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Abstract

Time-reversal symmetry, which requires that the dynamics of a system should not
change with the reversal of time axis, is a fundamental property that frequently
holds in classical and quantum mechanics. In this paper, we propose a novel loss
function that measures how well our ordinary differential equation (ODE) networks
comply with this time-reversal symmetry; it is formally defined by the discrepancy
in the time evolutions of ODE networks between forward and backward dynamics.
Then, we design a new framework, which we name as Time-Reversal Symmetric
ODE Networks (TRS-ODENs), that can learn the dynamics of physical systems
more sample-efficiently by learning with the proposed loss function. We evaluate
TRS-ODENs on several classical dynamics, and find they can learn the desired
time evolution from observed noisy and complex trajectories. We also show that,
even for systems that do not possess the full time-reversal symmetry, TRS-ODENs
can achieve better predictive performances over baselines.

1 Introduction

Recent advances in artificial intelligence allow researchers to recover laws of physics and predict
dynamics of physical systems from observed data by utilizing machine learning techniques, e.g.,
evolutionary algorithms [37, 29], sparse optimizations [35, 4], Gaussian process regressions [40, 8],
and neural networks [18, 1, 15, 46, 34]. Among various models, the neural networks are considered as
one of the most powerful tools to model complicated physical phenomena, owing to their remarkable
ability to approximate arbitrary functions [17]. One notable aspect of the observations in physical
systems is that they manifest some fundamental properties including conservation or invariance
[14, 2]. However, it is not straightforward for neural networks to learn and model the embedded
physical properties from observed data only. Consequently, they often overfit to short-term training
trajectories and fail to predict the long-term behaviors of complex dynamical systems [15, 46].

To overcome these issues, it is important to introduce appropriate inductive biases based on knowledge
of physics, dynamics and their properties [46, 34]. Common approaches to incorporate physics-based
inductive bias include modifying neural network architectures or introducing regularization terms
based on specialized knowledge of physics and natural sciences [31, 28, 38, 39]. These methods
demonstrate impressive performance on their target problems, but such a problem-specific model
suffers from generalizing across domains. Namely, they can be used only when the governing physics
for the target domain is exactly known, e.g., Navier-Stokes equation for fluid mechanics [31, 28]. As
for more general approaches, the authors in [6, 5] propose the ordinary differential equation (ODE)
networks, which view the neural networks as parameterized ODE functions. They are shown to be
able to represent the vast majority of dynamical systems with higher precision over vanilla recurrent
neural networks and their variants [6, 5], but are still unable to learn underlying physics such as the
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Figure 1: (a) Time-reversal symmetry of dynamical systems. The gray ellipse is a phase space trajectory,
which does not change under t 7! �t. The reversing of forward time evolution (blue arrows) of an arbitrary
state should yield an equal state to what is estimated by the backward time evolution of the reversed state
(orange arrows). For more mathematical details, see Section 3.2. Examples of (b) non-linear and (c) non-
ideal dynamical systems modeled by various ODE networks including TRS-ODENs. TRS-ODENs can learn
appropriate long-term dynamics from noisy and short-term training samples.

law of conservation [15]. Recent works [15, 46, 34, 7, 43] apply the Hamiltonian mechanics to ODE
networks, and succeed in enforcing the energy conservation as well as the accurate time evolution of
classical conservative systems. However, these Hamiltonian ODE networks have inherent limitations
that they cannot be applied to non-conservative systems, since the Hamiltonian structures require to
strictly conserve the total energy [15].

To address such limitations of existing works on modeling classical dynamics, we introduce a physics-
inspired, general, and flexible inductive bias, symmetries. It is at the heart of the physics: the laws
of physics are invariant under certain transformations in space and time coordinates, thus show the
universality [12, 27]. For example, the classical dynamics possess the time-reversal symmetry, which
means the classical equations of motion should not change under the transformation of time reversal:
t 7! �t [23, 32, 42] (see Figure 1). Therefore, if the target underlying physics being approximated
has some symmetries, it is natural that the approximated physics using neural networks should also
comply with these properties. Motivated by this, we feed the symmetry as an additional information
to help neural networks learn the physical systems more efficiently.

Specifically, we focus on the time-reversal symmetry of classical dynamics described above, due
to its simplicity and popularity. We propose a new ODE learning framework, which we refer to
as Time-Reversal Symmetry ODE Network (TRS-ODEN)1, that utilize the time-reversal symmetry
as a regularizer in training ODE networks, by unifying recent studies of ODE networks [7] and
classical symmetry theory for ODE systems [23]. Our scheme can be easily implemented with a
small modification of codes for conventional ODE networks, and is also compatible with extensions
of ODE networks, such as Hamiltonian ODE networks [46, 34, 7]. It can be used to predict many
branches of physical systems, because the isolated classical and quantum dynamics exhibit the perfect
time-reversal symmetry [23, 33]. Moreover, even for the case when the full time-reversal symmetry
are broken [23], e.g., in the presence of the entropy production [30] through heat or mass transfer,
we also show that TRS-ODENs are beneficial to learn such system by annealing the strength of the
proposed regularizer appropriately. This flexibility with regard to the target problem is the main
advantage of the proposed framework, in contrast to prior methods, e.g., only for suitable explicitly
conservative systems [15].We validate our proposed model in several domains including synthetic
Duffing oscillators [22] (see Section 4.1), real-world coupled oscillators [37] (see Section 4.2), and
reversible strange attractors [41] (see Section 4.3). In summary, our contribution is threefold:

• We propose a novel loss function that measures the discrepancy in the time evolution of
ODE networks between forward and backward dynamics, thus estimates whether the ODE
networks are time-reversal symmetric or not.

• We show ODE networks with the proposed loss, coined TRS-ODENs, achieve better
predictive performance than baselines, e.g., from 50.81 to 10.85 for non-linear oscillators.

• We validate even for time-irreversible systems, the proposed framework still works well
compared to baselines, e.g., from 3.68 to 0.12 in terms of error for damped oscillators.

1Code is available at https://github.com/inhuh/trs-oden.
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2 Background and Setup

2.1 Predicting dynamical systems

In a dynamical system, its states evolve over time according to the governing time-dependent
differential equations. The state is a vector in the phase space, which consists of all possible
positions and momenta of all particles in the system. If one knows the governing differential equation
and initial state of the system, the future state is predictable by solving the equation analytically
or numerically. On the other hand, if one does not know the exact governing equation, but has
some state trajectories of the system, one can try to model the dynamical system, e.g., by using
neural networks. More speci�cally, one can build a neural network whose input is current state
(or trajectory) and the output is the next state, from the perspective of the sequence prediction.
However, such a method may over�t to short-term training trajectories and fail to predict the long-
term behaviors [46]. It is also not straightforward to predict the continuous-time dynamics, because
neural network models typically assume the discrete time-step between states [15]. Neural ODE
and its applications [6, 5, 15, 46, 34, 7, 43], alias ODE networks (ODENs), tackle these issues by
learning the governing equations, rather than the state transitions directly. Moreover, some of them
use special ODE functions such as Hamilton's equations to incorporate physical properties to neural
network structurally [15, 46, 34, 7, 43]. In the rest of this section, we brie�y review ODENs and
Hamiltonian ODE networks (HODENs), which are closely related to our work.

2.2 ODE networks (ODENs) for learning and predicting dynamics

We consider dynamics of statex in phase space
 (= R2n , in classical dynamics2) given by:
dx
dt

= f (x) for t 2 R; x 2 
 ; f : 
 7! T 
 : (1)

The continuous time evolution between arbitrary two time pointst i andt i +1 by (1) is equal to:

x(t i +1 ) = x(t i ) +
Z t i +1

t i

f (x)dt: (2)

The recent works [46, 34, 6, 7] propose the ODENs, which represent the ODE functionsf in (1)
by neural networks and learn the unknown dynamics from data. For ODENs, fully-differentiable
numerical ODE solvers are required to train the black-box ODE functions, e.g., Runge-Kutta (RK)
method [11] or symplectic integrators such as leapfrog method [24]. With an ODE solver, saySolve ,
one can estimate the time evolution by ODENs:

~x(t i +1 ) = Solve f ~x(t i ); f � ; � t i g; ~x(t0) = x(t0); (3)
where f � is a � -parameterized neural network,~x(t i ) is a prediction ofx(t i ) using ODENs,
� t i = t i +1 � t i is a time-step, andx(t0) is a given initial value. Given observed trajec-
tory x(t1); :::; x(tT ), ODENs can learn the dynamics by minimizing the loss functionL ODE �
P T � 1

i =0 kSolve f ~x(t i ); f � ; � t i g � x(t i +1 )k2
2. We omit the sample-wise mean for the simple notation.

2.3 Hamiltonian ODE networks (HODENs)

The Hamiltonian mechanics describes the phase space equations of motion for conservative systems
by following two �rst-order ODEs called Hamilton's equations [14]:

dq
dt

=
@H(q; p)

@p
;

dp
dt

= �
@H(q; p)

@q
; (4)

whereq 2 Rn , p 2 Rn , andH : R2n 7! R are positions, momenta, and Hamiltonian of the system,
respectively. Recent works [46, 34, 7] apply the Hamilton's equations to ODENs, by parameterizing
the Hamiltonian asH � , and replacingf � (q; p) to the gradients ofH � with respect to inputs(p; q)
according to (4). Thus, the time evolution of HODENs is equal to:

(~q(t i +1 ); ~p(t i +1 )) = Solve f (~q(t i ); ~p(t i )) ; (@H � =@p; � @H � =@q); � t i g: (5)
HODENs show better predictive performance for conservation systems. Furthermore, they can learn
the underlying law of conservation of energy automatically, since they fully exploit the nature of
the Hamiltonian mechanics [15]. However, a fundamental limitation of HODENs is that they do not
work properly for the non-conservative systems [15], because they always conserve the energy.

2For Hamiltonian as an example,x = ( q; p), whereq 2 Rn andp 2 Rn are positions and momenta.
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3 Time-Reversal Symmetry Inductive Bias for ODENs

3.1 Target systems

Before introducing the time-reversal symmetry, we brie�y explain two perspectives of the classical
dynamical systems:conservativeandreversible. The former is the system that its Hamiltonian
does not depend on time explicitly, i.e.,@H=@t= 0 . The latter is the system that possesses the
time-reversal symmetry, whose mathematical details will be discussed in the following section.

Conservative and reversible systems.All conservative systems that their Hamiltonians satisfy
H(q; p) = H(q; � p) are also reversible [23]. It means that many kinds of classical dynamics are
both conservative and reversible3. For these systems, both Hamiltonian and time-reversal symmetry
inductive biases are appropriate. Furthermore, combining two inductive biases can improve the
sample ef�ciency of a learning scheme.

Non-conservative and reversible systems.It is noteworthy that reversible systems are not necessar-
ily conservative systems. Some examples about non-conservative but reversible systems can be found
in [23, 32]. Clearly, baselines such as HODENs that enforce conservative property would break down
in this environment. On the other hand, our scheme, named TRS-ODEN, presented in Section 3.3
would accurately model the dynamics of given data by exploiting time-reversal symmetry.

Non-conservative and irreversible systems.Under interactions with environments, the dynamical
systems become non-conservative and often irreversible4. Depending on the intensity of such
interactions, the Hamiltonian or time-reversal symmetry inductive bias can be bene�cial or harmful.
HODENs strictly enforce the conservation, thus they are not suitable for this [15]. On the other hand,
TRS-ODENs are more �exible, since they use the inductive bias as a form of regularizer, which is
easily controlled via hyper-parameter tuning [36].

3.2 Time-reversal symmetry in dynamics

First-order ODE systems (1) are said to betime-reversal symmetricif there is an invertible transfor-
mationR : 
 7! 
 , that reverses the direction of time:

dR(x)
dt

= � f (R(x)) ; (6)

whereR is calledreversing operator[23]. Comparing (1) and (6), one can �nd that the equation
is invariant under the transformations of phase spaceR and time-reversalt 7! � t. For notational
simplicity, let's introduce a time evolution operatorU� : 
 7! 
 for (1) as follows [23]:

U� : x(t) 7! U� (x(t)) = x(t + � ); (7)
for arbitraryt; � 2 R. Then, in terms of the time evolution operator (7), (6) imply:

R � U� = U� � � R; (8)
which means thatthe reversing of the forward time evolution of an arbitrary state should be equal to
the backward time evolution of the reversed state(see Figure 1).

In classical dynamics, generally, even-order and odd-order derivatives with respect tot are respectively
preserved and reversed underR [23, 32]. For example, consider a conservative and reversible
HamiltonianH(q; p) = H(q; � p), as mentioned in Section 3.1. Becauseq andp are respectively
zeroth and �rst order derivatives with respect tot, R is simply given byR(q; p) = ( q; � p). In this
case, one can easily check the Hamilton's equations (4) are invariant underR andt 7! � t. We use
this classical de�nitionR(q; p) = ( q; � p) in the remainder of the paper, unless otherwise speci�ed.

3.3 Time-reversal symmetry ODE networks (TRS-ODENs)

Inspired from ODENs (3) and time-reversal symmetry (8), here we propose a noveltime-reversal
symmetry loss. First, the backward time evolution of the reversed state for ODENs is equal to:

~xR (t i +1 ) = Solve f ~xR (t i ); f � ; � � t i g; ~xR (t0) = R(~x(t0)) : (9)
3Note that the most basic de�nition of the Hamiltonian is the sum of kinetic and potential energy, i.e.,

H (q; p) = p2=2 + V (q) (if we omit the mass) [14], which possessH (q; p) = H (q; � p) naturally.
4Let's consider a damped pendulum. They are irreversible since one can distinguish the motion of the

pendulum in forward (amplitude increases) and that in backward directions (amplitude decreases).
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Then, using (3) and (9), we de�ne the time-reversal symmetry lossL TRS as an ODEN version of (8):

L TRS �
T � 1X

i =0

kR(Solve f ~x(t i ); f � ; � t i g) � Solve f ~xR (t i ); f � ; � � t i gk2
2 : (10)

Note that we assume the system is autonomous. For non-autonomous systems, see Section A in the
supplementary material. Finally, we de�ne the TRS-ODEN as a class of ODENs whose loss function
L TRS-ODEN is given by the sum of the ODE errorL ODE and symmetry regularizerL TRS as follows5:

L TRS-ODEN(x(t); ~x(t); ~xR (t); R; � ) � L ODE(x(t); ~x(t); � ) + � � L TRS(~x(t); ~xR (t); R; � ); (11)

where� � 0 is a hyper-parameter. It is noteworthy that� can be also a function of timet, especially
when dealing with irreversible systems. It is owing to the heuristic that the irreversible term is also a
function of(t; x(t)) , i.e., although target dynamics do not possess the full time-reversal symmetry,
they can be partially reversible when the irreversible term becomes negligible at certain time points.

4 Experiments

Default model setting. We compare three models: vanilla ODEN, HODEN, and TRS-ODEN. A
single neural networkf � (q; p) is used for ODENs and TRS-ODENs, while HODENs consist of two
neural networksK � 1 (p) andV� 2 (q), i.e., separableH � (q; p) = K � 1 (p) + V� 1 (q) [7]. Also, we use
the leapfrog integrator forSolve [7], unless otherwise speci�ed. The maximum allowed trajectory
length at training phase is set to 10. If training trajectories are longer that 10, we divide them properly.
We train models by using the Adam [19] with initial learning rate of2 � 10� 4 during 5,000 epochs.
We use full-batch training because training sample sizes are quite small, except for Experiment VI.

Performance metric. As primary performance metrics, we use the mean-squared error (MSE)
between test ground truths and models' predictive phase space trajectories as well as total energies6.
The predictive trajectories are obtained by recursively solving (3) or (5), thus errors accumulate and
diverge over time if the models do not learn the accurate time evolution.

4.1 Experiment I-IV: Learning the Duf�ng oscillators

Firstly, we focus on the Duf�ng oscillator [22], a generalized model of oscillators, that given by7:

dq
dt

= p;
dp
dt

= � � q � � q3 �  p + � cos(t); (12)

where� , � ,  , and� are scalar parameters that determine the linear stiffness, non-linear stiffness,
damping, and driving force terms, respectively. For non-zero parameters, Duf�ng oscillators are
neither conservative nor reversible. Furthermore, they often exhibit chaotic behaviors [22]. However,
the characteristics of Duf�ng oscillator can be changed greatly by adjusting parameters. Thus, by
using these coupled equations, we can simulate several dynamical systems mentioned in Section 3.1.

Unless otherwise stated, we generate 50 trajectories each for training and test sets. For each trajectory,
The initial state(q(t0); p(t0)) is uniformly sampled from annulus in[0:2; 1]. The lengths of training
and test trajectories are 30 and 200, respectively, while the time-step is �xed at 0.1, i.e.,� t i = 0 :1
for all i . Thus, we can evaluate whether the models can mimic long-term dynamics. We add Gaussian
noise0:1n; n � N (0; 1) to training set. We use the fourth order RK method to get trajectories.

In Experiment I and II, we consider conservative and reversible systems, where we show that TRS-
ODENs are comparable with or even outperform HODENs. Moreover, we con�rm combining
HODENs and time-reversal symmetry loss can lead further improvement for these systems. Then,
we evaluate proposed framework for a non-conservative and reversible system in Experiment III.
Finally, in Experiment IV, we validate our proposed framework for a non-conservative and irreversible
damped system. HODENs cannot learn this system because of their strong tendency to conserve the
energy, as previously reported in [15]. We demonstrate TRS-ODENs can learn this system �exibly.

5TRS-ODENs require approximately 2� larger training time than the vanilla/default ODENs because the
backward as well as forward evolutions need to be calculated.

6They can be calculated from trajectories. For example, a total energy of simple oscillator isq2 + p2 .
7Typically, Duf�ng oscillator is given by a second order ODE•x + � x + � x 3 +  _x = � cos(t). We separate

this equation from the perspective of the pseudo-phase space, although they are not in canonical coordinates.
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