Why C3DM is more than CMR/CSM without a mesh. Our C3DM representation is not a mere drop-in replacement for the meshes in CMR/CSM. C3DM has major advantages: beyond removing the complexity of differentiable rendering and re-projecting to a mesh, a key one is that C3DM losses leverage appearance cues (RGB values) to learn the 3D geometry, while CMR/CSM do not. This may look surprising given that CMR does extract a texture model from the RGB values, but only silhouette and keypoint supervision affect the geometry (see top of page 9 in [29]). Attempting to jointly learn generative models for 3D shape and texture is a recipe for failure because such combination has too many DoFs. Because C3DM generalizes unsupervised monocular depth estimation, we can instead borrow re-projection losses (e.g. min-k) and use correspondences to constrain the geometry regardless of the texture model’s quality. Note that without those appearance cues (in addition to keypoints), CMR fails to reconstruct faces, which C3DM masters.

Reviewer 1. Texture transfer not evaluated. Evaluate on keypoint transfer. Our main contribution is improving 3D reconstruction of object categories via a new canonical representation of shape. We use texture transfer as means to demonstrate the consistency of this canonical map across instances. As suggested, we will also report keypoint transfer; on CUB, we improve PCK@0.1 drastically: 0.85 vs. 0.48 (CSM) and 0.47 (CMR). Note though that we use keypoint annotations during training, so the canonical map quality is expected to be better at keypoint locations than between them. Cite Kulkarni et al. OK. Train and test with automatically detected keypoints. We do use automatically detected masks/keypoints for training/testing in all cases where possible: Freiburg Cars and FlorenceFace (Appendix E). For P3D and CUB birds, there is no other dataset to train the keypoint detector, so we use GT annotations for training. Try sinusoidal embedding for B, C. Thank you; we are planning to experiment with spherical harmonics in the future.

Report F-score. We will add the plots to the final version. Results on FreiCars are in the figure to the right. Consistent with Chamfer distance, C3DM outperforms CMR on all thresholds.

Reviewer 2. How does [your] method improve over meshes? Our representation is not a mere drop-in replacement for CMR’s meshes. Specifically, C3DM innovatively bypasses the complexities of CMR/CSM. It provides a better performing alternative to the widespread mesh rendering paradigm. Said that, we can indeed convert our representation to a mesh by warping an icosphere vertices with eq. (1). When done after training, on FreiCars, it increases d_{RMSE} from 0.13 to 0.18 due to finite mesh resolution. If used as a representation during training, swapping L_{repro} and L_{min-k} with CSM’s cycle consistency loss through the mesh further increases d_{RMSE} to 0.31, even worse than C3DM without L_{repro}! We conclude that enforcing cycle consistency through mesh is not adequate for our setting. CMR fails on faces. How was it initialized? For fairness, we did not apply any dataset-specific initialization to any of the benchmarked methods. CMR fails on faces because it relies on silhouette loss, which is insufficient for learning detailed facial geometry. Evaluate mask IOU and PCK metric? Please refer to the answer to R1 for PCK on CUB. Note that the IOU/PCK metrics are 2D and do not evaluate 3D reconstruction, e.g. flat 3D shapes with matching deformation/viewpoint can satisfy them. CMR has to use IOU/PCK because CUB lacks 3D annotations. Our evaluation on the datasets with 3D ground truth (Freiburg Cars, Florence Face) is thus an improvement over CMR’s evaluation on CUB. Similar to Atlasnet-sphere. Will cite; indeed, C3DM canonical map is similar to Atlasnet-sphere, but, crucially, the rest of the pipeline, including handling 3D deformations, focus on real image data and weak supervision, are significantly different. The explicit basis is not clearly motivated. We believe that our continuous extension of the sparse NRSfM basis is novel and appropriately motivates the explicit basis. Other works, including CMR, only re-use the camera parameters from [NR]SfM, while we also exploit the deformation basis. Adhoc losses: min-k, $L_{emb-align}$ not used in CMR. As empirically proven in Tab. 1, those losses are crucial for achieving Sota. We disagree that they are ad-hoc: as noted above, our representation is very different from CMR’s meshes, motivating the different losses: The min-k loss densifies the supervisory signal in landmark-less areas, while $L_{emb-align}$ fixes the coordinate distribution on the sphere.

Reviewer 3. Novelty: building on CMR. We solve a similar problem, but everything else is rather different from CMR, including representation and loss functions. Why is the model non-rigid [but] ... rigid objects? See lines 22–23: Since we model a class of objects, even if its instances are rigid, we still need to account for the deformations between instances (e.g. birds deform to starling or seagull). Prior work [29,43,12,34,41,62] also tests the algorithms by modelling deformations between different instances. Combination of too many losses. Not a major concern if authors apply to non-rigid objects. CMR uses 8 loss terms in total, more than C3DM. We outperform CMR on all datasets they use, and additionally on Freiburg Cars and FlorenceFace (all of them have non-rigid deformations). We also demonstrate that all loss terms are crucial for good reconstruction in Tab. 1. Handling view-dependent effects with perceptual loss is unsatisfying. Use viewpoint explicitly? In fact, C3DM explicitly models viewpoint-dependent effects in the top-k loss by comparing the reference image with a warp of the K target images produced with predicted viewpoints. The top-k selection is instead needed to mitigate effects of self-occlusion (l. 182). Limitation: relies on successful NRSfM initialization. NRSfM is used as initialization in most related methods [12,29,62]; CMR [12], in particular, uses old rigid SfM. We don’t see it as a limitation given that NRSfM from keypoints is a much easier problem: when it fails, dense reconstruction is probably impossible. Furthermore, NRSfM supervision is injected in a soft manner in (1), so can be corrected. Why is depth prediction of a CNN considered non-parametric? We define non-parametric depth estimation in l. 36 and on. This is in contrast to CMR and others predicting the whole shape.