
A Experimental design and notation

Here we provide additional details helpful for reproducing our experiments, which are available at
https://github.com/bbartoldson/GeneralizationStabilityTradeoff/.

A.1 Training environment

All models were trained with an Ubuntu or Red Hat OS; PyTorch version = 1.4 [61]; a single GTX
1080, GTX 1080 Ti, or TITAN X GPU; and CUDA version 10 or 10.1. We used Nvidia drivers
435.21, 440.33.01, 450.51.06. For a currently unknown reason, after a computer had its driver updated
to the beta driver 455.23.05, correlations in some of our results weakened.

A.2 Data

Our experiments in the main text used the CIFAR-10 [62] dataset from the PyTorch torchvision
package, with the default training and testing splits. In Appendix F, we used CIFAR-100 data and
data augmentation to mimic the data used in [10].

A.3 Optimization and learning rate schedule notation

Except in Figures 4 and C.3, we trained models using Adam [43] with initial learning rate 0.001. We
found Adam more helpful than SGD for recovering accuracy after pruning (perhaps related to the
observation that recovery from pruning is more difficult when learning rates are low [44]). In Figures
4 and C.3, we used SGD with the learning rate settings and schedule used in [42].

Learning rate schedule notation In the following experimental details, we specify usage of a
multi-step learning rate schedule with lrs = (x, y), which means we shrink the learning rate by a
factor of 10 at epochs x and y.

A.4 Pruning approach and notation

The hyperparameter settings of our pruning approaches are given using a notation that we describe
here. The specific hyperparameter settings used in an experiment are found in the experiment’s
corresponding appendix section, but several pruning hyperparameter/approach settings are applicable
to all of our experiments, and we describe them and how we implement pruning below.

Pruning hyperparameter notation We denote the pruning of n layers of a network by specifying
a series of epochs at which pruning starts s = (s1, ..., sn), a series of epochs at which pruning
ends e = (e1, ..., en), a series of fractions of parameters to remove p = (p1, ..., pn), and an inter-
pruning-iteration retrain period r ∈ N. For a given layer l, the retrain period r and fraction pl jointly
determine the iterative pruning percentage il. Our experiments prune the same number of parameters
il × size(layerl) per pruning iteration, ultimately removing pl × 100% of the parameters by the end
of epoch el.

When layerwise iterative pruning percentages differ (i.e., when there exists an a and b such that ia
and ib are unequal), our plots state the largest iterative pruning rate that was used in any of the layers.

General pruning approach We use structured magnitude pruning techniques, i.e., we remove
entire filters [18]. To score filters for VGG11, we use the `2-norm of the filter weights, which was
found to perform similarly to `1-norm scoring in [18]. Except in Figures 4 and B.2, we score filters in
ResNet18 via the average `1-norm of their corresponding feature map activations4 [18, 48] before the
non-linear activation but after batch-normalization, which enables us to account for incoming shortcut
connections (that are added after batch-normalization) when judging output-feature-map importance.
Relatedly, for ResNets, in addition to pruning the filter associated with a targeted output-feature-map,
we also prune any shortcut connections to said map, ensuring its total removal. All models shown in
Figure 4 (ResNet20, ResNet56, and ResNet18) were pruned with `1-norm scoring of filters. Finally,
we studied our own filter scoring methods, discussed in Appendix B.

4We use an exponential moving average that weights the prior average by 0.9 and is updated every ten
batches during training; [18] computes this average at one point in time and thus using a constant set of weights.
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Given the starting epoch si, ending epoch ei, retrain period r, and fraction to remove pi for layer
i, we run a pruning iteration every r epochs, leading to niter =

⌊
ei−si+1

r

⌋
+ 1 pruning iterations

indexed by j ∈ (1, niter). Assuming the layer has nfilter filters, the ultimate number of remaining
filters will be mi = d(1− pi)× nfiltere. The number of filters that will remain after pruning iteration
j is dmi + (nfilter −mi)× (niter − j)/(niter)e, and the number of parameters pruned on iteration j
is set accordingly.

To study how pruning-based generalization improvements are affected by reductions in stability from
a starting point of high stability, we skew pruning toward later layers to allow relatively high stability
with all of our various pruning targets (networks were found to be more resilient to pruning of later
layers in [18, 30], and we observed a similar pattern when we briefly tried pruning more from earlier
layers). One of the ways that we study how pruning-based generalization improvements are affected
by reductions in stability from a starting point of low stability is raising total pruning percentage. As
we discuss in Section 3.2 and Appendix C, this higher total percentage causes PruneL to be much
less stable and to perform worse than PruneS, replicating the observation that PruneS outperforms
PruneL at higher total pruning percentages [18].

B The generalization-stability tradeoff experiment configuration and results
with other scoring methods

B.1 Figure 2 configuration

The models were trained on CIFAR-10 with Adam for 325 epochs with lrs = (150, 300). The
error bars are 95% confidence intervals for the mean, bootstrapped from 10 distinct runs of each
experiment.

VGG11 We pruned the final four convolutional layers during training with (layerwise) start-
ing epochs s = (3, 4, 5, 6), ending epochs e = (150, 150, 150, 275), and pruning fractions
p = (0.3, 0.3, 0.3, 0.9). To allow for the same amount of pruning among models with differing
iterative pruning percentages, we adjusted the number of inter-pruning retraining epochs. The models
with the maximum iterative pruning percentage of 1% had r = 4, while the models with the maximum
iterative pruning percentage of 13% had r = 40.

ResNet18 We pruned the final four convolutional layers of ResNet18 during training with (layer-
wise) starting epochs s = (7, 8, 9, 10), ending epochs e = (150, 150, 170, 275), and pruning fractions
p = (0.25, 0.4, 0.25, 0.95). The models with the maximum iterative pruning percentage of 1% had
r = 4, while the models with the maximum iterative pruning percentage of 14% had r = 40.

While we could lower pruning stability in ResNet18, this model interestingly adapted to pruning
events much differently than VGG11: test accuracy rebounded after pruning as in VGG11 but then
quickly flattened out rather than climbing steadily as the network adapted to the pruning, which may
be related to noise stability properties created by shortcut connections [63]. Thinking that shortcut
connections were allowing the network to adapt to pruning events too easily, we tried pruning a larger
amount of the penultimate block’s output layer (moving from 0.25 to the shown 0.4), which reduced
the number of shortcut connections to the final block’s output layer, lengthened the adaptation period,
and increased pruning-based generalization improvements.

B.2 Changing the scoring method used in Figure 2

We found that we could strengthen the correlations shown in Figure 2 by switching the pruning
scoring method from an `2-norm approach to one that made stable approaches more stable, and
unstable approaches more unstable (reducing the effect of measurement noise on the correlation). The
correlations strengthened from those shown in Figure 2 to -0.88 and -0.65 for VGG11 and ResNet18,
respectively. Here we describe this pruning scoring method and the results.

B.2.1 A scoring method to identify important batch-normalized parameters

The correlation between a parameter’s magnitude and its importance-to-the-loss weakens in the
presence of batch normalization (BN) [64]. Without batch normalization, a convolutional filter with
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weights W will produce feature map activations with half the magnitude of a filter with weights
2W : filter magnitude clearly scales the output. With batch normalization, however, the feature
maps are normalized to have zero mean and unit variance, and their ultimate magnitudes depend on
the BN affine-transformation parameters γ and β. As a result, in batch normalized networks, filter
magnitude does not scale the output, and equating small magnitude and unimportance may therefore
be particularly flawed. This has motivated approaches to use the scale parameter γ’s magnitude to
find the convolutional filters that are important to the network’s output [29, 30]. Here, we derive a
novel approach to determining filter importance/magnitude that incorporates both γ and β.

To approximate the expected value/magnitude of a batch-normalized, post-ReLU feature map activa-
tion, we first define the 2D feature map produced by convolution with BN:

M = γBN(W ∗ x) + β.

We approximate the activations within this feature map as Mij ∼ N (β, γ′), where γ′ = |γ|. This
approximation is justified by the central limit theorem when the products in W ∗ x are i.i.d. and
sufficiently numerous; empirically, we show in Figure B.1 that this approximation is highly accurate
early in training but becomes less accurate as training progresses. Given this approximation, the
post-ReLU feature map

R = max{0,M}
has elements Rij that are either 0 or samples from a truncated normal distribution with left truncation
point l = 0, right truncation point r =∞, and mean µ where

µ = γ′
φ(λ)− φ(ρ)

Z
+ β,

λ =
l − β
γ′

, ρ =
r − β
γ′

, Z = Φ(ρ)− Φ(λ),

and φ(x) and Φ(x) are the standard normal distribution’s PDF and CDF (respectively) evaluated at x.
Thus, an approximation to the expected value of Rij is given by

E[Rij ] ≈ Φ(λ)0 + (1− Φ(λ))µ.

We use the phrase "E[BN] pruning" to denote magnitude pruning that computes filter magnitude
using this derived estimate of E[Rij ]. E[BN] pruning has two advantages. First, this approach avoids
the problematic assumption that filter importance is tied to filter `2 norm in a batch-normalized
network. Accordingly, we hypothesize that E[BN] pruning can grant better control of the stability of
the neural network’s output than pruning based on filters’ `2 norms. Second, the complexity of the
calculation is negligible as it requires (per filter) just a few arithmetic operations on scalars, and two
PDF and CDF evaluations, making it cheaper than approximating the expected value via the sample
mean of feature map activations for a batch of feature maps.

B.2.2 Quality of normality approximation by layer and training level

The main drawback to the E[BN] approach (Section B.2.1) is the sometimes poor approximation
Mij ∼ N(β, γ′), which depends on the assumption of N(0, 1) distributed feature map activations
(after batch normalization, but before the associated affine transformation). In Figure B.1, this
assumption’s validity depends on layer and the training of the model (we used a pre-trained model
from the PyTorch torchvision package to show the effect of the latter on the approximation). A less
serious drawback is that this approach does not account for the strength of connections to the post-BN
feature map, which could have activations with a large expected value but low importance if relatively
small-magnitude weights connected the map to the following layer.

B.2.3 Updating figure 2 with new scoring methods

Figure B.2 shows the results of switching the scoring method used in Figure 2 to new scoring methods.
Figure B.2 uses the same configuration as Figure 2, described in Section B.1, except ResNet18 starts
pruning slightly earlier with s = (3, 4, 5, 6).

For VGG11, we use the scoring method described in Section B.2.1. When using this scoring method
in ResNet18, the correlation did not improve, with PruneS 1% in particular remaining relatively
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Figure B.1: We examined the normalized activations (shown in blue histograms) of feature maps in the final eight
convolutional layers of VGG19 before training (left) and after training (right). We found that the approximation
to standard normality (shown in orange) of these activations is reasonable early on but degrades with training
(particularly in layers near the output).

unstable. As such, for ResNet18, Figure B.2 shows a scoring method that is a modification of the
scoring method in Section B.2.1 that replaces γ′ with γ (precluding this method’s interpretation as an
approximation to the post-ReLU expected value). While not having a significant effect on VGG11
(its use would change the correlation coefficient from -0.88 to -0.89), this modification creates visibly
more stable pruning for PruneS 1% in ResNet18. For example, the final drop in accuracy in Figure
B.2 is ≈ 1% compared to the ≈ 2% drop in Figure 2; quantitatively, the difference in mean stability
across all pruning events between these two methods is minor (99.957% stability in Figure 2 vs.
99.961% stability stability in Figure B.2), which suggests that the level of regularization created by
pruning may be better explained by looking at mean stability in combination with the number of
pruning events that fall below some stability threshold rather than just mean stability.

17



50 100 150 200 250 300
Epoch

83.0 83.0

83.5 83.5

84.0 84.0

84.5 84.5

85.0 85.0

85.5 85.5

86.0 86.0

86.5 86.5

Te
st

 A
cc

ur
ac

y 
(%

)

29%

Stability (Method)
100% Stable (No Pruning)
99.98% Stable (Prune_S 1%)
99.81% Stable (Prune_S 13%)
97.67% Stable (Prune_L 13%)

97 98 99 100
Mean Stability (%)

85.00
85.25
85.50
85.75
86.00
86.25
86.50
86.75

Te
st

 A
cc

ur
ac

y 
(%

)

pearsonr = -0.88; p = 1.2e-10
kendalltau = -0.64; p = 8.4e-07

50 100 150 200 250 300
Epoch

84 84

85 85

86 86

87 87

88 88

Te
st

 A
cc

ur
ac

y 
(%

)

27%
45%

Stability (Method)
100% Stable (No Pruning)
99.96% Stable (Prune_S 1%)
98.14% Stable (Prune_S 14%)
96.66% Stable (Prune_L 14%)

95 96 97 98 99 100
Mean Stability (%)

87.4

87.6

87.8

88.0

88.2

88.4

Te
st

 A
cc

ur
ac

y 
(%

)

pearsonr = -0.65; p = 5e-05
kendalltau = -0.43; p = 0.00061

Figure B.2: Less pruning stability improves generalization of (Top) VGG11 and (Bottom) ResNet18 when
training on CIFAR-10 (10 runs per configuration). (Left) Test accuracy during training of several models
illustrates how adaptation to less stable pruning leads to better generalization. (Right) Means reduce along the
epoch dimension (creating one point per run-configuration combination).

C Limits of the generalization-stability tradeoff

C.1 Figure 3 configuration

In Figure 3, pruning targeted the final four convolutional layers of VGG11 during training with
(layerwise) starting epochs s = (3, 4, 5, 6), ending epochs e = (150, 150, 150, 275), and pruning
fractions p = (0.3, 0.3, 0.3, 0.9). To create the different iterative pruning rates, we used models with
inter-pruning retrain periods r = 4, r = 20, r = 40, r = 60, r = 100, r = 200, and r = 300. Since
the layerwise pruning percentages varied, pruning required multiple iterative pruning percentages,
the largest of which is denoted on the horizontal axis.

The models were trained on CIFAR-10 with Adam for 325 epochs with lrs = (150, 300). The
error bars are 95% confidence intervals for the means, bootstrapped from 10 distinct runs of each
experiment.

C.2 Higher total pruning percentage configuration and table

To examine the effect of lowering stability by increasing total pruning percentage, we raised the total
pruning percentage of ResNet18 from 46% to 59% by setting p = (0.25, 0.8, 0.25, 0.95), otherwise
all training details remained as they were in B.1.5 For the 59% experiments, results are based on just
three runs per configuration, rather than the typical ten. Means and standard deviations for stability
and test accuracy are tabled below (Table C.1), in comparison to their corresponding values from
Figure 2.

Further supporting the idea of a “sweet-spot” in the stability level, we find that the two best test
accuracies are at the same stability level, 98.9% (Table C.1). Interestingly, this stability level was
reached with two different pruning targets, PruneS and PruneL. Additionally, the two statistically
significant changes that we observe are a reduction in stability from a starting point of low stability
harming accuracy (when raising the total pruning percentage for PruneL), and a reduction in stability
from a starting point of high stability improving accuracy (when raising the total pruning percentage
for PruneS).

5Note that holding constant r and the pruning schedule while raising the total pruning percentage causes the
iterative pruning rate to rise. When we specify the pruning method in Table C.1 we use the iterative rate from
Figure 2, though the actual iterative rate is higher for the methods with higher total pruning percentages.
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Table C.1: Reducing stability by raising total pruning percentage

Method
Test Accuracy StabilityTotal

Pruning
Percentage Mean (%) Std. Dev. Mean (%) Std. Dev.

PruneS 1%
46% 87.65 0.26 99.957 0.006
59% 87.52 0.11 99.935 0.012

PruneS 13%
46% 87.72 0.18 99.470 0.203
59% 87.95∗ 0.18 98.912 0.303

PruneL 13%
46% 88.03 0.26 98.904 0.229
59% 87.48∗ 0.37 98.143 0.434

∗ Statistically significant at < 10% significance level with a two-tailed t-test.

C.3 Visualization of data used in Figure 3 right

In Figure C.1, we raise iterative rate, which reduces pruning stability for all pruning targets. At
lower stabilities, the benefit of further decreasing stability by changing target becomes less visible or
non-existent. Note that the correlations in Figure C.1 were used to make the correlation plot in the
main text (Figure 3 right) and the corresponding summary of the Kendall rank correlations shown in
Figure C.2.
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Figure C.1: At each iterative pruning rate, reducing pruning stability by targeting more important weights aids
generalization. This correlation is typically statistically significantly at the 5% significance level. Iterative
pruning rate increases from left to right, then top to bottom.

C.4 More Results with Traditional Setup from Figure 4

In Figure 4 we trained models exactly as specified in [42]. When doing so, we found that, while
the generalization stability tradeoff was present among pruned models, the pruned models didn’t
outperform the baseline model on average. A possibility is that the pruning procedure may have been

19



2 4 8 16 32 64
Iterative Pruning Rate (% and Log Scale)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Co
rre

la
tio

n 
be

tw
ee

n
Ge

ne
ra

liz
at

io
n 

an
d 

St
ab

ilit
y

Figure C.2: At a particular iterative rate, Kendall’s rank correlation between generalization and stability is always
negative, except at the rate corresponding to the one-shot pruning case.
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Figure C.3: The generalization stability tradeoff is present among pruned models with high stabilities, which
facilitate less disruption of the training procedure, and allows pruning to outperform the baseline model. The
blue dots are runs with the less stable (99.93% average stability) configuration that pruned 10% of each layer,
while the orange dots show runs from the more stable (99.96% average stability) configuration that pruned 6%
of each layer.

too disruptive to be beneficial in the context of the standard training and regularization settings. If
this is the case, then our results suggest that there’s a higher stability level at which the generalization-
stability tradeoff provides a benefit but is not so disruptive that the advantages of the standard training
and regularization approach are lost.

We test this in ResNet18 by switching to a more stable set of pruning schemes. We still prune every
layer of every block of ResNet18, but we now prune over a longer period of time, with starting epoch
s = (24) and ending epoch e = (100) for each layer, and we consider two pruning fractions for
each layer pruned: p = (0.06) and p = (0.1). If the generalization-stability tradeoff can lead to an
improvement in a traditionally-trained baseline model’s performance when pruning is sufficiently
stable, then we would expect to see such pruning methods obtaining higher accuracy than the baseline
ResNet18 model, which has 94.35% test accuracy on average.

Consistent with the generalization-stability tradeoff’s broad presence and ability to improve on the
baseline at higher stabilities, we found that, while the method that only pruned 6% of each layer led
to 94.25% average test accuracy (less than the baseline), the less stable method that pruned 10% of
each layer led to 94.41% accuracy, outperforming the baseline (see Figure C.3 for the generalization
level and gap attained on each pruned-model run). While the improvement here is small, we stress
that we are using a very simple pruning scheme that prunes a constant fraction of each layer and we
did not search for an optimal configuration, suggesting that further improvements are possible.

Importantly, this result also shows that a group of methods that is more unstable on average (e.g.,
those in Figure 4 compared to those in Figure C.3) does not necessarily generalize better, even when
the generalization-stability tradeoff is present within each set of methods. Here, this may have been
caused by low pruning stability reducing the benefit of the regularization (weight decay) already
being applied to the model, which would make it beneficial to prune in a higher stability regime that
is less disruptive.
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D Pruning noise details, visualization, and more results

Figure D.1: The effect of pruning on a given weight can be likened to that of Dropout/DropConnect [33–35],
multiplicative zeroing noise (“Zeroing”), and additive Gaussian noise injection (“Gaussian”).

D.1 Figure 5 configuration

In Figure 5, pruning/noise-injection targeted the final four convolutional layers of VGG11 during
training with (layerwise) starting epochs s = (3, 4, 5, 6), ending epochs e = (150, 150, 150, 275),
pruning fractions p = (0.3, 0.3, 0.3, 0.9), and inter-pruning-iteration retrain period r = 40; we
continued using the filter `2-norm to score filters. When pruning, we only zeroed the filters, rather
than the filters and their associated batch-normalization affine transformation parameters (as done
in our other results). When injecting pruning-like noise, we used the same pruning schedule and
percentages, but applied noise to the filter weights instead of removing them. Figure D.1 shows an
illustration of the similarity between permanently pruning weights w (setting them to zero for the
remainder of training), and different kinds of noise injection.

Applying the multiplicative zeroing noise in Figure 5 entailed multiplying the weights of a filter by
zero (before each forward pass) for the specified number of training batches (e.g., once in the case of
"Zeroing 1"). The temporary zeroing would still effectively remove any weights that do not learn
after reentering the model. However, we observed that pruning all reentered weights at convergence
resulted in a marked drop in performance (for all noise schemes except “Zeroing 1105”), showing
that the reentered weights had typically learned after reentry, and that temporary zeroing is therefore
less harmful to capacity than permanent pruning. We constructed a variation of this analysis, shown
in Section D.2, that allows weights back in at their pre-zeroing values; this variation also finds that
permanent pruning is not necessary and pruning reentered weights always leads to a performance
drop.

The Gaussian noise added to weights had mean 0 and standard deviation equal to the empirical stan-
dard deviation of an unmodified filter from the same layer. Our experiments run 391 training batches,
79 test batches, a pruning/noising iteration (even on epochs when no parameters are pruned/noised),
then 79 more test batches (to compute stability). We added Gaussian noise to filter parameters on
each batch (training or test) until the specified number of training batches was reached. As such,
to add Gaussian noise to the parameters for 50 training batches (‘Gaussian 50” in Figure 5), we
first added Gaussian noise for the 79 test batches following the pruning/noising iteration. Since the
parameters were not updating during this time, this is equivalent to adding Gaussian noise once using
a variance 79 times the variance of an unmodified filter, then once for each of the next 50 training
batches using noise with a variance equal to the variance of an unmodified filter. “Gaussian 1” in
Figure 5 had noise added on just the first test batch (providing an identical effect to adding the noise
on the first training batch), and “Gaussian 1105” in Figure 5 had noise added on all training and test
batches until 1105 training batches were reached.
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Figure D.2: Generalization improvements from pruning bear resemblance to those obtained by using temporary
multiplicative zeroing with the zeroed weights reentering at their pre-zeroing values, as long as the noise is
applied for enough batches/steps.

The models were trained on CIFAR-10 with Adam for 325 epochs with lrs = (150, 300). The
error bars are 95% confidence intervals for the means, bootstrapped from 10 distinct runs of each
experiment.

D.2 Variation of Figure 5 with weights reentering at original values

In Figure D.2 we applied the temporary zeroing noise to both filter weights and the corresponding
batch normalization affine transformation parameters (in Figure 5, the batch normalization parameters
were not modified). However, we first stored the values associated with these parameters, as well as
the batch normalization running mean and standard deviation. After the prescribed number of batches
of zeroing was completed, we restored these variables to their pre-zeroing original values. A further
modification we made was keeping track of which filters had been zeroed at any point, and zeroing
all filters that had ever been zeroed at each “pruning” iteration, which created less stable zeroing
events.6 Note that the network never stops relying on the weights that were once zeroed (i.e., for
“Zeroing 2480” in Figure D.2, accuracy falls at the end of training if all previously-zeroed weights are
removed, which wasn’t the case for “Zeroing 1105” in Figure 5, as discussed in Section D.1).

E Flatness

E.1 Figure 6 configuration and details

We used the same VGG training and pruning configuration discussed in Section B.1. We added one
pruning approach with a random target and r = 40, and another pruning approach that pruned the
model before training began (“Scratch Pruning”) [18, 24].

We measure curvature using an approximation to the Hessian H trace: we sum the first 100 eigen-
values of the Hessian, though our results are unaffected by whether we use this approach or only
sum the eigenvalues larger than the spectral radius times a small factor [12]. We measure noise with
the uncentered gradient covariance C trace. While the centered gradient covariance matrix provides
information about sensitivity of ∇Lw to the sample, the uncentered gradient covariance matrix C

6 In future work, it might be interesting to look at the properties of the two subnetworks that are created by
this process (the subnetwork that was noised at some point, and the subnetwork that never had zeroing applied to
its elements).
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that we compute should be similar to its centered counterpart near a minimum [12], so we describe
the gradient covariance as providing of information about the sensitivity of∇Lw to the sample.

E.2 Computing the Hessian eigenvalues and gradient covariance

We estimate H and C using a subset of 512 test data samples [12] on epoch 315. To compute the first
100 eigenvalues of the Hessian, we use the power method with deflation provided by [65], iterating
100 times or until a tolerance of 0.0001 is reached for each eigenvalue. The first ten eigenvalues
(each with a 95% confidence interval for the mean based on bootstrapping with the 10 runs per
configuration) are shown in Figure E.1. All 100 eigenvalues are shown in Figure E.2.
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Figure E.1: First ten eigenvalues of the Hessian of the test loss.

E.3 Other flatness measures and results

Inspired by [11, 40], we used the Hessian eigenvectors vi that we had computed via the power
method (as described in Section E.2) to perturb the parameters and measure how the loss changes in a
neighborhood of the minimum w∗. Specifically, we compute the test loss at the point w = w∗ + εvi
(Figure E.4). The distance ε that could be used before a loss increase of 0.1 was reached (for any vi)
is shown as a function of stability and as a predictor of generalization in Figures E.3 and E.4. One
drawback of our approach is that we incremented the value of ε by 0.01, leading to a less precise
estimate of the particular value at which the loss increases by 0.1.

Perturbing the parameters in the direction of the Hessians’ eigenvectors [40] is a kind of worst-case
perturbation, to the extent that the weights are at a minimum of the test loss and the gradient is zero.
Several, more sophisticated approaches to this perturbation analysis were used in [11] and could be
useful here. For example, it would be interesting to extend our analysis to include flatness measures
derived from PAC Bayesian generalization bounds [11].
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Figure E.2: The first 100 eigenvalues of the Hessian of the test loss.
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Figure E.3: When perturbing the parameters in the neighborhood of an optimum, we find that the methods
trained with less stability can sustain larger perturbations to the weights before reaching a loss increase of 0.1.
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Figure E.4: Parameter perturbations in the directions of more dominant Hessian eigenvectors cause greater
increases in the test loss for a given ε.
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Figure E.5: The proxy to the TIC suggests the model will generalize worse as pruning stability rises (left), and it
is predictive of generalization (right).

Lastly, we examine our results with respect to a proxy for the Takeuchi Information Criterion [50],
an estimator of the generalization gap [12] built from C and H. The proxy we use is a modification
of the suggested proxy Tr(C)/Tr(F) in [12]. Specifically, we use Tr(C)/Tr(H) instead, which
is based on the same reasoning given for Tr(C)/Tr(F) in [12]. Here, too, we approximate Tr(H)
using the first 100 eigenvalues. This TIC proxy accurately describes generalization levels (Figure E.5
right) and suggests models will generalize better as stability decreases (Figure E.5 left).

The accuracy and stability of the various approaches we analyzed the flatness of are displayed in
Figure E.6.
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Figure E.6: Lower stability is associated with higher generalization in the models we analyzed the flatness of.

F The generalization-stability tradeoff with CIFAR100

In our experiments we saw the presence of a generalization-stability tradeoff in networks trained on
CIFAR10. However, it’s unclear whether this phenomenon will be present when we move to larger
datasets. One possibility is that the tradeoff was an artifact of pruning models trained on CIFAR10,
rather than a more general phenomenon. Alternatively, the tradeoff may exist when pruning models
trained on various datasets.

To test this, we trained ResNet18 on CIFAR100 using no pruning, scratch pruning, stable pruning
during training, and unstable pruning during training. If the tradeoff was an artifact of our use of
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CIFAR10, then we would not expect to see a generalization-stability tradeoff in these results. On the
other hand, if the tradeoff is a more general phenomenon, then we should see it in this experiment.

Consistent with the tradeoff applying to data other than CIFAR10, we found that reduced pruning
stability helps generalization of ResNet18 trained on CIFAR100 (Table F.1). Despite only using three
runs per configuration, the improvements of the less stable PruneL method over both Scratch Pruning
and PruneS are statistically significant at less than the 5% significance level (using a two-tailed t-test).

Table F.1: Benefit of low stability for CIFAR100 at 15% total pruning percentage

Method
Test Accuracy Stability

Mean (%) Std. Dev. Mean (%) Std. Dev.

No Pruning 73.28 0.12 100 N/A
Scratch Pruning 73.11 0.13 100 N/A

PruneS 73.22 0.09 91.94 4.10
PruneL 73.41 0.08 86.98 6.87

We used an experimental design inspired by [10], in which the models display worsening gener-
alization as ResNet18’s width parameter is reduced. Specifically, we used 4000 training epochs,
data augmentation, and an initial learning rate of 0.0001 with the Adam optimizer. Unlike [10], we
reduced the learning rate to one-tenth its initial value at epoch 2000 (lrs = (2000)), which raised the
generalization level of all methods examined.

We pruned a total of 15% of the model by pruning the final convolutional layer twice during training
with starting epoch s = (2500), ending epoch e = (3250), inter-pruning retrain period r = 750,
and pruning fraction p = (0.7). We used the same scoring method that we used for ResNet18 in
Section B.2.3, though we obtained similar results when scoring using the empirically-calculated
average of the absolute value of the post-non-linearity activations (PruneL had the same mean test
accuracy, and PruneS mean test accuracy went down .03% to 73.19%). We initially tried pruning
more of the network, but doing so quickly reduced generalization relative to the baseline (as shown
in [10]), indicating the difficulty of obtaining generalization benefits by pruning models trained on
larger datasets.
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