
Main remarks1

1. An analysis focused on the continuous time process2

Several referees have raised the question of the analysis of the discretized algorithm. We have deliberately3

avoided this question in order to deliver a crisp and clear message regarding interplay between functional4

inequalities and the chi-squared divergence.5

The study of discrete-time algorithms brings significant additional details and require additional assumptions6

that would distract the reader from the main message. In fact, our arXiv preprint has already prompted a7

successful follow-up study1 of discretized Langevin using the chi-squared divergence, but again, at the cost of8

ad-hoc assumptions that may or may not be definitive.9

2. Some rates of convergence are artifacts of continuous time analysis10

It is true that for an isotropic Gaussian target, NLD is simply a sped-up vanilla LD, but this is no longer11

the case for other target distributions where NLD has a real effect. In fact, for non-isotropic targets, our12

experiments demonstrate convincingly that NLD is not just a time-reparametrization of ULA, and that NLD is13

indeed superior.14

3. There should be comparisons with more algorithms15

Given the diversity of modifications of ULA, we had decided to add only TULA as a comparator: the16

improvement of NLA over these algorithms is several orders of magnitude better than the variability within17

the cluster of ULA modifications. Comparison with Underdamped/Accelerated Langevin (ALA) is presented18

in the attached figure: it exhibits a behaviour similar to (T)ULA in the anisotropic Gaussian case (d = 20).19

HMC belongs to a different family of algorithms.20

Specific comments21
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Instability of the “Newton scheme”. As in any problem in optimization or sampling, we do not advocate for a one-23

size-fits-all algorithm and, in many examples, additional structure may be leveraged to improve performance. NLA24

displays generally better behaviour than competitors in this study and, in that sense, is a good off-the-shelf algorithm.25

Nevertheless, we describe in the appendix an example where the the flexibility of the mirror perspective can be useful26

to better exploit the structure of the problem.27
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ALA, h = 0.5TULA vs. ULA. For the same step size ULA indeed typically outperforms28

TULA in our experiments but the two have essentially the same behavior.29

We believe that the range of step sizes in our experiments is sufficient to30

demonstrate qualitatively the relative behaviour of various algorithms.31

Reviewer 332

Using the chi-squared divergence is standard. We completely agree with33

reviewer on this point and acknowledge inspiration from the Markov semigroup perspective in the text. In fact, for the34

analysis of vanilla Langevin, the use of the chi-squared divergence is almost a tautology as indicated by our short proof35

based on semigroups; this fact had somehow been elusive in the sampling literature despite intense activity over the36

past few years.37

The lack of dimension dependence is not surprising. For non-strongly-log-concave potentials, whether or not the38

Poincaré constant depends on the dimension is actually the object of the KLS conjecture (see Sections 3.2 and 4.1).39

Note that whether this conjecture is true or not, the rate for NLD does not even depend on the Poincaré constant.40
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Assumptions. In the theory of sampling algorithms, we produce some of the weakest conditions amenable to polynomial42

sampling algorithms.43

Comparison with Zha+20 in terms of technical tools. In fact, Zha+20 fails to show convergence of the Mirror Langevin44

Algorithms even for vanishing step size. It also uses some assumptions that are stronger than ours, others that are45

incomparable, and finally some assumptions that are inherent to their discrete-time analysis.46

1M. A. Erdogu and R. Hosseinhazadeh, (2020). A brief note on the convergence of Langevin Monte Carlo in chi-square
divergence, arXiv:2007.11612.


