
Supplementary Material for “Provable Overlapping
Community Detection in Weighted Graphs”

A LP Analysis

Let η ∈ (0, 1) and assume for now that for each j ∈ [k], there exists i ∈ [n] such that ‖θi−ej‖∞ ≤ η.
Moreover, assume, without loss of generality, that for each i ∈ [k]

‖θi − ei‖∞ ≤ η. (8)

Indeed such a property can always be satisfied with appropriate relabelling of the nodes. Define
I ′ := Θ([k], :).

Lemma A.1. Suppose M is a k × k matrix whose rows belong to the unit simplex. If

‖mi − ei‖∞ ≤ δ (9)

for each i ∈ [k] and for some δ ∈
[
0,

1

2
√

2k

]
, then

‖M−T − I‖∞ ≤ 2
√

2δk. (10)

Proof. Since each row of M belongs to the unit simplex and satisfies (9), we note that `2-norm of
each column of M − I is bounded above by δ

√
2. This implies that

‖M − I‖ ≤ δ
√

2k. (11)

Moreover

|‖M−1‖ − 1| ≤ ‖M−1 − I‖ (using reverse triangle inequality)

= ‖(M − I)M−1‖
≤ ‖M − I‖‖M−1‖

which implies that

‖M−1‖ ≤ 1

1− ‖M − I‖
. (12)

Then, we have

‖M−T − I‖∞ ≤
√
k‖M−T − I‖

=
√
k‖M−1 − I‖

≤
√
k‖M − I‖‖M−1‖

≤
√
k‖M − I‖

1− ‖M − I‖
(using (12))

≤
√

2δk

1− δ
√

2k

≤ 2
√

2δk. (by assumption on δ)
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For any i ∈ [k], consider the LP
min cTy

s.t. Θy ≥ 0

yTθi ≥ 1.

(Pi)

and its dual
max β

s.t. βθi + ΘTu = c

β,u ≥ 0.

(Di)

Note that both (Pi) and (Di) are feasible optimization problems. Thus let y∗ and (β∗,u∗) be a
(Pi)-(Di) optimal solution pair.

Lemma A.2. Suppose η ≤ 1

2
√

2k

cmin

cmax
.

Then
ci − 2

√
2ηkcmax ≤ β∗ ≤

ci
1− η

. (13)

Proof. The upper bound follows from observing that β∗ = cTy∗ due to Strong Duality and that
ei/θii is a feasible solution for (Pi), combined with the fact that θii ≥ 1− η.

For the lower bound we construct a feasible solution for (Di). Define z as the solution of the system
I ′T z = c. Note that the rows of I ′ belong to the unit simplex and for any i ∈ [k], we have

‖I ′(i, :)− ei‖∞ ≤ η

≤ 1

2
√

2k
. (by assumption on η)

Therefore using Lemma A.1, we conclude that ‖I ′−T − I‖∞ ≤ 2
√

2ηk.

Then for any s ∈ [k], we have

|zs − cs| ≤ ‖z− c‖∞
≤ ‖I ′−T − I‖∞cmax

≤ 2
√

2ηkcmax.

Moreover since η ≤ 1

2
√

2k

cmin

cmax
, we conclude that z ≥ 0. Now define the point (β′,u′) such that

β′ := zi

and

u′s :=

{
zs, if s ∈ [k] \ {i}
0, otherwise.

Note that (β′,u′) is feasible for (Di) with objective value

β′ ≥ ci − 2
√

2ηkcmax.

Define the vector r := ΘTu∗/2. We shall prove some bounds on the entries of r which will be used
for subsequent proofs.

Lemma A.3. Suppose η ≤ 1

2
√

2k

cmin

cmax
. Then we have the following inequalities.

1. 0 ≤ ri ≤ 2kηcmax.

2. For any s ∈ [k] \ {i},
cmin −

η

1− η
cmax ≤ rs ≤

cmax

2
.
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Proof. First note that r ≥ 0 by definition and therefore the lower bound on ri follows. From the
feasibility of (β∗,u∗) for (Di), we have for any s ∈ [k]

rs =
cs − β∗θis

2
. (14)

The upper bound on ri follows from (14), and using the lower bound on β∗ from Lemma A.2 and the
fact that θii ≥ 1− η. Indeed, we have

ri =
ci − β∗θii

2

≤ ci − [(ci − 2
√

2ηkcmax)(1− η)]

2

=
ηci + 2

√
2η(1− η)kcmax

2

≤ ηcmax[1 + 2
√

2(1− η)k]

2

≤ ηcmax

(
1 + 3k

2

)
≤ 2kηcmax. (∵ k ≥ 2)

For any s ∈ [k] \ {i}, the upper bound on rs follows from (14), and noting that β∗ and θis are
nonnegative and cs ≤ cmax.

For any s ∈ [k] \ {i}, the lower bound on rs follows from (14), and using the upper bound on β∗
from Lemma A.2, the fact that cs ≥ cmin and the fact that θis ≤ η.

Lemma A.4. Suppose η ≤ 1

3k

cmin

cmax
. Then ‖r‖∞ ≤

cmax

2
.

Proof. We prove this statement by proving that ‖r‖∞ is attained at some index in [k] \ {i}. It suffices

to show that ri ≤ rs for any s ∈ [k] \ {i}. Note that by assumption η ≤ 1

3k

cmin

cmax
≤ 1

2
√

2

cmin

cmax
and

therefore the entries of r are bounded according to Lemma A.3.

We have

cmin ≥ 2ηcmax
3k

2
(by assumption on η)

≥ 2ηcmax(k + 1) (∵ k ≥ 2)

= 2ηcmax + 2kηcmax

≥ η

1− η
cmax + 2kηcmax (∵ η ≤ 1/2)

which is equivalent to
2kηcmax ≤ cmin −

η

1− η
cmax.

Therefore using Lemma A.3, we conclude that ri ≤ rs for any s ∈ [k] \ {i}.

Lemma A.5. Suppose
cmin

cmax
>

1

2
and η <

1

3k

(
cmin

cmax
− 1

2

)
. Then for any s ∈ [k] \ {i}, if y∗s is

positive, we have
y∗s < 2

√
2ηk. (15)

Proof. Pick any s ∈ [k] \ {i} such that y∗s > 0. Consider the auxiliary LP

min cTy

s.t. Θy ≥ 0

yTθi ≥ 1

ys ≥ 2
√

2ηk

(Pi-aux)
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and its dual
max β + (2

√
2ηk)γ

s.t. βθi + γes + ΘTu = c

β, γ,u ≥ 0.

(Di-aux)

If we show that y∗ is not an optimal solution to (Pi-aux), then we can conclude that y∗s < 2
√

2ηk.
Therefore our goal is to show that the optimal value of (Pi-aux) is greater than cTy∗. Equivalently,
we may also show that the optimal value of (Di-aux) is greater than β∗. We do so by constructing a
feasible solution for (Di-aux) at which the objective value is greater than β∗.

Now define Ī to be identical to I ′ except the sth row which is set to be es
T . Let z∗ be the solution to

the system
ĪT z = r (16)

where recall that r = ΘTu∗/2.

Note that the rows of Ī belong to the unit simplex and for any i ∈ [k], we have

‖Ī(i, :)− ei‖∞ ≤ η

≤ 1

2
√

2k
. (by assumption on η)

Therefore using Lemma A.1, we conclude that

‖Ī−T − I‖∞ ≤ 2
√

2ηk. (17)

Define the point β̄γ̄
ū

 :=

[
β∗

0
u∗/2

]
+

[
β′

γ′

u′

]
(18)

where β′ := z∗i , γ′ := z∗s and

u′p :=

{
z∗p if p ∈ [k] \ {i, s}
0 otherwise.

First we argue that (β̄, γ̄, ū) is feasible for (Di-aux). From (18), we have

β̄θi + γ̄es + ΘT ū = β∗θi + ΘTu∗/2 + β′θi + γ′es + ΘTu′

= c− r + β′θi + γ′es + ΘTu′ (∵ (β∗,u∗) is feasible for (Di))

= c− r + ĪTk z∗ (using the definition of (β′, γ′,u′))

= c. (using (16))

To argue about the nonnegativity of (β̄, γ̄, ū), it suffices to argue that

1. z∗i + β∗ ≥ 0

2. z∗([k] \ {i}) ≥ 0.

Note that our assumption on η implies η <
1

2
√

2k

cmin

cmax
and therefore Lemmas A.2 and A.3 apply.

We have

z∗i = Ī−T (i, i)ri +
∑

p∈[k]\{i}

Ī−T (i, p)rp

≥ 0 +
∑

p∈[k]\{i}

Ī−T (i, p)rp (∵ Ī−T (i, i) ≥ 0, ri ≥ 0)

≥ −2
√

2ηk
cmax

2
. (using (17) and Lemma A.3)

(19)
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Combining the lower bound on z∗i with the lower bound on β∗ in Lemma A.2 we get

z∗i + β∗ ≥ ci − 3
√

2ηkcmax

≥ cmin − 3
√

2ηkcmax

> 0.

The last inequality above follows from our assumption on η. Indeed, we have

η <
1

3k

(
cmin

cmax
− 1

2

)
<

1

3
√

2k

cmin

cmax
.

(
∵
cmin

cmax
≤ 1

)
Similarly, for any t ∈ [k] \ {i} we have

z∗t ≥ rt − ‖Ī−T − I‖∞‖r‖∞ (using (16))

≥ rt − 2
√

2ηk
cmax

2
(using (17) and Lemma A.4)

≥ cmin −
η

1− η
cmax − 2

√
2ηk

cmax

2
. (using Lemma A.3)

(20)

Our assumption on η yields a positive lower bound on the above expression. Indeed, we have

cmin >
cmax

2
+ 3kηcmax (by assumption on η)

≥ cmax

2
+ 2(k + 1)ηcmax (∵ k ≥ 2)

=
cmax

2
+ 2ηcmax + 2ηkcmax

≥ cmax

2
+

η

1− η
cmax +

√
2ηkcmax (∵ η ≤ 1/2)

Using the above in (20), we get
z∗t > cmax/2. (21)

Therefore (β̄, γ̄, ū) is feasible for (Di-aux).

Now we argue that the objective value of (Di-aux) at (β̄, γ̄, ū) is greater than β∗. Indeed note that

β′ + (2
√

2ηk)γ′ = z∗i + (2
√

2ηk)z∗s

> −
√

2ηkcmax + 2
√

2ηk
cmax

2
(using (19) and (21))

= 0.

That is, β′+(2
√

2ηk)γ′ > 0 or equivalently, β̄+(2
√

2ηk)γ̄ > β∗ thereby concluding the proof.

Lemma A.6. Suppose
cmin

cmax
>

1

2
and η <

1

4k

(
cmin

cmax
− 1

2

)
. Then for any s ∈ [k] \ {i}, if y∗s is

negative, we have
y∗s > −4

√
2ηk. (22)

Proof. Pick any s ∈ [k] \ {i} such that y∗s < 0. Consider the auxiliary LP

min cTy

s.t. Θy ≥ 0

yTθi ≥ 1

ys ≤ −4
√

2ηk

(Pi-aux)
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and its dual
max β + (4

√
2ηk)γ

s.t. βθi − γes + ΘTu = c

β, γ,u ≥ 0.

(Di-aux)

If we show that y∗ is not an optimal solution to (Pi-aux), then we can conclude that y∗s > −4
√

2ηk.
Therefore our goal is to show that the optimal value of (Pi-aux) is greater than cTy∗. Equivalently,
we may also show that the optimal value of (Di-aux) is greater than β∗. We do so by constructing a
feasible solution for (Di-aux) at which the objective value is greater than β∗.

Let z∗ be the solution to the system

I ′T z = r +
cmax

2
es (23)

where recall that r = ΘTu∗/2.

Note that the rows of I ′ belong to the unit simplex and for any i ∈ [k], we have

‖I ′(i, :)− ei‖∞ ≤ η

≤ 1

2
√

2k
. (by assumption on η)

Therefore using Lemma A.1, we conclude that

‖I ′−T − I‖∞ ≤ 2
√

2ηk. (24)

Define the point β̄γ̄
ū

 :=

[
β∗

0
u∗/2

]
+

[
β′

cmax/2
u′

]
(25)

where β′ := z∗i and

u′p :=

{
z∗p if p ∈ [k] \ {i}
0 otherwise.

First we argue that (β̄, γ̄, ū) is feasible for (Di-aux). From (25), we have

β̄θi − γ̄es + ΘT ū = β∗θi + ΘTu∗/2 + β′θi − cmaxes/2 + ΘTu′

= c− r + β′θi − cmaxes/2 + ΘTu′ (∵ (β∗,u∗) is feasible for (Di))

= c− r + I ′T z∗ − cmaxes/2 (using the definition of (β′,u′))

= c. (using (23))

To argue about the nonnegativity of (β̄, γ̄, ū), it suffices to argue that

1. z∗i + β∗ ≥ 0

2. z∗([k] \ {i}) ≥ 0.

Note that our assumption on η implies η <
1

2
√

2k

cmin

cmax
and therefore Lemmas A.2 and A.3 apply.

We have

z∗i = I ′−T (i, i)ri + I ′−T (i, s)(rs + cmax/2) +
∑

p∈[k]\{i,s}

I ′−T (i, p)rp

≥ 0 + I ′−T (i, s)(rs + cmax/2) +
∑

p∈[k]\{i,s}

I ′−T (i, p)rp (∵ I ′−T (i, i) ≥ 0, ri ≥ 0)

≥ −2
√

2ηkcmax. (using (24) and Lemma A.3)
(26)
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Combining the lower bound on z∗i with the lower bound on β∗ in Lemma A.2 yields

z∗i + β∗ ≥ ci − 4
√

2ηkcmax

≥ cmin − 4
√

2ηkcmax

> 0.

The last inequality above follows from our assumption on η. Indeed, we have

η <
1

4k

(
cmin

cmax
− 1

2

)
<

1

4
√

2k

cmin

cmax
.

(
∵
cmin

cmax
≤ 1

)
Similarly, for any t ∈ [k] \ {i} we have

z∗t ≥ rt + cmaxI(s, t)/2− ‖I ′−T − I‖∞‖r + cmaxes/2‖∞ (using (23))

≥ rt − ‖I ′−T − I‖∞‖r + cmaxes/2‖∞
≥ rt − 2

√
2ηkcmax (using (24) and Lemma A.4)

≥ cmin −
η

1− η
cmax − 2

√
2ηkcmax. (using Lemma A.3)

(27)

Our assumption on η yields a positive lower bound on the above expression. Indeed, we have

cmin >
cmax

2
+ 4kηcmax (by assumption on η)

≥ cmax

2
+ (2 + 3k)ηcmax (∵ k ≥ 2)

=
cmax

2
+ 2ηcmax + 3ηkcmax

≥ cmax

2
+

η

1− η
cmax + 2

√
2ηkcmax (∵ η ≤ 1/2)

Using the above in (27), we get
z∗t > cmax/2. (28)

Therefore (β̄, γ̄, ū) is feasible for (Di-aux).

Now we argue that the objective value of (Di-aux) at (β̄, γ̄, ū) is greater than β∗. Indeed note that

β′ + (4
√

2ηk)
cmax

2
= z∗i + (4

√
2ηk)

cmax

2

> −2
√

2ηkcmax + (4
√

2ηk)
cmax

2
(using (26))

= 0.

That is, β′ + (4
√

2ηk)
cmax

2
> 0 or equivalently, β̄ + (4

√
2ηk)γ̄ > β∗ thereby concluding the

proof.

Lemma A.7. Suppose
cmin

cmax
>

1

2
and η <

1

4k

(
cmin

cmax
− 1

2

)
. Then

1− 4
√

2η2k

θii
≤ y∗i ≤

1 + 4
√

2η2k

θii
. (29)

Proof. We note that the constraint yTθi ≥ 1 in (Pi) is tight at optimality. Indeed otherwise one may
scale the optimal solution so as to make that constraint tight and obtain a strictly smaller objective
value, thereby contradicting optimality.
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Then we have

1 = y∗Tθi

= y∗i θii +
∑

s∈[k]\{i}

y∗sθis.
(30)

Moreover

∣∣∣∣∣∣
∑

s∈[k]\{i}

y∗sθis

∣∣∣∣∣∣ ≤ ‖y∗([k] \ {i})‖∞‖θi([k] \ {i})‖1 (using Hölder’s inequality)

≤ η‖y∗([k] \ {i})‖∞ (∵ ‖θi([k] \ {i})‖1 ≤ η)

≤ 4
√

2η2k. (using Lemmas A.5 and A.6)

(31)

Using (31) in (30) yields the desired result.

Proof of Theorem 3.4. First note that (P) is both feasible and bounded below, which implies that it
has an optimal solution. By assumption, there exists a k×k submatrix of Θ whose entrywise distance
from I is at most η; this implies that the spectral norm distance of such a submatrix from I is at most
ηk which is, by assumption, at most (cmin/cmax − 1/2)/4 which is at most one. This implies that
the column rank of Θ is k. Therefore, using the fact that B is full-rank, we conclude that the column
range of Θ is equal to the range of P and consequently the rank of P is k. Therefore (P) may be
rewritten as

min cTy

s.t. Θy ≥ 0

yTθi ≥ 1.

(Py)

Note that (Py) is both feasible and bounded below, which implies that it has an optimal solution.
Since x∗ is an optimal solution to (P), there exists an optimal solution to (Py), called y∗, satisfying
Θy∗ = x∗. Using Lemmas A.5, A.6, and A.7, we conclude that

∥∥∥∥y∗ − ej
θij

∥∥∥∥
∞
≤
√

2ηkmax{2, 4, 4η/θij} = 4
√

2ηk. (32)

The last equality above holds because θij ≥ 1− η and η < 1/2. Then we have

∥∥∥∥x∗ − θj
θij

∥∥∥∥
∞

=

∥∥∥∥Θy∗ −Θ
ej
θij

∥∥∥∥
∞

≤ ‖Θ‖∞
∥∥∥∥y∗ − ej

θij

∥∥∥∥
∞

≤ 4
√

2ηk. (‖Θ‖∞ = 1 and using (32))

(33)
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Lastly, we have∥∥∥∥ x∗

‖x∗‖∞
− θj

∥∥∥∥
∞
≤
∥∥∥∥ x∗

‖x∗‖∞
− x∗

∥∥∥∥
∞

+

∥∥∥∥x∗ − θj
θij

∥∥∥∥
∞

+

∥∥∥∥ θjθij − θj

∥∥∥∥
∞

(using triangle inequality)

= |1− ‖x∗‖∞|+
∥∥∥∥x∗ − θj

θij

∥∥∥∥
∞

+

∥∥∥∥ θjθij − θj

∥∥∥∥
∞

≤
∣∣∣∣1− ‖θj‖∞θij

∣∣∣∣+

∣∣∣∣‖x∗‖∞ − ‖θj‖∞θij

∣∣∣∣+

∥∥∥∥x∗ − θj
θij

∥∥∥∥
∞

+

∥∥∥∥ θjθij − θj

∥∥∥∥
∞

(using triangle inequality)

≤
∣∣∣∣1− ‖θj‖∞θij

∣∣∣∣+ 2

∥∥∥∥x∗ − θj
θij

∥∥∥∥
∞

+

∥∥∥∥ θjθij − θj

∥∥∥∥
∞

(using reverse triangle inequality)

≤
(
‖θj‖∞
θij

− 1

)
+ 8
√

2ηk +

(
1

θij
− 1

)
‖θj‖∞

≤ 8
√

2ηk + 2

(
1

θij
− 1

)
≤ 8
√

2ηk +
2η

1− η
< 8
√

2ηk + 4η

= 4η(2
√

2k + 1)

where the inequality in the fifth line from bottom follows from using (33), the inequality in the fourth
line from bottom follows because ‖θj‖∞ ≤ 1, the inequality in the third line from bottom follows
because θij ≥ 1− η, and the inequality in the second line from bottom follows because η < 1/2.

Lastly we provide an argument for the time complexity claim. Since the rank of P is k, the column
range of P is same as the column range of V where V is an n× k matrix whose columns contain the
eigenvectors of P corresponding to its k nonzero eigenvalues. This implies that (P) is equivalent to
{min eT (V y) subject to V y ≥ 0, (V y)J (i) ≥ 1} which contains n+ 1 constraints and k variables.
Hence the result in Megiddo [1984] implies that (P) can be solved in O(n) time. Moreover, V can
be obtained from P in O(n2) time using, for instance, randomized SVD techniques (Halko et al.
[2011]).

B Some Concentration Properties in the MMSB

In this section, we show concentration properties of some key random variables associated with
random matrices Θ and ΘB. We shall use these observations for our subsequent proofs, but they may
also be of independent interest. Even though we work the equal parameter Dirichlet distribution, the
proof techniques here easily extend to the case with different Dirichlet parameters.

Define l := σmin(B) and u := σmax(B). Suppose the k parameters of the Dirichlet distribution are
all equal to α. We repeatedly use the facts that for any i ∈ [n], s ∈ [k],

E[θis] =
1

k
(34)

and

E[θ2
is] =

α+ 1

k(αk + 1)
. (35)

Moreover, if s, t ∈ [k] such that s 6= t then

E[θisθit] =
α

k(αk + 1)
. (36)
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Lemma B.1. For any j ∈ [k], we have
9

10

n

k
≤ cj ≤

11

10

n

k
with probability at least

1− 2 exp

(
−n

50k2

)
.

Proof. For any j ∈ [k], cj is the sum of n independent bounded random variables {θij}ni=1. Indeed
each row of Θ is sampled independently and each entry of Θ lies in [0, 1]. Moreover, using (34) we
get that E[cj ] = n/k. Thus, using Hoeffding’s inequality, we have that for any z > 0

Pr(|cj − n/k| ≥ z) ≤ 2 exp

(
−2z2

n

)
. (37)

Setting z = n/10k in (37) yields the desired result.

Corollary B.2. We have cmin/cmax ≥ 9/11 with probability at least 1 − p1, where p1 :=

2k exp

(
−n

50k2

)
.

Proof. Lemma B.1 implies that with probability at least 1− 2k exp

(
−n

50k2

)
, both cmin ≥ 9n/10k

and cmax ≤ 11n/10k hold.

Lemma B.3. For any ε > 0, ‖ΘB‖ ≤ u

√
2n

k
+ ε‖Θ‖ with probability at least 1 −(

2u

ε
+ 1

)k
exp

(
−2n

k2

)
.

For proving Lemma B.3, we first prove the following statements for set C := {y ∈ Rk : ∃ x ∈
Rk such that Bx = y, ‖x‖ = 1} defined as the image of the unit sphere under B.

Lemma B.4. If E is an ε-net of C of smallest possible cardinality, then |E| ≤
(

2u

ε
+ 1

)k
.

Proof. Let E ′ be a maximal ε-separated subset of C. Note that by definition of an ε-separated subset,
for any distinct x,y ∈ E ′, we have ‖x− y‖ > ε. Moreover, the maximality of E ′ implies that E ′ is
also an ε-net of C. Therefore

|E| ≤ |E ′|. (38)

We also have that the union of |E ′| disjoint balls
⋃

x∈E′
B(x, ε/2) ⊆ C + B(0, ε/2) ⊆ B(0, u+ ε/2).

Therefore

vol

( ⋃
x∈E′
B(x, ε/2)

)
≤ vol(B(0, u+ ε/2)) (39)

which implies that |E ′|(ε/2)k ≤ (u + ε/2)k which yields the desired result when combined with
(38).

Lemma B.5. Suppose y ∈ C. For any i ∈ [n]:

1. 0 ≤ 〈θi,y〉2 ≤ u2

2.
l2

k(αk + 1)
≤ E[〈θi,y〉2] ≤ u2

k

Proof. Let y = Bx such that ‖x‖ = 1. Then l ≤ ‖y‖ ≤ u.

1. We have

〈θi,y〉2 ≤ ‖θi‖2‖y‖2 (using Cauchy-Schwarz inequality)

≤ u2 (‖θi‖ ≤ 1).
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2. We have

E[〈θi,y〉2] = E[θ2
i1y

2
1 + · · ·+ θ2

iky
2
k] + E

 ∑
s,t∈[k]:
s6=t

θisθitysyt



=
α+ 1

k(αk + 1)
‖y‖2 + E

 ∑
s,t∈[k]:
s6=t

θisθitysyt

 (using (35))

=
α+ 1

k(αk + 1)
‖y‖2 +

α

k(αk + 1)

∑
s,t∈[k]:
s 6=t

ysyt (using (36))

=
1

k(αk + 1)
‖y‖2 +

α

k(αk + 1)
(eTy)2 (re-arranging terms).

Now noting the second term on the right hand side above is nonnegative yields the desired
lower bound.

Similarly noting that eTy ≤ u
√
k (using Cauchy-Schwarz inequality) yields the desired

upper bound.

Proof of Lemma B.3. We have
‖ΘB‖ = sup

x∈Sk−1

‖ΘBx‖ = sup
y∈C
‖Θy‖. (40)

Let E denote an ε-net of C of smallest possible cardinality. Then we have
‖ΘB‖ ≤ sup

y∈E
‖Θy‖+ ε‖Θ‖. (41)

Indeed if the supremum defining ‖ΘB‖ on the RHS in (40) is attained at ys, and if ye is a point in E
such that ‖ys − ye‖ ≤ ε, then

‖ΘB‖ = ‖Θys‖
= ‖Θye + Θ(ys − ye)‖
≤ ‖Θye‖+ ‖Θ(ys − ye)‖ (using triangle inequality)

≤ sup
y∈E
‖Θy‖+ ε‖Θ‖.

For any y ∈ E , we have
‖Θy‖2 = 〈θ1,y〉2 + · · ·+ 〈θn,y〉2.

Now note that ‖Θy‖2 is the sum of n independent random variables. Indeed using Lemma B.5 we

conclude that each of these random variables is bounded and that E[‖Θy‖2] ≤ nu2

k
. Thus, using

Hoeffding’s inequality, we have that for any z > 0,

Pr

(
‖Θy‖2 ≥ nu2

k
+ z

)
≤ Pr(‖Θy‖2 ≥ E[‖Θy‖2] + z)

≤ exp

(
−2z2

nu4

)
.

Then using the union bound over the ε-net, we obtain that

Pr

(
sup
y∈E
‖Θy‖ ≥

√
nu2

k
+ z

)
≤ |E| exp

(
−2z2

nu4

)

≤
(

2u

ε
+ 1

)k
exp

(
−2z2

nu4

)
(using Lemma B.4)
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Setting z = nu2/k in the above, we note that sup
y∈E
‖Θy‖ ≤ u

√
2n

k
with probability at least 1 −(

2u

ε
+ 1

)k
exp

(
−2n

k2

)
, combining which with (41) yields the desired result.

Corollary B.6. ‖Θ‖ ≤ 2

√
2n

k
with probability at least 1− p2, where p2 := 5k exp

(
−2n

k2

)
.

Proof. Set B = I and ε = 1/2 in Lemma B.3.

Corollary B.7. ‖ΘB‖ ≤ 2u

√
2n

k
with probability at least 1− p2.

Proof. This follows simply from using the inequality ‖ΘB‖ ≤ ‖Θ‖‖B‖ and the upper bound
obtained in Corollary B.6.

Lemma B.8. σk(ΘB) ≥ 1

4

l√
αk + 1

√
2n

k
with probability at least 1 − p3, where p3 := p2 +(

16u
√
αk + 1

l
+ 1

)k
exp

(
−nl4

2k2u4(αk + 1)2

)
.

Proof. We have
σk(ΘB) = inf

x∈Sk−1
‖ΘBx‖ = inf

y∈C
‖Θy‖. (42)

Let E denote an ε-net of C of smallest possible cardinality. Then we have

σk(ΘB) ≥ inf
y∈E
‖Θy‖ − ε‖Θ‖. (43)

Indeed if the infimum defining σk(ΘB) on the RHS in (42) is attained at ys, and if ye is a point in E
such that ‖ys − ye‖ ≤ ε, then

σk(ΘB) = ‖Θys‖
= ‖Θye + Θ(ys − ye)‖
≥ |‖Θye‖ − ‖Θ(ys − ye)‖| (using reverse triangle inequality)

≥ ‖Θye‖ − ‖Θ(ys − ye)‖
≥ inf

y∈E
‖Θy‖ − ε‖Θ‖.

For any y ∈ E , we have

‖Θy‖2 = 〈θ1,y〉2 + · · ·+ 〈θn,y〉2.
Now note that ‖Θy‖2 is the sum of n independent bounded random variables. Indeed using Lemma

B.5 we conclude that each of these random variables is bounded and that E[‖Θy‖2] ≥ nl2

k(αk + 1)
.

Thus, using Hoeffding’s inequality, we have that for any z > 0,

Pr

(
‖Θy‖2 ≤ nl2

k(αk + 1)
− z
)
≤ Pr(‖Θy‖2 ≤ E[‖Θy‖2]− z)

≤ exp

(
−2z2

nu4

)
.

Then using the union bound over the ε-net, we obtain that

Pr

(
inf
y∈E
‖Θy‖ ≤

√
nl2

k(αk + 1)
− z

)
≤ |E| exp

(
−2z2

nu4

)

≤
(

2u

ε
+ 1

)k
exp

(
−2z2

nu4

)
(using Lemma B.4)
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Setting z =
1

2

nl2

k(αk + 1)
, we note that inf

y∈E
‖Θy‖ ≥

√
1

2

nl2

k(αk + 1)
with probability at least

1−
(

2u

ε
+ 1

)k
exp

(
−nl4

2k2u4(αk + 1)2

)
.

Using (43), we get that

σk(ΘB) ≥

√
1

2

nl2

k(αk + 1)
− ε‖Θ‖ (44)

with probability at least 1−
(

2u

ε
+ 1

)k
exp

(
−nl4

2k2u4(αk + 1)2

)
.

Lastly, using the upper bound on ‖Θ‖ derived in Corollary B.6 in (44), we get that

σk(ΘB) ≥ 1

2

l√
αk + 1

√
2n

k
− 2ε

√
2n

k

with probability at least 1 − p2 −
(

2u

ε
+ 1

)k
exp

(
−nl4

2k2u4(αk + 1)2

)
. Setting ε =

1

8

l√
αk + 1

yields the desired result.

C Proof of Main Theorem

In this section, we build the proof of Theorem 3.1.

Lemma C.1. Let p, γ ∈ (0, 1). If n >
log(p/k)

log I1−γ(α, (k − 1)α)
, then with probability at least 1− p,

for each j ∈ [k], there exists a row vector rT in Θ such that

‖r− ej‖∞ < γ. (45)

(Here Ix(y, z) denotes the regularized incomplete beta function.)

Proof. For any j ∈ [k], defineEj as the event that there exists a row rT in Θ such that ‖r−ej‖∞ < γ.
Then for any j ∈ [k], we have

Pr(Ecj ) =
∏
i∈[n]

Pr(‖θi − ej‖∞ ≥ γ) (∵ rows of Θ are independently sampled)

=
∏
i∈[n]

Pr(θij ≤ 1− γ) (∵ rows of Θ belong to unit simplex)

= [I1−γ(α, (k − 1)α)]n (Ix(y, z) is the CDF of marginal of Dirichlet distribution)

< p/k. (by assumption on n)
(46)

Therefore

Pr(E1 ∩ · · · ∩ Ek) = 1− Pr(Ec1 ∪ · · · ∪ Eck)

≥ 1−
∑
j∈[k]

Pr(Ecj ) (using the union bound)

> 1− p. (using (46))

Proof of Theorem 3.1. Using the lower bound assumption on n and Lemma C.1, we conclude that
with probability at least 1− p, for each j ∈ [k], there exists a row rT in Θ such that

‖r− ej‖∞ < ε. (47)
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Recalling the definition of ∆, we note that (47) is equivalent to

‖∆‖max < ε. (48)

Using Corollary B.7 and Lemma B.8, we conclude that

κ0 ≤ 8κ
√
αk + 1 (49)

with probability at least 1− p2 − p3. Therefore (49) implies that

min

(
1√
k − 1

,
1

2

)
1

2
√

2κ0(1 + 80κ2
0)
≥ ε1 (using the definition of ε1)

> ε (using the assumption on ε)
> ‖∆‖max (using (48))

(50)

with probability at least 1− p2 − p3.

Using (50), we note that the assumption of Theorem 3.3 is satisfied with probability at least 1− p−
p2 − p3. Therefore the set J returned by Algorithm 2 satisfies

‖ΠΘ(J , :)− I‖max ≤ 40
√

2κ2
0‖∆‖max

< 40
√

2κ2
0ε

(51)

with probability at least 1− p− p2 − p3 for some k × k permutation matrix Π.

Now from Corollary B.2, we know that

1

4k

(
cmin

cmax
− 1

2

)
≥ 7

88k
(52)

with probability at least 1− p1.

Thus we have

40
√

2κ2
0ε < 40

√
2κ2

0ε2 (using the assumption on ε)

≤ 40
√

2 · 64κ2(αk + 1)ε2 (using (49))

=
7

88k
(using the definition of ε2)

≤ 1

4k

(
cmin

cmax
− 1

2

)
(using (52))

(53)

with probability at least 1 − p − p1 − p2 − p3. Combining (51) and (53), we conclude that the
assumption of Theorem 3.4 is satisfied with probability at least 1− p− p1 − p2 − p3. Therefore for
any j ∈ [k], the vector θ̂j returned by SP+LP satisfies

‖θ̂j − θj‖∞ ≤ 4 · 40
√

2κ2
0ε · (2

√
2k + 1)

≤ 10240
√

2κ2(αk + 1)(2
√

2k + 1)ε (using (49))

= O(αk2κ2ε)

with probability at least 1 − p − p1 − p2 − p3. Substituting the expressions for p1, p2 and p3, the
probability 1− p− p1 − p2 − p3 can be expressed as 1− p− c1e−c2n such that c1, c2 are constants
that depend on α, k, κ.

Proof of Corollary 3.2. From Theorem 3.1, we know that the maximum distance between vectors
θ̂1, . . . , θ̂k and the columns of Θ, up to a permutation, is O(αk2κ2ε) with probability at least
1− p− c1e−c2n where c1, c2 are constants that depend on α, k, κ.

Similarly, the maximum distance between vectors θ̂1, . . . , θ̂k and the columns of Θ̄, up to a permuta-
tion, is O(ᾱk2κ̄2ε̄) with probability at least 1− p̄− c̄1e−c̄2n where c̄1, c̄2 are constants that depend
on ᾱ, k, κ̄.

Combining the above two observations with the triangle inequality and the union bound yields the
desired result.
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