
Supplementary Material:
Time-Reversal Symmetric ODE Network

A Time-reversal symmetry loss for non-autonomous systems

Here, we consider the time-reversal symmetry of non-autonomous ODE systems, i.e., systems that
depend on time t explicitly as follows:

dx

dt
= f(x, t). (S1)

This non-autonomous systems are said to be time-reversal symmetric if there is a reversing operator
Ra : (x, t) 7→ (R(x),−t+ a) which satisfies [23]:

dR(x)

dt
= −f(R(x),−t+ a), (S2)

for some a ∈ R. It means that we should consider the time t itself carefully, as well as the direction of
time, unlike the autonomous case (6-10) in the main paper. For example, consider forced non-linear
oscillators estimated in Experiment III in the main paper:

dq

dt
= p,

dp

dt
= −αq− βq3 + δcos(ωt+ φ). (S3)

(S3) is time-reversal symmetric under R−2φ/ω : (q,p, t) 7→ (q,−p,−t− 2φ/ω).

The forward time evolution of non-autonomous ODENs is given by:

x̃(ti+1) = Solve{x̃(ti), ti, fθ,∆ti}, x̃(t0) = x(t0). (S4)

On the other hand, the backward time evolution is equal to:

x̃R(τi+1) = Solve{x̃R(τi), τi, fθ,−∆ti}, x̃R(τ0) = Ra(x̃(t0)), (S5)

where τi = −ti + a. As a result, the time-reversal symmetry loss of autonomous ODE systems is
given by:

LTRS ≡
T−1∑
i=0

‖R(Solve{x̃(ti), ti, fθ,∆ti})− Solve{x̃R(τi), τi, fθ, τi),−∆ti}‖22 . (S6)

B Guaranteeing time-reversal symmetry by increasing λ

Figure S1: λ vs. relative error between for-
ward and backward time evolutions.

Minimizing LTRS-ODEN ((11) in the main paper) guides,
but does not guarantee the perfect time-reversal symmetric
solution. Nevertheless, one can force the solution be al-
most symmetric by increasing the regularization strength
λ. To confirm this, we evaluate the relative error between
the forward and backward time evolutions of TRS-ODENs,
that trained with varying λ. Experimental setting is equal
to that used in Experiment I in the main paper. It shows
that large λ = 103 guarantees lower than 10−3 relative
error, i.e., almost perfect time-reversal symmetry, without
any performance degradation, as shown in Figure S1.
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Figure S2: (a) CalculatedH(q,p)−H(q,−p) of ground truth, HODEN, and TRS-HODEN. (b) Comparison
of kinetic energy profiles obtained from ground truth, HODEN, and TRS-HODEN. Note that we calibrate the
ground energy level to makeH(0,0) = 0 for all models.

Figure S3: Hamiltonian surfaces obtained from the (a) ground truth, (b) HODEN, and (c) TRS-HODEN. The
ground truth Hamiltonian shows symmetric double well shape.

C Reasoning on the improvement made by TRS-HODENs

As mentioned in Section 3.1 in the main paper, the Hamiltonian H of conservative and reversible
systems satisfies H(q,p) = H(q,−p). With this symmetry property, we analyze the reason of
improvement made by TRS-HODENs over HODENs in Experiment II in the main paper. Note that
the ground truth Hamiltonian of non-linear oscillator tested in Experiment II is described as:

H(q,p) =
p2

2
+
αq2

2
+
βq4

4
, (S7)

which clearly possessesH(q,p) = H(q,−p).

We find that the time-reversal symmetry loss helps the learned θ-parameterized Hamiltonian
Hθ(q,p) possess the above property thanks to the symmetry under the momentum-reversing oper-
ator R(q,p) = (q,−p). To show this, we calculate Hθ(q,p) − Hθ(q,−p) for the HODEN and
TRS-HODEN (λ = 10) tested in Experiment II, with varying p from 0 to 1.5 and fixing q to 0 (see
Figure S2 (a)). It shows that the Hamiltonian of the HODEN does not followH(q,p) = H(q,−p)
precisely, while that of the TRS-HODEN is almost even function of p. As a result, TRS-HODENs
can learn the ground truth Hamiltonian from noisy data more structurally and efficiently.

To confirm the above discussion, we compare their kinetic energies Kθ1(p) = Hθ(0,p) + const.
(see Figure S2 (b)). It shows the kinetic energy of the TRS-HODEN is almost indistinguishable from
that of the ground truth. On the other hand, the kinetic energy of the HODEN does not match well
with that of the ground truth. In Figure S3, We plot the Hamiltonian (total energy) surfaces across the
models. One can check the Hamiltonian surface of the HODEN shows highly asymmetric double
well shape, unlike that of the ground truth and TRS-HODEN.
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Figure S4: The critical phase space trajectories obtained from the (a) ODEN, (b) HODEN, (c) TRS-ODEN,
and (d) TRS-HODEN.

Table S1: Summary of phase space trajectory and total energy MSEs evaluated in Section D. All MSE values
are multiplied by 102.

Model ODEN HODEN TRS-ODEN TRS-HODEN

MSE (Traj.) 14.28 ± 10.47 15.26 ± 25.15 3.88 ± 5.92 2.03 ± 2.17
MSE (Energy) 9.31 ± 16.11 0.32 ± 0.53 0.52 ± 0.78 0.21 ± 0.21

D Predicting stable centers and homoclinic orbits of non-linear oscillators

The non-linear oscillator systems estimated in Experiment II in the main paper have two stable centers
at (1, 0), (−1, 0), and saddle point at (0, 0) (see Figure S3 (a)). Clearly, at the centers, states do
not evolve with time at all, i.e., the stable equilibrium states. Near the saddle point, there are two
interesting trajectories, that appear to start and end at the same saddle point. These trajectories are
called homoclinic orbits [42]. Note that the homoclinic orbits lie on q > 0 and q < 0 respectively
start from (ε, ε) and (−ε,−ε), for some small positive constants ε.

Here, we estimate whether the learned dynamics can represent the special trajectories originated
from these critical points well. To do this, we generate trajectories, whose initial states are given
by the centers or saddle point1, by using the models trained in Experiment II: ODEN, HODEN,
TRS-ODEN (λ = 10), and TRS-HODEN (λ = 10). Figure S4 demonstrates the generated phase
space trajectories. For the ODEN, it cannot achieve the accurate time evolution at all. HODEN
shows relatively reasonable behaviors, but they predict the same direction of homoclinic orbits for
(ε, ε) and (−ε,−ε). Also, periodic motions near the centers are observed for HODENs. TRS-ODEN
and TRS-HODEN show two separated homoclinic orbits clearly. Moreover, the TRS-HODEN
shows stable equilibrium behaviors at the center points. In summary, the TRS-HODEN can predict
physically-consistent behaviors even for critical points. We summarize the phase space trajectory and
total energy MSE metrics in Table S1.

1We use 10−8 and 10−2 instead of 0 and ε, respectively, considering numerical stability.
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