Supplementary Material for “Provable Overlapping
Community Detection in Weighted Graphs”

A LP Analysis

Letn € (0,1) and assume for now that for each j € [k], there exists i € [n] such that |0 —e; [l < 7.
Moreover, assume, without loss of generality, that for each i € [k]

160° — eillsc <. (8)

Indeed such a property can always be satisfied with appropriate relabelling of the nodes. Define

I = (k. ).

Lemma A.1. Suppose M is a k x k matrix whose rows belong to the unit simplex. If

[m’ —eifo <6 ©)
f hi € [k] and f (56[0 ! }th
or eacn and jor some S en
2V/2k
M~ = I|oe < 2V/26k. (10)

Proof. Since each row of M belongs to the unit simplex and satisfies (9), we note that £5-norm of
each column of M — I is bounded above by §+/2. This implies that

[M — I|| < 0V2k. (11)
Moreover
[[|M7Y =1 < ||IM~Y =1 (using reverse triangle inequality)
=M - )M~

<M =1
which implies that

_ 1
M| < . (12)

|M - 1|
Then, we have

IMT ~ I < VEIMT 1]
= VM -1
< VEIM — 1]M Y
_ VEIM 1|
R T
V20k

D S —

T 1-6v2k
< 2V20k. (by assumption on §)

(using (12))



For any ¢ € [k], consider the LP

min ¢’y
st. ©y >0 (Pi)
ylel > 1.
and its dual
max [
st. B +0Tu=c (Di)
G,u > 0.

Note that both (Pi) and (Di) are feasible optimization problems. Thus let y* and (5*, u*) be a
(Pi)-(Di) optimal solution pair.

1 Cmin
Lemma A.2. Supposen < —— .
PP = 2\/§]€ Cmax
Then o
¢ — 2V2nkemax < B < ——. (13)

L=n
Proof. The upper bound follows from observing that 5* = c¢”y* due to Strong Duality and that
e;/0;; is a feasible solution for (Pi), combined with the fact that 6;; > 1 — 7.

For the lower bound we construct a feasible solution for (Di). Define z as the solution of the system
I'"z = c. Note that the rows of I’ belong to the unit simplex and for any i € [k], we have

16, ) = €'lloe <7
< 1
T 2vV2k
Therefore using Lemma A.1, we conclude that || I'~7 — ||, < 2v/2nk.
Then for any s € [k], we have

(by assumption on 7))

|zs — ¢s| < ||z — ¢l
< HII?T - I”oocmax
< 2V2nkemax-

1 Cmin

2v/2k Cmax

Moreover since 1) < , we conclude that z > 0. Now define the point (5’, u’) such that

B =2z
and
if s € [k]\ {i}

Zsy
s {O, otherwise.
Note that (8’,u’) is feasible for (Di) with objective value
B> ¢; — 2V2nkcmax.
O

Define the vector r := ©7u* /2. We shall prove some bounds on the entries of r which will be used
for subsequent proofs.

Cmin

1
2\/§]€ Cmax

Lemma A.3. Suppose n < . Then we have the following inequalities.

1. 0 <r; <2knepmax

2. Forany s € [k] \ {i},

77 cl’l’lﬂ,X
Cmin — 1 ncmax S Ts < -




Proof. First note that r > 0 by definition and therefore the lower bound on 7; follows. From the

feasibility of (5*, u*) for (Di), we have for any s € [k]

Ts 5

o Cs — 6*07,5

(14)

The upper bound on r; follows from (14), and using the lower bound on 5* from Lemma A.2 and the

fact that 6;; > 1 — 7. Indeed, we have
c; — *0;
2
ci — [(ei = QﬂnkcmaX)(l —n)]
2

nei +2v2n0(1 = n)kcmax
B 2
- Nemax[1 + 2v/2(1 — n)k]

2

1+ 3k

2

For any s € [k] \ {¢}, the upper bound on r, follows
nonnegative and ¢; < Cppax.

ri =

< 2kncmax-

(- k>2)

from (14), and noting that 8* and 0,5 are

For any s € [k] \ {¢}, the lower bound on r, follows from (14), and using the upper bound on $*

from Lemma A.2, the fact that ¢5 > c¢;, and the fact that ;5 < 7. O
Lemma A.4. Suppose n < — ™ Then r)lco < Cmax
3k c 2

max

Proof. We prove this statement by proving that ||r||» is attained at some index in [k] \ {¢}. It suffices

to show that r; < r, for any s € [k] \ {i}. Note that by assumption 7 <

therefore the entries of r are bounded according to Lemma A.3.

‘We have

3k
min 2 2 max o
C yle 5

> 2NCmax(k + 1)
= 2ncmax + 2kncmax
>

Lcmax + 2kncmax
L—=n

which is equivalent to

2'14377cmax S Cmin —

Therefore using Lemma A.3, we conclude that 7; < r, for any s € [k] \ {i}.

L Cmin 1 Cmin and
Sk' Cmax - 2\@ Cmax
(by assumption on 7)
(n<1/2)
CII]aX'
O

min 1 1 min 1 . . .
Lemma A.5. Suppose ¢ >3 and n < 7 (c — 2). Then for any s € [k] \ {i}, if y% is
Cmax Cmax
positive, we have
yE < 2v/2nk. (15)
Proof. Pick any s € [k] \ {¢} such that y* > 0. Consider the auxiliary LP
min ¢’y
st. Oy >0 .
yTOi > 1 (Pi-aux)
ys > 2v2nk



and its dual

max  f+ (2v2nk)y
st.  BO +ves+0Tu=c (Di-aux)
B,v,u 2 0.

If we show that y* is not an optimal solution to (Pi-aux), then we can conclude that y} < 2\/§nk.
Therefore our goal is to show that the optimal value of (Pi-aux) is greater than ¢’y *. Equivalently,
we may also show that the optimal value of (Di-aux) is greater than 5*. We do so by constructing a
feasible solution for (Di-aux) at which the objective value is greater than 5*.

Now define I to be identical to I’ except the s*" row which is set to be es”. Let z* be the solution to

the system -
ITz=r (16)

where recall that r = ©Tu* /2.

Note that the rows of I belong to the unit simplex and for any i € [k], we have

1(i,:) = e'lloo <

1
< —. (by assumption on 7))
2v2k
Therefore using Lemma A.1, we conclude that
1177 = I|loe < 2v2nk. (17)

Define the point

B g e

V=] 0 || (18)

a u*/2 u’

where 3’ := 2}, +' := z¥ and

u.

_ {z; ifpe[k]\{i,s}

!
L 0 otherwise.
First we argue that (3, 5, @) is feasible for (Di-aux). From (18), we have

ﬂ_ai+’_yes+@T_:ﬂ*9i+®Tu*/2+B'0i+’y’es+@Tu’

=c—r+30 ++e +0Tu (" (B8*,u*) is feasible for (Di))
=c—r+1I}lz" (using the definition of (8',7/,u’))
—c. (using (16))

To argue about the nonnegativity of (3,7, @), it suffices to argue that
Lz;+8°>0
z([k]\{i}) >0

Note that our assumption on 7 implies 1 < 5 \fk zmm and therefore Lemmas A.2 and A.3 apply.
We have
=7 (4, 0)r; + Z -7
PG[k]\{Z}
>0+ Y., I "(pry (I T(,i) >0, > 0) (19)
pE[k\{i}
> —Zﬁnk%%. (using (17) and Lemma A.3)



Combining the lower bound on z; with the lower bound on 5* in Lemma A.2 we get

Z,Zk + /8* > ¢ — 3\/§nkcmax

> Cmin — Sﬁnkcmax
> 0.

The last inequality above follows from our assumption on 7. Indeed, we have
< 1 Cmin 1
T3k \max 2
< 1 Cmin ( . Cmin < 1)
3\/§k Cmax - ' Cmax

Similarly, for any ¢ € [k] \ {¢} we have

7 2r = [I7" = It (using (16))

Cmax .
> — QﬁnkT (using (17) and Lemma A.4) (20)

2 Cmin — %Cmax —2V2nk Cn;x. (using Lemma A.3)
n

Our assumption on 7 yields a positive lower bound on the above expression. Indeed, we have

Cmax

2

Cmax

Cmin > + 3knCmax (by assumption on 7))

v

+ 2(k + 1)ncmax (o k>2)

Cmax

2

Cmax

+ 2NCmax + 2nkcmax

- 2 + %Cmax + \/Enkcmax ( 77 S 1/2)

Using the above in (20), we get
Z{ > Cmax/2- (21)

Therefore (3,7, @) is feasible for (Di-aux).
Now we argue that the objective value of (Di-aux) at (B, 7, ) is greater than $*. Indeed note that
B+ (2V2nk)Y = 2f + (2V2nk) 2]
> =V 2k + 2V 2k (using (19) and (21))
=0.

That is, 8’ + (2v/2nk)y’ > 0 or equivalently, 3+ (2v/2nk)7 > (* thereby concluding the proof. [

min 1 1 min 1 . .
Lemma A.6. Suppose Cmin = and n< — Cmin _ 2}, Then for any s € [k] \ {3}, if y is
Cmax 2 4k \ Cmax 2
negative, we have
yr > —4V2nk. (22)

Proof. Pick any s € [k] \ {i} such that y* < 0. Consider the auxiliary LP

min ¢’y

st. Oy >0
vTo' > 1 (Pi-aux)
ys < —4V2nk



and its dual
max S+ (4v/2nk)y

st. B0 —ves+0Tu=c (Di-aux)
Byv,u = 0.

If we show that y™* is not an optimal solution to (Pi-aux), then we can conclude that y; > —4y/2nk.
Therefore our goal is to show that the optimal value of (Pi-aux) is greater than ¢’y *. Equivalently,
we may also show that the optimal value of (Di-aux) is greater than 3*. We do so by constructing a
feasible solution for (Di-aux) at which the objective value is greater than 3*.

Let z* be the solution to the system

Ty —r+ C“;X €. (23)

where recall that r = ©Tu* /2.
Note that the rows of I’ belong to the unit simplex and for any ¢ € [k], we have

1(i,:) = €'lloc <1
1

< —. by assumption on
SN (by p n)
Therefore using Lemma A.1, we conclude that
11"~" = I||o < 2V20k. (24)
Define the point
B B* B
=1 0 | + |cmax/2 (25)
a u*/2 u

where 8’ := z; and

P 0 otherwise.

. { ifp e K\ (i)

First we argue that (3,7, @) is feasible for (Di-aux). From (25), we have

B0 — Jes + 0T = *0" + OTu* /2 + 50" — cpaxes/2 + OTW

=c—r+ 30 — cpaxes/2 + 0T (- (B*,u*) is feasible for (Di))
=c—r+ 172" — cpaxes/2 (using the definition of (3',u’))
=c. (using (23))

To argue about the nonnegativity of (3,7, 1), it suffices to argue that
L.z +pB8*>0
2. z*([K]\{i}) = 0.

Note that our assumption on n implies n < ﬁ Z::( and therefore Lemmas A.2 and A.3 apply.
We have
g =TT+ T s) (e + emax/2) + Y. I p)ry
pE[R\{4,s}
>0+ 17"(,8)(rs + emax/2) + Y, I7T(p)ry (o I'7T(,0) > 0,75 > 0)
pE[RI\{i,s}
> —2\/§nkcmax. (using (24) and Lemma A.3)

(26)



Combining the lower bound on z; with the lower bound on /5* in Lemma A.2 yields

Z,Zk + 6* >c— 4\/§nkcmax

> Cmin — 4\/§nkcmax
> 0.

The last inequality above follows from our assumption on 7. Indeed, we have

1 [/ cmin 1
TS 4% <m - 2>
<L Cmin ( » Cmin 1)
4y/2k Cmax " Cmax

Similarly, for any ¢ € [k] \ {¢} we have

2y > 1+ CmaxI(s,t)/2 — ||I’_T — I|loo|lr + Cmaxe€s/2]|co  (using (23))
>y — ”II?T —Ioo|lr + cmaxes /2|l

> — 2\/§nkcmax (using (24) and Lemma A 4) @7
> Cmin — %cmax — 2\/§nkcmax. (using Lemma A.3)
N
Our assumption on 7 yields a positive lower bound on the above expression. Indeed, we have
Conin > CH;X + 4knCmax (by assumption on 7)
> T 4 (24 3k (k=2
CII’laX
= T + 2ncmax + SUkaax
> S5 o T+ 2V 2K (-n<1/
Using the above in (27), we get
2{ > Cmax/2- (28)

Therefore (3,7, @) is feasible for (Di-aux).

Now we argue that the objective value of (Di-aux) at (B, 7, ) is greater than $*. Indeed note that

B+ (4v/2nk) T = 2f 4 (4V/2k)

> —2v2nkcmax + (4\/§nk)cm% (using (26))
=0.

That is, 8’ + (4v/2nk) CH;X > 0 or equivalently, 3 + (4v/2nk)5 > /3* thereby concluding the

proof. O

min 1 1 min 1
Lemma A.7. Suppose zmax > 5 andn < 1% (:nax — 2). Then
1 — 4v2n2k 1+ 4v2n%k
# <yr < # (29)

Proof. We note that the constraint y”'@% > 1 in (Pi) is tight at optimality. Indeed otherwise one may
scale the optimal solution so as to make that constraint tight and obtain a strictly smaller objective
value, thereby contradicting optimality.



Then we have

1= y*Tgi
=y; 0 + Z Y3 0is. (30)
se[kI\{i}

Moreover

Yo wibis] < Iy (KN D107\ {i})]l1  (using Holder’s inequality)

selk]\{i} (31)
< nlly" (B A{i})lloo Co 10 (K \ DIl < n)
< 4vV2n%k. (using Lemmas A.5 and A.6)
Using (31) in (30) yields the desired result. ]

Proof of Theorem 3.4. First note that (P) is both feasible and bounded below, which implies that it
has an optimal solution. By assumption, there exists a k x k submatrix of © whose entrywise distance
from I is at most ; this implies that the spectral norm distance of such a submatrix from I is at most
nk which is, by assumption, at most (¢min/Cmax — 1/2)/4 which is at most one. This implies that
the column rank of © is k. Therefore, using the fact that B is full-rank, we conclude that the column
range of O is equal to the range of P and consequently the rank of P is k. Therefore (P) may be
rewritten as

min ¢’y
st. Oy >0 (Py)
ylei > 1.

Note that (Py) is both feasible and bounded below, which implies that it has an optimal solution.
Since x* is an optimal solution to (P), there exists an optimal solution to (Py), called y*, satisfying
Oy* = x*. Using Lemmas A.5, A.6, and A.7, we conclude that

v

The last equality above holds because #;; > 1 — 7 and < 1/2. Then we have

*

< V2nkmax{2,4,4n/6;;} = 4V 2nk. (32)

oo

S

A oo_Hgy 90@- o
. € 33
<6l v - 52 63
27 lloo
< 42k (]l©]|oc = 1 and using (32))



Lastly, we have

x* * 0, 0,
im0 <= -2+ -e
(using triangle inequality)
0, 0,
= 1= * * ) J 0.
0~ 0| 0, 0;
S‘l_” ]H ’+‘||X*||oo_| ]” ‘—F‘X*—] + 7]_0.7.
0ij 0ij Oijlloe 1103 -
(using triangle inequality)
0|~ 0, 0,
<‘L—”ﬂ’+%x”—j +"’—@
0ij Oijlloe 1103 s

(using reverse triangle inequality)

0, 1
< (1l 1) s svams (- 1) 101
)

7

§8¢%k+2(;_9

ij
2n
L=
< 8V2nk + 4n
= 4n(2v2k + 1)

< 8V2nk +

where the inequality in the fifth line from bottom follows from using (33), the inequality in the fourth
line from bottom follows because |0,/ < 1, the inequality in the third line from bottom follows
because §;; > 1 — 0, and the inequality in the second line from bottom follows because 1 < 1/2.

Lastly we provide an argument for the time complexity claim. Since the rank of P is k, the column
range of P is same as the column range of V' where V' is an n x k matrix whose columns contain the
eigenvectors of P corresponding to its £ nonzero eigenvalues. This implies that (P) is equivalent to
{min e’ (Vy) subject to Vly > 0, (Vy)7(;) > 1} which contains n + 1 constraints and k variables.
Hence the result in Megiddo [1984] implies that (P) can be solved in O(n) time. Moreover, V' can
be obtained from P in O(n?) time using, for instance, randomized SVD techniques (Halko et al.
[2011]). O

B Some Concentration Properties in the MMSB

In this section, we show concentration properties of some key random variables associated with
random matrices © and © B. We shall use these observations for our subsequent proofs, but they may
also be of independent interest. Even though we work the equal parameter Dirichlet distribution, the
proof techniques here easily extend to the case with different Dirichlet parameters.

Define | := omin(B) and u := opyax(B). Suppose the k parameters of the Dirichlet distribution are
all equal to . We repeatedly use the facts that for any i € [n], s € [k],

1
Elf;s] = — 4
[6s] 2 (34
and
+1
Ej§2] = * "+ 35
162 k(ak +1) (35)
Moreover, if s,t € [k] such that s # ¢ then
a
E isUit| = —/——.
isbie] = Tk 1) (30)



9
Lemma B.1. For any j € [k], we have L ¢

10k —
—-nNn
1—2€Xp <5Ok2>

Proof. For any j € [k], ¢; is the sum of n independent bounded random variables {6;;}7—,. Indeed
each row of © is sampled independently and each entry of © lies in [0, 1]. Moreover, using (34) we
get that E[c;] = n/k. Thus, using Hoeffding’s inequality, we have that for any z > 0

11
< E% with probability at least

—222
Pr(lc; —n/k| > z) §2exp< - > 37

Setting z = n/10k in (37) yields the desired result.
Corollary B.2. We have cpmin/Cmax > 9/11 with probability at least 1 — py, where p; =

—-n
2k exp (501@’2)'

Proof. Lemma B.1 implies that with probability at least 1 — 2k exp (

—nNn

S0k2 ) , both ¢ipin > 9n/10k
and ¢pax < 11n/10k hold. O

2
Lemma B.3. For any ¢ > 0, |©B] < u”?n + €¢||®|| with probability at least 1 —

2u+1 k —2n
— xp [ —— |.
€ eXp k2

For proving Lemma B.3, we first prove the following statements for set C := {y € R* : 3x ¢
R* such that Bx =y, ||x|| = 1} defined as the image of the unit sphere under B.

k
2

Lemma B4. [f € is an e-net of C of smallest possible cardinality, then |E| < (u + 1> .
€

Proof. Let £ be a maximal e-separated subset of C. Note that by definition of an e-separated subset,
for any distinct x,y € £, we have ||x — y|| > e. Moreover, the maximality of £’ implies that £’ is
also an e-net of C. Therefore

€1 < 1E']. (38)
We also have that the union of |€’| disjoint balls |J B(x,¢/2) C C + B(0,¢/2) C B(0,u + €/2).
Therefore <
vol < U B, 6/2)> < vol(B(0,u + €/2)) (39)
x€E’

which implies that |€'|(e/2)* < (u + ¢/2)* which yields the desired result when combined with
(38). O

Lemma B.5. Supposey € C. Foranyi € [n]:
1. 0 < (6% y)? <u?
2 u?

2. Wk +1) <E[(8',y)*] < s

Proof. Lety = Bx such that |x|| = 1. Then! < ||y|| < u.

1. We have
0, y)% < 16| |ly|I? (using Cauchy-Schwarz inequality)
<u? (16:]] < 1).

10



2. We have

E[(6",y)?] = E[0;,y7 + -+ 05ui] + E Z Ois0itysye
s, te(k]:
i
a+1 9 )
= 1 +E 07,507, s 35
k(ak + 1) Iyl gg} tYsYt (using (35))
s#t
a+1 2 )
= s 36
k(ak + 1) vl + S;C] YsYt (using (36))
s#t
= : Iyl + a (e'y)? (re-arranging terms).
k(ak +1) k(ak +1)

Now noting the second term on the right hand side above is nonnegative yields the desired
lower bound.

Similarly noting that e’y < uv/k (using Cauchy-Schwarz inequality) yields the desired

upper bound.
O
Proof of Lemma B.3. We have
|©B|| = sup [|©Bx] = sup||Oy]|. (40)
xeSk—1 yec

Let £ denote an e-net of C of smallest possible cardinality. Then we have

1©B]| < sup Oy + €[|Of- 41
yee

Indeed if the supremum defining ||© B|| on the RHS in (40) is attained at y,, and if y. is a point in £
such that ||ys — ye|| < ¢, then

0B =[Oyl
= [|®y. + O(ys — ye)ll
< |0yl + 1©(ys — ye)ll (using triangle inequality)

< sup [[Oy]| + €[|O].
yee

For any y € £, we have
[Oy[* = (6", )% +---+ (6", y)*.

Now note that ||©y||? is the sum of n independent random variables. Indeed using Lemma B.5 we

2
conclude that each of these random variables is bounded and that E[||Oy||?] < % Thus, using
Hoeffding’s inequality, we have that for any z > 0,

TLU2
pr (leyl? = "=+ +) < Pr(ly|? > Bljoy|P] + 2

—222
< exp )

Then using the union bound over the e-net, we obtain that

2 —9 2
mewam+%gm@(i>
yeE k nu

2u 4§ —222
< ( + 1) exp ( 7 ) (using Lemma B.4)
€ nu

11



2
Setting z = nu?/k in the above, we note that sup [|Oy|| < uy/ ?n with probability at least 1 —
yee

k
P )
(“ + 1) exp (,;) combining which with (41) yields the desired result. 0
€

2 -2
Corollary B.6. [|O] <24/ ?n with probability at least 1 — py, where ps := 5* exp <k2n)

Proof. Set B =1 and ¢ = 1/2 in Lemma B.3. O

2
Corollary B.7. ||©B|| < 2uy/ ?n with probability at least 1 — p,.

Proof. This follows simply from using the inequality ||©B]|| < ||©]|||B|| and the upper bound
obtained in Corollary B.6. O

Lemma B.8. ak(@B)

l /2
71 ]: with probability at least 1 — p3, where ps := ps +

> 1
4
16uv/ak + 1 o —nl*
X
0 P 2k2ut(ak + 1)2
Proof. We have
0u(©B) = inf [©Bx| = inf |Oy]. “2)

Let £ denote an e-net of C of smallest p0551b1e cardinality. Then we have

or(OB) = inf [[Oy| —€[|O]. 43)
yeE

Indeed if the infimum defining oy, (© B) on the RHS in (42) is attained at y, and if y, is a point in £
such that ||ys — ye|| < ¢, then

or(©B) = [|Oy||
= [|Oye + O(ys — ye)ll
> 10yell — 10(ys — ye)lll (using reverse triangle inequality)
= [|©yell = 0(ys =yl
>

inf Oy — €]|O)].
inf Oyl —€l®ll

For any y € £, we have
[Oy[I* = (8", y)* +--- 4+ (8", y)*.

Now note that ||©y||? is the sum of n independent bounded random variables. Indeed using Lemma
ni?

B.5 we conclude that each of these random variables is bounded and that E[||©y]|?] > Fak 1)

Thus, using Hoeffding’s inequality, we have that for any z > 0,
nl?
pr (100lP < s - <) < Prdlel? < Elleyl?l - )
()
< exp T |-
nu

k(ak +1)
Then using the union bound over the e-net, we obtain that

nl? —222
Pr| inf ||Oy]| < {/ ——m8— — <|&
r(;ggll W<\t z>_| jop ()

2u F —222
< ( + 1) exp <4) (using Lemma B.4)
€ nu

12



2

nl? } n
2k(ak+1)

Setting z = im’ we note that 1nf |9y >

() e (g o)

Using (43), we get that

—_

with probability at least

©8)= /1o (44)
o - —¢
b =\ 2k(ak +1)
k
2 —nl*
Wlth probablhty at least 1 — <6u + 1) exp <2k2u4(alnlk—|—1)2) .

Lastly, using the upper bound on ||©|| derived in Corollary B.6 in (44), we get that

S .-

. . 2u —nl* , 1 1
with probability at least 1 — py — (e + 1> exp (WXW) Setting ¢ = §\/T+1
yields the desired result. O

C Proof of Main Theorem

In this section, we build the proof of Theorem 3.1.

log(p/k)
log I (a, (k — 1))’
for each j € [k), there exists a row vector v in © such that

then with probability at least 1 — p,

Lemma C.1. Letp,y € (0,1). If n >

Ir = ejlloc < - 45

(Here I,(y, z) denotes the regularized incomplete beta function.)

Proof. Forany j € [k], define E; as the event that there exists arow r” in © such that [[r—e; | < 7.
Then for any j € [k], we have

Pr(Ej) = H Pr(||0" — ej]joc >7) (.- rows of © are independently sampled)

i€[n]
= H Pr(0;; <1—7) (*.- rows of O belong to unit simplex)
= [Li—y(a, (k= 1)a)]" (I (y, 2) is the CDF of marginal of Dirichlet distribution)
< p/k. (by assumption on n)
(46)
Therefore
Pr(E NN Ep) =1-Pr(ESU---UEY)
>1- Z Pr(E7) (using the union bound)
>1—p. (using (46))
O

Proof of Theorem 3.1. Using the lower bound assumption on n and Lemma C.1, we conclude that
with probability at least 1 — p, for each j € [k], there exists a row r” in © such that

Ir —ejlleo <€ (47)

13



Recalling the definition of A, we note that (47) is equivalent to

[Al[max < €. (48)
Using Corollary B.7 and Lemma B.8, we conclude that

ko < 8kvak + 1 (49)

with probability at least 1 — po — p3. Therefore (49) implies that

1 1 1
min , = >e€ using the definition of €
(\/k ) 2) 92ro(1+ 80K2) = (using v 50
> € (using the assumption on ¢)

> [|A|lmax  (using (48))
with probability at least 1 — pa — ps.

Using (50), we note that the assumption of Theorem 3.3 is satisfied with probability at least 1 — p —
p2 — ps. Therefore the set J returned by Algorithm 2 satisfies

ITTO(T, ) = Iflmax < 40V263 || Allmax

(5D
< 40V2~K3e
with probability at least 1 — p — po — p3 for some k x k permutation matrix II.
Now from Corollary B.2, we know that
1 Cmin 1 7
— — =) > — 52
4k (Cmax 2) — 88k (52)
with probability at least 1 — p;.
Thus we have
40V 2k2e < 40V 2K3€; (using the assumption on ¢)
< 40V2 - 64k%(ak + 1)ey  (using (49))
7
= 35k (using the definition of €3) (53)
1 Cmin 1 .
< _ =
< (Cmax 2) (using (52))

with probability at least 1 — p — p; — p2 — p3. Combining (51) and (53), we conclude that the
assumption of Theorem 3.4 is satisfied with probability at least 1 — p — p; — pa — ps. Therefore for
any j € [k], the vector 8, returned by SP+LP satisfies

0; — )]0 <4-40V2K2¢ - (2v2k + 1

16 — 6 0
< 10240V2k2 (ak 4 1)(2v2k 4 1) (using (49))
= O(ak*k%e)

with probability at least 1 — p — p; — p2 — p3. Substituting the expressions for p1, p2 and p3, the
probability 1 — p — p; — p2 — p3 can be expressed as 1 — p — c¢;e~ 2" such that ¢y, ¢ are constants
that depend on «, k, &.

O

Proof of Corollary 3.2. From Theorem 3.1, we know that the maximum distance between vectors

01,...,0; and the columns of ©, up to a permutation, is O(ak?k?e) with probability at least
1 —p — c1e7°2" where c1, co are constants that depend on «, k, k.

Similarly, the maximum distance between vectors él, e ék and the columns of ©, up to a permuta-
tion, is O(ak?#2€) with probability at least 1 — p — &;e~°2" where ¢, ¢, are constants that depend
on &, k, k.

Combining the above two observations with the triangle inequality and the union bound yields the
desired result. O
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