly sampled batch d. In contrast,
(f)~(h), i.e., the permutations caused by Adam with or without regularization, appear to be much
less random. This might have to do with its update rule: θ ← θ − α ·m/

√
v, where m and v are

dependent on all previous gradients since the beginning of training; thus, given properly chosen
hyperparameters, its behavior is not dominated by the randomness in training. Moreover, comparing
(f) with (g), we see that dropout enables Adam to create, on average, larger and more stable-sized
updates. Since dropout is equivalent to training different randomly sampled sub-networks, neurons
are constantly placed in an environment where frequent self-correction is necessary. Finally, when
L2 regularization is applied, the changes in ranking tend to be great in both number and size. This
can be observed from (d) where the weight distribution collapses due to the L2 weight penalties, i.e.,
the weights, on average, become closer to each other. The closer two weights are from each other, the
easier their rankings can be swapped and the larger the ranking distance the swap would cause by an
update.

In conclusion, stochastic gradient-based optimizers not only permute the weights, we also observe
frequent changes in the statistics of weights. Nevertheless, within these noisy fluctuations, we can
distill substantial progress of learning by only looking at the relative ranking of the weights.

A.4 Supplementary Materials for Section 4: Lookahead Permutation (LaPerm)

Figure 14: Permutations between the first
two LaPerm (use Adam as inner optimizer,
k = 20) iterations on a weight vector of
size 128 in a convolutional neural network
trained on the CIFAR-10 dataset. Vertices
(black dots) representing the 128 weight val-
ues are aligned counterclockwise in a circle
in ascending order. Each disjoint permutation
cycle is marked using the same color.

If necessary, we could accurately extract the permu-
tations performed by LaPerm by directly comparing
the rankings of weights between two consecutive syn-
chronizations and deduce the permutations using a
cycle-finding algorithm. Since permutation graphs
are perfect, we could adopt simple algorithms, such
as depth-first search (DFS), to efficiently find the per-
mutations. A visualization of such permutations is
shown in Figure 14.

A TensorFlow [1] implementation of LaPerm is
included in the supplementary material. Please refer
to A.1 for more details.

The costs of lookahead. Except when k is extremely
small, LaPerm, on average, has few extra computa-
tional overheads in addition to the cost of its inner op-
timizer. For example, running the scripts provided in
the supplementary material on a Google Colab GPU
runtime, synchronizing Conv13 (14.9M parameters)
once takes around 200ms. For Conv13 in Figure 6,
we needed to synchronize totally 125 times which
only added 25s to the overall training time. Moreover,
a larger k is observed to work well (e.g. Figure 6)
and thus should often be used.

A.5 Supplementary Materials for Section 5: Experiments: A Train-by-Reconnect Approach

We describe extra experiment details that are not mentioned in Section 5. The complete visual-based
architecture descriptions for all the neural networks used in this paper are included in the folder called
networks. The train and evaluation scripts are also included in the supplementary material; please
refer to A.1 for more details. Note that the accuracies for LaPerm for all experiments are calculated
right after synchronization.

16

A.5.0 Improve the Experiment Results The focus of our paper was not on pursuing state-of-the-art
accuracy, but to gain an understanding of the effectiveness of a well-learned D1, its relationship to
D2, and its possible implication on optimization and pruning. Therefore, we chose straightforward
experimental settings for clear demonstrations. However, the experimental results described in
Section 5 can be further improved if we refine the hyperparameters. We demonstrate this using the
following examples.

Figure 15: Randomly prune Conv4 and re-
connect it using LaPerm with k=1000 and
2000. The percentage of weights remaining
is indicated by “% of Weights”.

For the last experiment in Section 5.4, we chose
k ≤1000 from a sparse grid and obtained the results
shown in Figure 9. However, better values of k exist,
e.g., when k=2000 (using the same hyperparameter
settings), as demonstrated in Figure 15, we are able
to achieve a better result compared with what was
mentioned in Section 5.4. We expect that a fine-tuned
k or a schedule designed for k can further improve
the performance of LaPerm.

In Section 5.5, we used the same pruning rate for
all three weight matrices of F2 (hyperparameter de-
tails in Appendix A.6.4). However, since there are
100352, 8192, and 640 parameters in the weight ma-
trices, respectively, a simple method for improving
the pruning without introducing additional complex-
ity would be to prune while considering the number
of parameters, e.g., heavily parameterized matrices
should be pruned more. We reconduct the experiment
and randomly prune the three weight matrices of F2

at rates of 93%, 86%, and 67%, respectively (7%, 14%, and 33% of weights remain nonzero). We
achieved a test accuracy of 78.14%, which is much higher than the result mentioned in 5.5, i.e., ~53%.
Note that the results of all other pruning experiments, e.g., in Section 5.4, can be potentially improved
by taking into account the size of weight vectors while setting the pruning rate, as opposed to using
the same pruning rate for all layers.

A.5.1 General Information about the Datasets In this paper, we considered classifying images
using the MNIST [26] and CIFAR-10 [23] datasets. The MNIST dataset consists of 70,000 black-
and-white images of size 28 × 28 with 10 different categories. The CIFAR-10 dataset consists of
60,000 colored images of size 32× 32, with 10 different categories.

A.5.2 Experiment Details for Section 5.1 Varying the Initial Weights For MNIST, we normalize
both training and test data and use real-time random data augmentation with a rotation of up to 10
degrees, width and height shifts of up to 10% of the original image size for the training data, and
random zoom at a range of 10%. The learning rate for Adam (both as an individual optimizer and
inner optimizer) starts with 1e-3 and is multiplied by 0.95 at the end of each epoch. For LA, we
use the TensorFlow [1] default settings, i.e., sync period 6 and slow step size 0.5. The networks are
trained on 60,000 sample images and validated on 10,000 test images. For Conv7, no regularization
except for dropout [45] is used.

A.5.3 Experiment Details for Section 5.2 Understanding the Sync Period k For CIFAR-10, we
z-score normalize (subtract by mean and divide by standard deviation) all images, and use real-time
random data augmentation with rotation up to 15 degrees and width and height shifts of up to 10%
of the original image size and random horizontal flip. The networks are trained on 50,000 training
images and validated on 10,000 test images. For all experiments on Conv2, Conv4, and Conv13 in
this section, we use a L2 regularization of rate 1e-4, dropout[45], and BN [19]. The BN [19] layers
are updated regularly using the inner optimizer of LaPerm. Adam (both as an individual optimizer
and inner optimizer) uses an initial learning rate of 1e-3, and is multiplied by 0.6 at every 10th epoch.

In addition, LaPerm appears to need repeated synchronizations to find the optimal reordering. We
conducted experiments on Conv4 under the same setting as in Section 5.2, but choose to synchronize
only once at the end of the training (k = 90000), we obtained on average 13.8% (both validation and
training) accuracies.

17

A.5.4 Experiment Details for Section 5.4 Reconnecting Sparsely Connected Neural Networks
We apply the same data preprocessing, data augmentation, and train-validation split as in the previous
section. For Conv2, Conv4, and Conv13, we use the same regularizations and training hyperparam-
eters as in the previous section. For ResNet50, the learning rates of Adam (both as an individual
optimizer and inner optimizer) begin at 1e-3 and are divided by 10 at the 80, 120, 160th epoch, and
by 2 at the 180th epoch.

Since the input layer usually has significantly fewer weights in each weight vector, to avoid creating
bottlenecks, the input layer is always pruned only up to 20% (at most 20% of weights are set to zero),
whereas the remaining layers share the same rate of pruning as described previously. The BN layers
and biases (Conv7) are not pruned.

A.5.5 Experiment Details for Section 5.5 Weight Agnostic Neural Networks For the experiments
in the section, we perform the same data normalization as mentioned in A.4.1, but do not use data
augmentation. For both experiments, we use an initial learning rate of 1e-3 and multiply it by 0.95 at
each epoch. For F1, we do not use regularization. For F2, we use L2 regularization of rate 1e-4 on
the hidden layers. The weight matrix of F1 is randomly pruned by 40% (40% of weights are set to
zeros). The weight matrices of F2 are randomly pruned by 90%.

A.5.6 Usage of Batch Normalization As mentioned in A.5.3, we used BN [19] in Conv2, Conv4,
and Conv13. In Section 5.4, we follow the original design of ResNet [16] and thus also adopt BN.
The BN layers in the aforementioned experiments are updated regularly using the inner optimizer
of LaPerm, i.e., they are not permuted and set to random values. Our intent is to use BN as an
optimization tool.

However, the usage of BN may create concern in regard to where the information is actually located,
i.e., one could completely attribute LaPerm’s effectiveness to BN’s learned scaling (γ) and shifting
(β) terms. On the other hand, removing BN from all the aforementioned architectures may render the
networks difficult to train, and we cannot obtain results comparable to those of related works under
similar settings.

Figure 16: γβ reset experiments.

To resolve this dilemma, we pro-
pose the following “γβ reset” training
scheme to isolate the contribution of
γ and β from LaPerm-trained DNNs.
Since ResNet50 uses the highest num-
ber of BN layers among the chosen
architectures, we use it as an example
to demonstrate our point. We use BN
as usual in ResNet50 and update γ and β using the inner optimizer of LaPerm. However, at each
synchronization, we reset γ and β to 1 and 0. We compare its performance with LaPerm (never reset
γ and β) using both k = 800 (other experimental settings are the same as in Section 5.4). We repeat
the experiment three times and show the results in Figure 16. We observe only roughly a 1% decrease
in the final accuracies when γ and β do not hold information. Note that the difference demonstrated
in Figure 16 is similar to that between training ResNet50 using a regular optimizer with and without
BN [51]. The proposed experiment demonstrates the effectiveness of LaPerm as the main horsepower
for training.

18

