
Supplementary for Knowledge Distillation in Wide
Neural Networks: Risk Bound, Data Efficiency and

Imperfect Teacher

S1 Convergence of Distillation Loss

Even though [1] only proves the convergence for only L2 loss, we believe this also holds for our
distillation loss, with a little bit of modification. The key idea of [1] is that, convergence is guaranteed
by the near constancy of NTK matrix Θ̂(X,X). Then we can use the following equation to prove
convergence,

żs = −ηΘ̂(X,X)(zs − zeff). (S1)

As proved in the original paper of NTK([2]), the near constancy of Θ̂(X,X) has no requirement
on the type of loss, so this is also true for our distillation loss. Then, the difference only lies in the
second term zs − zeff , which in the case of distillation, is substituted with ∂zs

L(zs, zeff) (same as
Eq. 6 in [3]). Due to the fact of finite training data and the convexity of L (w.r.t zs), the gradient can
be lower bounded by another L2 loss, therefore

|∂zsL(zs, zeff)| ≥ µ|zs − zeff |, (S2)

then the convergence of distillation loss can be guaranteed. A similar proof of convergence is used in
Theorem A. 3 of [4] for linear distillation.

S2 Test Error on CIFAR10 with ResNet

103 104

n

10 1

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

te
st

 e
rro

r

1.0000
0.9000
0.5000
0.0000

Figure S1: Test error of knowledge distillation on CIFAR10 dataset with ResNet structure with
respect to difference sample size n.

The settings of Fig.S1 are same as that of Fig.5 left in the main paper. All data points are averages of
5 times of training, for the purpose of eliminating variations in randomness. The curves shows a near
power law relation of test error with respect to sample size n, especially when n is large.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

S3 Proof of Transfer Risk Bound

One difference of our work from [4] is that the decision boundary contains the initial function as a
bias term in NTK linearization h(x) = 1⇔ f(x;w0) + ∆>wφ(x) > 0. We use zero function weight
change ∆wz

to merge this bias term into part of weight change. Now we restate our risk bound and
provide our proof.

Theorem 1. Given input distribution P (x), training samples X = [x1, · · · , xn], oracle weight
change ∆w∗ , zero weight change ∆wz and accumulative angle distribution p(β), the transfer risk is
bounded by,

R ≤ p(π
2
− ᾱn), (S3)

where ᾱn = ᾱ(∆w∗ −∆wz
,∆ŵ −∆wz

) and ∆ŵ is student’s converged weight change.

Proof. Denote the oracle weight change and zero weight change as ∆w∗ and ∆wz
. Further we denote

α(a, b) = cos−1(x>y/
√
x>x · y>y) ∈ [0, π] as a supplement of ᾱ. The transfer risk can be written

as

R = P
x∼P (x)

[(∆w∗ −∆wz)
>φ(x) · (∆ŵ −∆wz)

>φ(x) < 0]

= P
x∼P (x)

[
α(φ(x),∆w∗ −∆wz) <

π

2
, α(φ(x),∆ŵ −∆wz) >

π

2

]
+ P
x∼P (x)

[
α(φ(x),∆w∗ −∆wz

) >
π

2
, α(φ(x),∆ŵ −∆wz

) <
π

2

]
.

(S4)

We further assume αn ≤ π/2 so that αn = ᾱn. In actual network where ||∆wz
||2 � ||∆w∗ ||2, this

assumption is reasonable, since cosαn ∝ ∆>z Θ−1
n ∆z > 0. With the help of triangle inequality,

α(a, b) ≤ α(b, c) + α(c, a), we can find a "easy" region where inputs are guaranteed to be correctly
classified by student’s model. For the case of α(φ(x),∆w∗ −∆wz) < π/2, if we assume the "easy"
region is α(φ(x),∆w∗ −∆wz

) < π
2 − ᾱn, then

α(φ(x),∆ŵ −∆wz
) ≤α(φ(x),∆w∗ −∆wz

) + α(∆w∗ −∆wz
,∆ŵ −∆wz

)

≤π
2
− ᾱn + ᾱn =

π

2
,

(S5)

which means student model also gives a correct prediction. Similarly, α(−a, b) ≤ α(b, c) +
α(c,−a) ⇒ π − α(a, b) ≤ α(b, c) + π − α(c, a). For the case of α(φ(x),∆w∗ −∆wz

) > π/2, if
we assume the "easy" region is π − α(φ(x),∆w∗ −∆wz

) < π
2 − ᾱn, then

π − α(φ(x),∆ŵ −∆wz
) ≤π − α(φ(x),∆w∗ −∆wz

) + α(∆w∗ −∆wz
,∆ŵ −∆wz

)

≤π
2
− ᾱn + ᾱn =

π

2
.

(S6)

Then we bound can the transfer risk by the worst case where all φ(x) outside this "easy" region is
incorrectly classified, so that

R ≤ P
x∼P (x)

[π
2
> α(φ(x),∆w∗ −∆wz

) >
π

2
− ᾱn

]
+ P
x∼P (x)

[π
2
< α(φ(x),∆w∗ −∆wz) <

π

2
+ ᾱn

]
= P
x∼P (x)

[
ᾱ(φ(x),∆w∗ −∆wz) >

π

2
− ᾱn

]
= p(

π

2
− ᾱn).

(S7)

S4 Experiment Details

All of our experiments are performed on Pytorch 1.5.

2

Effective Student Logits Calculation zs,eff(zt, yg) is attained by solving

lim
τ→∞

zs(τ) = ẑs,
d`

dẑs
=
ρ

T
(σ(ẑs/T)− σ(zt/T)) + (1− ρ)(σ(ẑs)− yg) = 0.

We use first order gradient descent with a learning rate of 10.0 and 10, 000 iterations to get good
results. Second order method like Newton’s method is approachable, but it fails when |zt| is big and
the second order gradient vanishes.

Network Structure In our experiment, we denote input layer as d, and the number of hidden
layers as L. We also set the network to have a fixed hidden layer width m. All networks use NTK
parameterization and initialization (described in [2]), which has the following form,

h1 = σWW
0x/
√
d+ σbb

0, x1 = g(h1),

hl+1 = σWW
lxl/
√
m+ σbb

l, xl+1 = g(hl+1), l = 1, 2, · · · , L− 1,

f(x;w) = σWW
LxL/

√
m+ σbb

L,

where g(·) is the activation function, W l
ij , b

l
i ∼ N (0, 1) are the parameters of each layer, and

(σW , σb) are the hyperparameters and we use σW = σb = 1.0 through out our experiments. Further
we denote w = ∪Ll=0{W l, bl} as the set of parameters.

The linearized network of random features is calculated according to flin(x) =
f(x;w0) + ∆>w∂wf(x;w0). Practically we calculate the derivative with the help of a
torch.autograd.functional.jvp in Pytorch 1.5 . All networks are optimized by standard
Adam algorithm (β1 = 0.9, β2 = 0.999) with different learning rate η and batch size |D|.

Neural Tangent Kernel(NTK) Calculation NTK of a ReLU network is calculated according to
Appendix C and E in [3].

Input Distribution Design In our experiments, the data distribution is fixed to be N (0, 52).

Gaussian Mixture The Gaussian mixture function in Fig.3 has the form of

zgaussian(x) =

q∑
j=1

Aj exp(−(x− xj)2/σj)

Aj , xj , σj are all sampled with randomness, to insure the diversity of Gaussian mixture. Aj are
sampled around a fixed amplitude A, but with equal chance of positive and negative sign. xj is
sampled according to a gaussian distribution N (0, σp) to make sure most of xj are in the distribution
of x. σj are also sampled around a fixed amplitude σ, but σ is changed according to mode number q,
σ = 15/q2 so that all points can show their mode in zgaussian(x)’s shape.

In the first difficulty control task (Fig.3, left), we control difficulty by control the number of modes
q. In the second difficulty control task (Fig.3, right), q is fixed, and we multiply zgaussian(x) with a
random variable of s ∈ {±1}, z∗(x) = s× zgaussian(x). s has probabilities of {1− pflip, pflip} to
be {1,−1}.
In the following Fig. S2, we give a plot of Gaussian mixture function of different mode numbers.

Calculation of Data Inefficiency In the definition of data inefficiency I(n) =

n [lnE||∆ŵ,n+1||2 − lnE||∆ŵ,n||2], we need to calculate ||∆ŵ,n||2 =
√

∆>z Θ−1∆z. Θ−1∆z is
calculated by the linear solver torch.solve in Pytorch.

S4.1 Unstated Details of Each Figure

Fig.2 The perfect teacher in Fig.2 of main text is the output of a network trained with hard labels
generated by a gaussian mixture function. The teacher network has a setting of d = 2, L = 5,m =
1024. It is trained with learning rate η = 0.0005 and batch size |D| = 4096. We use online-batch
training for all teachers, which means samples are regenerated after each epoch, in order to avoid the
problem of sample correlation between teacher and student.

3

Figure S2: Examples of Gaussian mixture function. From left to right, each has a mode number of
10, 50, 250.

The students in Fig.2 of main text are the linearized network with a structure of d = 2, L = 3,m =
2048. They are trained with learning rate η = 0.01 and batch size |D| = 512. The distillation
temperature is T = 10.0.

We also have to mention that, due to cross entropy loss, the convergence of student logits is especially
hard when |zt| � 1. To make our student more easily converge, and to make the scale of teacher
match the scale of split generated by hard label |zt| ≈ ∆z,split, we reduce the scale of teacher’s logits
zt,new = r × zt by a factor r, called reduction factor. In our perfect distillation experiment(Fig.2),
r = 0.3.

Here we give a plot of the decision boundary and output logits of the teacher in Fig. S3.

Figure S3: The decision boundary (left) and output logits(right) of teacher network.

Fig.3 In Fig.3 of main text, calculation of
√

∆>z Θ−1∆z. Θ−1∆z involves the output logits of
initialized student network. The initialized network as a structure setting of d = 2, L = 5,m = 1024.

The data inefficiency is approximately a derivative I(n) = ∂ lnE||∆ŵ,n||2/∂ lnn. For better
illustration, we plot in Fig. S4 the intermediate quantity, E||∆ŵ,n||2 with respect to n.

Fig.4 The teacher of Fig.4 has a network structure setting of d = 2, L = 5,m = 1024. It is trained
by the hard label generated by the teacher network of Fig.2 with a learning rate η = 0.01 and a total
epoch of 32768. In Fig.4 left we use teacher of different stopping epochs to give the plot, while in
Fig.4 right we fix the teacher which stops at 511st epoch.

Here we also give plot of E||∆ŵ,n||2 with respect to n in Fig. S5.

Fig.5 Left: The teacher (ResNet50) has a test error of 6.97%. The students are all ResNet18 model,
while the students’ (ResNet18) baseline test error is 10.48% if trained from scratch. Middle: The

4

101 102 103 104

n

100

101

102

103

||
w
|| 2

mode number
nmode
22
48
103
469
1000
zero
random

101 102 103 104

n

100

101

102

103

||
w
|| 2

flip probability
pflip

0.00e+00
2.58e-04
1.71e-03
1.13e-02
7.53e-02
5.00e-01
zero
random

Figure S4: ||∆ŵ||2 with respect to sample size n. In the plot ∆z of gaussian mixture functions
are normalized by their scale ∆z,new = ∆z/||∆z||. The dashed lines are references of random
logits(upper dashed lines) and constant zero function(lower dashed lines).

101 102 103 104

n

101

102

||
w
|| 2

teacher stopping epoch
epoch

255
767
1919
4351
9855
22015

101 102 103 104

n

101

102

||
w
|| 2

soft ratio
1

1.000e-04
2.080e-03
4.060e-03
6.040e-03
1.000e-02
1.688e-02

Figure S5: ||∆ŵ||2 with respect to sample size n. Similar to Fig. S4, ∆z are normalized.

teacher is trained by the hard label generated by the teacher network of Fig.2 with a learning rate
η = 0.0001. It is early stopped at e = 5113 and at a test error of 1.06% to make this phenomenon
obvious. The sample size for student is 214. Right: The teacher is trained in the same way as the
Fig.5 middle, but with a total epoch of 10240. In the calculation of 〈δŵh

,∆ŵc
〉, a reduction factor of

r = 0.3 is used.

S5 Fitting a constant zero function.

This section is aimed to show that fitting a constant zero function is much easier to train than a normal
task. In the following Fig. S6, we give plots on weight change ∆w of fitting both constant zero function
and the teacher function in Fig.2 using linearized network of structure d = 2, L = 3,m = 2048. The
figure shows that constant zero function is faster to converge, and ∆wz is much smaller than ∆w of a
normal task.

S6 Angle Bound of Random Features of ReLU Network

This section we aim to show that [4]’s bound Rn ≤ minβ p(β) + p(π/2− β)n is loose in linearized
wide neural network. Intuitively, p(β)→ 1 when β → 0 and p(β)→ 0 when β → π/2. If p(β) < 1
strictly when β > 0, then we can choose a β → π/2 that has a relatively small p(β), and with the
help of the n factor in p(π/2− β)n, the total risk bound can approach a small value.

However, as we will show below, the angle of random feature and oracle weight is bounded
| cos ᾱ(φ(x),∆w∗ −∆wz

)| ≤ C1, so that p(β) ≡ 1 strictly for a range of β ∈ [0, βt], βt ∈ (0, π/2).
As we see in Fig.2 middle in the main text, this βt is probably near π/2, which means most random

5

101 102 103 104

training epoch

102

we
ig

ht
 c

ha
ng

e
||

w
|| 2

= 1.00
= 0.96
= 0.80
= 0.65
= 0.50
= 0.35
= 0.15
= 0.02
= 0.00

zero

Figure S6: Weight change plot with respect to training epoch. The bottom curve is that of training
zero function, while other curves are distillation tasks, which are plotted as references.

feature φ(x) is nearly perpendicular to the oracle. Then the power factor of p(π/2 − β)n will not
help reduce the risk bound, so that their risk bound gives an estimate of Rn ≥ 1.

To demonstrate this, we use Eq. 7 in the main text to estimate the cosine of angle between random
feature and oracle weight,

cos ᾱ(φ(x),∆w∗ −∆wz
) =

(∆w∗ −∆wz)
Tφ(x)

||∆w∗ −∆wz
||2 · ||φ(x)||2

=
zs,eff(x)

||∆w∗ −∆wz ||2 ·
√

Θ(x, x)
.

In the numerator, zs,eff(x) ∼ O(zt(x)), especially when |zt(x)| � 1. In knowledge distillation,
we assume teacher is also a ReLU network so that the output is also bounded by a linear function,
|zt(x))| ≤ C2||x||2. In the dominator, the factor ||∆w∗ −∆wz

||2 is fixed and we find that for ReLU,
the single value neural tangent kernel is Θ(x, x) ∼ Ω(x>x). Therefore this fraction is bounded
cos ᾱ(φ(x),∆w∗ −∆wz

) ≤ C1 = C2/||∆w∗ −∆wz
||2. This C1 is probably much smaller than 1,

as we see in Fig.2 middle of the main text.

Figure S7: The NTK Θ(x, x)/(x>x) of a 3-hidden-layer network at different scale of x. We sampled
10000 input smaples according to N (0, σ2

x), so that σx denotes the scale of input. The figure shows
that Θ(x, x) ≥ x>x/4 and the inequality tends to equality when the scale is large. This figure
demonstrate that Θ(x, x) ∼ Ω(x>x).

S7 Proof of Theorem 2

In this theorem we assume that zs,eff ≈ zt + (1− ρ)δzh, where δzh is implicitly determined by hard
labels. Then we can approximate

〈∆zg
,∆zs,eff

〉Θn
≈ 〈∆zg

,∆zt〉Θn
+ (1− ρ)〈∆zg

,∆δzh〉Θn
,

6

and
1√

〈∆zs,eff ,∆zs,eff 〉Θn

≈ 1√
〈∆zt ,∆zt〉Θn

+ 2(1− ρ)〈∆zt ,∆δzh〉Θn

≈ 1√
〈∆zt ,∆zt〉Θn

− (1− ρ)
〈∆zt ,∆δzh〉Θn

〈∆zt ,∆zt〉
3/2
Θn

.

By substituting the above two terms into Eq.11 of the main paper, and neglect higher order terms,
then we can get Eq.12,

∂ cosα(∆ŵ,∆wg
)

∂(1− ρ)

∣∣∣∣∣
ρ=1

=
1

||∆wg ||2
√
〈∆zt ,∆zt〉Θn

×

(
〈∆zg , δzh〉Θn −

〈∆zg
,∆zt

〉Θn

〈∆zt ,∆zt〉Θn

〈∆zt , δzh〉Θn

)
.

(S8)

References
[1] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global

minima of deep neural networks. In International Conference on Machine Learning, pages
1675–1685, 2019.

[2] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pages
8571–8580, 2018.

[3] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in neural information processing systems, pages 8570–8581,
2019.

[4] Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In
International Conference on Machine Learning, pages 5142–5151, 2019.

7

	Convergence of Distillation Loss
	 Test Error on CIFAR10 with ResNet
	Proof of Transfer Risk Bound
	Experiment Details
	Unstated Details of Each Figure

	Fitting a constant zero function.
	 Angle Bound of Random Features of ReLU Network
	 Proof of Theorem 2

