A Notations

G, demographic group, s € {a,b}

X feature at t, X € R?

Y; true qualification state at ¢, Y; € {0,1}

S sensitive attribute S € {a, b}

Ds group proportion of s, i.e., p; = P(S = s)

D; institute’s decision at ¢, D; € {0,1}

7; (x) | policy for Gs att,ie,mi(x) =P(D;=1] Xy =2,5 = 3)

G (z)| feature distribution of unqualified (y = 0) or qualified (y = 1) people from G , i.e.,
PX;=2|Y;=y,5=5s)

G;(z)| CDF of Gj (). ie. Gj(z) = [ G;(z)dx

P;(x)| aprobability distribution over X, that specifies the fairness metric C

as qualification rate of G at ¢, 1.e, P(Y; =1 [ S = s)

~:(x) | qualification profile of G, at ¢, i.e, P(Y; = 1] X; = 2,5 = s)

1,4 transition probability of G, ie.,P(Y;41 =1[Y; =y, D, =d,S = s)
Uy benefit the institute gains by accepting a qualified individual

U_ cost incurred to the institute by accepting an unqualified individual

05 threshold in a threshold policy for G, under constraint C, i.e., 7j (z) = 1(z > 67)

qualification rate of G at the equilibrium under policy with constraint C € {UN, DP, EqOpt }

B Additional results on experiments

Gaussian distributed synthetic data. We first verify the conclusions in Section 4] and [5|using the
synthetic data, where X, | Y; =y, 5 = s ~ N'(15, (0°)?).

In Section Figureillustrates sample paths of {(a?, a?)}; under EqOpt, DP, UN optimal policies.
The specific parameters are as follows: [ud, u$, pb, 18] = [-5,5, —5,5], [0%, 0%] = [5,5], == =1,

u—

Pa =pp = 0.5, [T, T, T, T = [0.4,0.5,0.5,0.9], [Tg, T, Ty, TH] = [0.1,0.5,0.5,0.7].

Table [2 and [3]illustrate the impacts of EqOpt and DP fairness on the equilibrium, where each column
shows the value of &% — &% when C = UN, EqOpt, DP under different sets of parameters. Specifically,
in Table , Pa =py = 0.5, = =1, [u§, 3, 0°] = [-5,5,5].Vs € {a,b} and transitions satisfying
either Condition[I[{A)] or [I{B) are randomly generated; in Table 3] transitions satisfying Condition
| and GZ(I) that satisfy Conditionare randomly generated, Z—f also satisfies the condition in

Theorem[3l These results are consistent with Theorem 4] and [51

Table 2: &% — @¢ when C = UN, EqOpt, DP: G4 (z) = G (2) and T3, # T?,.

Condition |IfA)|
UN (x107?%) -1845 16.89 19.82 -7.21 -16.34  -26.56 16.66 -6.03 -38.63
EqOpt (x1072) | -21.11 19.13 21.78 -7.62 -18.56  -29.21 18.14 -6.28 -41.52
DP (x1072) -27.98 23.11 2565 -8.90 -23.11  -3322  21.09 -6.66 -43.35
Condition|l|{B)|
UN (x107?) -19.05 18.18 -0.70 -58.80 -40.91 61.30 12.82 -44.67 2.66
EqOpt (X 1072) | -1840 1798 -0.64 -57.62 -3450 48.66 1235 -4143 2.61
DP (x1072) -17.52  17.73 -0.57 -55.62 -2897 36.10 11.69 -37.97 257

Table 3: 3¢ — &> when C = UN, EqOpt, DP: G&(x) # Gg(x) and T, = Tﬁd under Condition (I B)

UN (x1072) 1.88 2635 212 038 5.64 1235 11.70 020 4.12
EqOpt (x107%) | 0.57 1743 1.75 032 505 7.81 7.21 0.18 1.68
DP (x10~7%) 1626 1829 -594 -093 -225 147 092 -1.68 -0.80
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Figure 5: Results on the FICO dataset: Points are the repayment rates of G4 4, Go at the equilibria
under Condition with different sets of transitions. Arrows indicate the direction of increasing
T4;; a more transparent point represents the smaller value of 77, In panel T;}iA = T, while in

yd’
panel Tt < TS

FICO score data. From the pre-processed FICO dataset,

wegotP(X =z | S=s)andP(Y =1| X =2x,5 =5s). " Caucasian repaid

— Caucasian defaulted

In this experiment, we consider two demographic groups, Aftican-American repaid

—— African-American defaulted

12% the African American G 44 and 88% the Caucasian
Gc. According to the empirical feature distributions, we
can first simulate the FICO dataset with credit scores X, re-
payment Y, and sensitive attribute S. We then compute the
initial qualification (repayment) rates (o', a§’), which
18 0.34in G4 4 and 0.76 in G ; and fit Beta distributions
to get the feature distribution P(X =z | S = 5,Y =y), ' Y s

as shown in Fig. ] Since the feature distributions are the

Beta distributions, we can compute optimal UN, EqOpt, DP  Figure 4: The feature distributions: the
thresholds directly using Eqn. (3) and update the repay- scores are rescaled so that they are be-
ment rates based on dynamics (@). This process proceeds tween 0 and 1.

and (a4, af) changes over time.

We then consider the demographic-invariant (D-invariant) and demographic-variant (D-variant)
transitions and examine the impact of the transition interventions. Specifically, in the context of loan
repayment prediction and group lending [41]], the transitions would satisfy Condition [[[B)} Fig. 3]
illustrates the equilibria (@4, &) under different sets of transitions. Their specific values are listed
as follows, where the system has an equilibrium in all cases.

D-invariant: T‘()() = 0.1,T11 = 09, T107T01 € {0]., 03, 05, 07, 09}
D-variant:  Tgp? = 0.1, T4 = 0.9, T34, Ty € {0.20, 0.36, 0.53, 0.69, 0.85}
TG =04,TG =09, TS, TS € {0.45, 0.55, 0.65, 0.75, 0.85}

COMPAS data. The COMPAS dataset is a high-dimensional dataset with mixed data types (e.g.,
continuous, binary, and categorical). The number of samples is 5278. There are 10 features and two
demographic groups: 60% African American (G4.4) and 40% Caucasian (G¢). The qualification rate
in COMPAS is the recidivism rate. The initial recidivism rates are 52.3% in G4 4 and 39.1% in G¢.

Due to the complexity of the feature distribution, the system can be either in the equilibrium state
or oscillate between two recidivism rates in the long-run. Since the feature distribution is fixed and
approximated from the COMPAS dataset, we investigate that under which transitions, the system
is in an equilibrium state under unconstrained optimal policy. For this purpose, it is sufficient to
study the demographic-invariant transitions 744 = T and consider the entire population without
distinguishing two groups; moreover, in the context of recidivism prediction, the transitions would
satisfy Condition[TJ[(A)} Therefore, we consider Ty, and T, taking the values 0.1, 0.3, 0.5, 0.7 and
0.9. Figure|§|sh0ws the results when Ty = k X Tyg and 711 = k x To. We find that when Corollary
[T]is satisfied, e.g., when & > 0.5, most of the corresponding systems have a unique equilibrium (blue
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Figure 6: The oscillation level of recidivism rates in the long run is represented by the size of red
circles, of which the bigger one represents severer oscillation. The blue dots represent the scenarios
with a unique equilibrium. Ty and 7} axes represent their values respectively; k axis represents the
scalar k, where Ty = k X Tyg and T11 = k x T1p.
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Figure 7: The oscillation level of recidivism rates under different transitions. In each panel, scalar k
denotes the ratio, of which 111 = k x T7y.

dot). Moreover, when Ty < 0.5, the system is also mostly in the unique equilibrium state. For the
other transitions, the system oscillates between two states (red circle). We also show the results under
all the combinations of Tj; and 777 in Figurem

Next, we study the impact of policy interventions in cases with equilibrium. We randomly choose the
transitions under which the system has an equilibrium and then apply the unconstrained policy with
optimal threshold (classifier threshold 0.5), a higher and a lower threshold (classifier thresholds 0.8
and 0.2 respectively) compared to the optimum respectively. The results are show in Table [}

Table 4: Recidivism rates in the long run. UN*: unconstrained policy (UN) with the optimal threshold;
UNp,, : UN with a higher threshold; UNy, : UN with a lower threshold.
UN* UNp,, UNp,

a; 0164 0.166  0.147

as 0343 0356 0307

as 0230 0.246  0.162

ay 0306 03415 0.156

as  0.162 0.166  0.140
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C Generalization to high-dimensional feature space

All analysis and conclusions in this paper can be generalized to high-dimensional feature space
r € R?, where the qualification profile of G, is defined as v (x) = P(YV; = 1 | X; = x,5 =
s) € [0,1], x € R% Different from one-dimensional case where decisions are made based on
features, here decisions are made based on 7} (x), i.e., high-dimensional features are mapped into a
one-dimensional space first and decisions are made in this transformed space. The threshold policy
in this case becomes 7§ (x) = 1(v5(x) > 6¢) with threshold 65 € [0,1]. Let vi  (6) C R< be
defined as the preimage of 6 under qualification profile +;, then all analysis in one-dimensional
settings can be adjusted using 'yts_l (+). For example, Assumption |1|{in high-dimensional case can
be adjusted to the following: Vs € {a, b}, given any two thresholds 0 < 07 < 0y <1, we have
v (KS) C o (JF), where JS = {0 : 0 € [03,1]} and K* = {0 : 0 € [0}, 1]}, in other words, if
an individual can get accepted by a policy with the higher threshold, it must be accepted if a policy
with a lower threshold was used. Note that this assumption is still mild and always hold if G} (x)
belongs to exponential family.

Specifically, if Vs € {a,b},Vy € {0, 1}, distribution of X|Y = y, S = s belongs to exponential
family and can be written as G(x) = B(x)exp ((n(w;),£(x)) — A(ws)) for some functions
B(-),n(-),&(:), A(-), where (x,y) represents inner product of two vectors x,y and w;, is the parame-
ter. Then g‘l’g; =exp (— (n°,&(x)) + A%) where n* == n(w]) — n(wg) and A* == A(w]) — A(w§).
Then

|

’yf_l(JS) ={x:7/(x) >0} = {x: (n°,{(x)) > A° Jrlog(ai — 1)}
o°

J

R .} . .
If 05 < 07, then log (—%71) < log (9%71) We have v  (K®) C 7 (J?).
f 5

D Discussions

Transitions under Condition 1(C) or 1(D). This paper mainly focus on transitions satisfying
Condition [T{A) and [I[{B)} As mentioned in Section[d.2] there are the other two combinations: (C)
T3y = Tpo and 17, < T7y; (D) Ty < 15, and T7; > 17, in which there is more uncertainty when
conducting equilibrium analysis. The slight changes in the feature distributions or the values of
transitions may change conclusions significantly.

Because the system has equilibrium if there is solution to balanced equations defined as Eqn. (@) in
1s/ps a b
Appendix@ ie, L —1= Wm, Vs € {a, b}. Since
L— g (0°(a%,a") _ 1= (T5Gi(#°(a%.a")) + Ty (1 - Gi(6°(a,0"))
g% (63 (a®, ab)) T5 Gy (0% (a®, ab)) + T, (1 — G (6% (a®, ab)))

B) % is guaranteed to be

Under optimal (fair) policies and Condition [lj(A)| or |1

either decreasing or increasing in a®. This monotonicity 1s critical to determine the properties (e.g.,
uniqueness, quantity, value, etc.) of the consequent equilibrium (a4, @%) so that impacts of different

fairness can be compared. In contrast, under Condition 1(C) or 1(D), %m is no longer

monotonic, and its intersection with function % — 1, i.e., equilibrium, is thus hard to characterize.
As a consequence, the impacts of different fairness constraints cannot be compared in general.

Comparison between sufficient conditions in Theorem [2 and Lipschitz condition. Let a pair
of qualification rats of G,, Gy be noted as a := (a®, a’) € [0, 1] x [0, 1], and let mapping @ : [0, 1] x
[0,1] — [0,1] x [0,1] be defined such that dynamical system (@) can be written as c; 411 = ®(cy).
Then this dynamical system has an equilibrium @ if ®(@) = @. According to Banach Fixed Point
Theorem, such equilibrium exists and is unique if the mapping @ satisfies L-Lipschitz condition
with L < 1, i.e., ® is a contraction mapping. Specifically, d(®(ay), P(a1)) < Ld(ag, 1) for some
distance function d and Lipschitz constant I, < 1.
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While Lipschitz condition also ensures the uniqueness of equilibrium, the sufficient conditions

given in Theorem [2] are weaker. Use unconstrained optimal policies as an example, in this case

dynamics of two groups can be decoupled because threshold 6° (a®, a’) used in G is independent of
s(ps a b

qualification of the other group a™°. Therefore, sufficient condition \W| = 0 < 1 under

Condition always holds. In contrast, for dynamics of G, after decoupling o, = ®°(a}) =

g% (0% () (1 — af) + g** (0% () )i, ®* is not necessarily a contraction mapping.

Although sufficient conditions in Theorem 2] are weaker, they do not guarantee the stability of the
equilibrium. In contrast, Lipschitz condition with L < 1 ensures the unique equilibrium is also stable,
i.e., we have (af,a?) — (a%,a’) given an arbitrary initial state (ag, aj).

E Derivations

Qualification profile of a group.

1

P(X;=z,Y;=0,S=s)

vi(x) = PY;,=1X;=2,5=3s)=
P(X,=z.Yi=T.5=s) T 1

1
P(X:=2]Y;=0,S=s)P(Y;=0|S=s) +1
P(X;=z|Y:=1,S=s)P(Y;=1|S=s)

1
P(X:=z|Y;=0,5=s) 1
FXi=alvi=T5=) (Pmis=yy — D +1
1

Gi(z) /1 ’
aie) (ag — 1 +1

Utility of an institute.

U(Dy,Yy) = E[R(Dy, Yy)] = P(S = a)E[R¢(Dy, Y3)|S = a] + P(S = b)E[R:(Dy, Y2)|S = b]

Under policy 7*, we have

]E[Rt(Dt,Y}HS = S] = ]P)(Dt = 1,Y;5 = 1‘5 = S)U+ — P(Dt = 1,}/15 = 0|S = S)U_

/ (P(Dt = 1Y, =1, X, =2|S=s)uy —P(D;=1,Y; =0, X, = z|S = s)u_>dx

/]P’(Xt:x|S:s)(IP’(Dt:1\Xt:x,S:s)]P’(Ytzl|Xt:x,S:s)u+
“P(Dy=1|X,=z,5=sPY,=0]X, :x,S:s)u_)d:z:

= / P(X, = IS = 5) (7" (@) (@)uy — 7 (@) (1 = 7 (@))u- ) do
Ex, s=s[m° (Xe) (v (Xe) (ug +u_) —u_)].

Therefore,

U(De, V) = pax, 5=l (Xe) (0 (Xe) (s +u-) — us)] + poEix, s [m”(Xe) (0 (Xo) (ug + us) = u-)]
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Dynamics of qualification rate.

iy = PV =1]S=s)= /Z]P’Y;Hflthy,thdthbﬂS—s)

T y,a

/Z]P’(Ytﬂzl\Y}:y,Xt::th:d,S:s)]P’(Dt:d|Xt:a:,S:s)
T ya

PXy=2|Yi=y,S=5PYe=y| S5 =s)dx
= /Z{P(YM=1|Yt:o,Xt=x,Dt:d,S=s)

P(Dt:d|Xt:x,S:s)P(Xt:a:\Yt:O,S:s)}P(Y}:MS:s)dx

/ PV =1|Yi=1,X, = 2,0, =d, 5 = 5)

IP’thd|th:1: S = s)P (Xt:;z:\Ytzl,S:s)}P(Yt:HS:s)dI
= Expvimo5=s | (1= (X)) Tog + 7 (X0) T | (1 - o)
+ Ex,jvims=s | (1= 7 (X)) T + w3 (X)TH | of

= 90 (at,at) (1_%)_‘_915(0[“&?) ay

F Proofs

We define balanced equations and functions for the rest proofs. The dynamics system () can reach
equilibrium if of = a_; holds. Therefore, the system has equilibrium if there exists solution to the
balanced equations defined as (3).

i_lz lfgla(ﬂa(oza,ozb)). i_lz lfglb(ﬂb(oza,ozb)). )
Qo %07 (as, ab)) ' ab g% (00 (a®, ab))
By removing subscript ¢ and writing threshold 6* as a function of a®, a®, we have gys(Qs(a ab))
T35,G5(0° (o, aP)) + T3, (1 — G5 (0°(a*, aP))), denote CDF of G () as G ( f Gi(x
Vs € {a b}, let —s == {a, b} \ s. Va—* € [0, 1], define balanced set w.r.t. dynamics as \I/S(a‘s) =
for: L —1= W} If the set size |U®°(a~*®)| = 1 holds Va~* € [0, 1], we define
balanced functions w.r.t. dynamics as ¢° : [0, 1] — [0, 1] with ¢*(a™*) € U*(a™%),Va™* € [0, 1].

The proof that the threshold policies are optimal under our formulation.

Proof. In the following proof, we focus on optimal policy at £ and omit the subscript ¢.

First consider unconstrained optimal policy, noted as g, we have,

oy = argmax B x g [m* (X) (v*(X) (uy +u-) —u-)]

) >

5(x ). Since v*(z) is monotonically
increasing in x under Assumption miy(x) = 1z > (v%)~

Therefore, the optimal policy satisfies 7 () = 1(y

Up+uU_
1

(7772)) is threshold policy where

(7*)~1(-) denotes the inverse function of ~(-).

Now consider optimal fair pohcy under some fairness constraint C satisfying Assumption[2} Consider
any pair of policies (7%, 7°) that satisfies fairness constraint C, and define fairness constant ¢ =
Ex~pg[m®(X)] =Exps[m ®(X)] € [0, 1]. To show the optimal fair policy is threshold policy, we

will show that there always exists a pair of threshold policies (7, 75) such that Exps [r5(X)] =
Ex~pp [7%(X)] = ¢, i.e., the fairness constant is the same as (72, 7°), and the utility of (7%, 7}) is

no less than the utility attained under (7%, ).
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Vs € {a, b}, let threshold policy 7 be defined such that 7} (x) = 1(z > 07)) and Ex .p; [73(X)] = ¢
are satisfied. Such policy must exist and the threshold is given by 65 = (P&)~'(1 — ¢), where
% (0%) f Pg(z)dz is CDF of P§ and (P%)~!(+) is the inverse of it.

Let Rys(D,Y), Rys(D,Y') denote the utility attained under policies 7, 7° respectively. Next we
will show that Vs € {a, b}, E[R.:(D,Y) | § = 5] > E[Rs(D,Y) | S = s] holds, i.e.,

Ex|s=s[ma(X)(v*(X)(uy +u-) —u )] 2 Exjs=[m*(X) (7" (X) (uy +u-) —u)]

Since 75(x) = 1(x > 67), we have the followings,

Exseam00 (0 + ) —u)] = [0 @)us +us) —u JBX = | S = s)da
Exismaln ()0 (D) (s +u) —u)] = [0 (@) s +u) —u)B(X = | § = s)da
b @) @) s+ us) —u B(X =2 | S = s)da
- f9;§ 1 -7 @)V (x)(uy +u_) —u_)P(X =z | S = s)dx

Since Ex~ps[m°(X)] = ¢ = Ex~ps [7;(X)], we have

S 03
/ (1 —7%(x))P(z)dx = / 7 (x)Pg(x)dx (6)
Under Assumption P(X%(f):s) is non-decreasing. Since v*(z) = oﬁ% is non-
decreasing and 1 — v*(z) = (1 — « )P(X%ﬂs),) is non-increasing, we have % is non-

i Gilz) :
decreasing and =gy is non-increasing. Therefore,

PX=z|S=s)
Pé(x)

(v (@) (uy +u) —u-)

OLSGL{(I)U 7(1701 )GO(
Pew) " Pe(x

o Gi(z) P(X —wIS—S)u -0 Gi(x) PX=xz|S=5s)
P(X =2]85=5s) P (x) + P(X=z|S=5s) Ps(x)

is non-decreasing in 2. Combine with Eqn. (6), we have the followings,

v

\_/

6
L () (v () (ug +u_) —u_ )P(X =z | S = s)dz

Ya =z =3
- [ @6 @+ ) —u) P = i

03 05 S—s
S L O R e e
T e POX=03]S=5),,
= [ 0T ) )Tl = P
< [ u-w 0@+ ) —u) P T = ey s
_ /jou (@) (@) (s 4 1) — u )P(X =z | S = s)da.

Therefore, the following holds Vs € {a, b},
Exsms[m3(0) (77 () (1 + 1) — u0)] 2 Ex sy [7(X) (0" () (g + 1) — )]

It shows that the utility attained under threshold policy (74, 75) is no less than the utility of (7%, 7°),
which concludes that the optimal fair policy (7§, Trg) must be threshold policies.
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Lemma below further shows that the optimal threshold policy §°(a®, a?) is continuous and non-

increasing in a® and .

Lemma 2. Let (9“(04“ ab), 0 (a?, ab)) be a pair of solutions to Eqn. (@) under a2, a’. Vs € {a, b},

lf 7,5 z) and ) are continuous everywhere in x, then 0°(a®, a®) is continuous in both o and o

Moreover underAssumptlonI 0% (a®, a®) is non-increasing in a® and o®

Proof. To prove that a sufficient condition under which 6°(a®, a®) is continuous in a®, a® € [0, 1] is

that gigzg and Géwg are continuous everywhere in x, we define a function £*(6%, a®, ab):
C

u- (P(X=0°|5=5s)

fs(esvaaaab) = (78(98) - Uy + U 7)&9(05)

1
= [PusGi(0°) + Pu_G§(0°) — u_G§(6°
[@®uy G1(0°) + 0(6°) o )}7?5(93)
_ GS(QS) Go (9 )

Pe(6°
(9* b)+pbfb(0b7a“,a ) =0.

Given any o® and a®, and any constant k, let 9;? be one solution to f*(6°, a%, ab) = k, where
i = 1,..,N and N is the number of solutions Firstly, we show that 6 (a®, a’) is continuous

According to Equation (3)), we have p, f*

in a® and o, forany i € {1,..., N}. Because (T) and 20 E g are continuous, f (6%, 0%, a’) is

Pe(a)
contlnuous in a®, P, and 6°. Therefore, Ve > 0, 35 > 0 such that for all |@* — a®| < § and
la¥ —ab| < 6 = \05 — 03| < €. Thus, 65 (a®, o) is continuous in a® and o, Vi € {1,..., N}.

Next, we show that given a® and o, the solutions to p, f*(6%, a%, a®) + py f*(6°,a%,a’) = 0
under fairness constraint C are continuous in a® and o® € [0,1]. Under fairness constraints in
Equation (T), ¢ = ¢¢(#°) holds for some continuous function ¢¢(-). Consequently, we have
Paf (e (0°),a®, ab) +py f(0°, a®, ab) = 0. Because f*(-, -, -) and ¢¢(-) are continuous functions,
with the same reasoning, given a® and o, the solutions to p, f@(¢c (6°), a®, ab)+py f2(6°, a2, a®) =
0 are continuous in a® and a®. In other words, 6% (a®, a’) is continuous.

Under Assumption | £5(6°, %, a®) and 0%(a?, a®) are continuous. We then prove that if g;gi; is
C
Gs( ) :

non-decreasing and P(2) is non-increasing in z, then 6*(a®, a®) is non-increasing in o and a®.

Let (¢¢(0°), 0°) be a pair that satisfies fairness constraint, where ¢¢ (-) is some continuous and strictly
increasing function, then the optimal one is the pair that satisfies Equation (3] as follows:

_ P(X=¢c(0%)|S= _ P(X=60°|S=b
pa(Va(ch (eb)) - u+ui|_u7) ( pgdz((:b(c(g)}!)) a) +pb(’7b(0b) - u+u+u7) ( 7)2(9|b) )
a G (dc(6))

_ o 1\ Galse(8") b GE(8Y) ety
—pa{o‘ Pagc@n i+ T (@ _1)P§(¢§<eh)>“*} +pb{ Bhm Ut + (= 1) ZEE } 0.

Note that Vs € {a, b}, LHS of above equation is stn'ctly increasing in a® because the coefficient of

s . Gi(z) . ) . G(z) - Gi(z)  Gi(z) -
a” 18 pOSlthe. Because Pz (@) 1S non decreasmg and ( ) is non- lnCreaSlng in x, ,PS (m) Ps (@) is

G‘f(¢c(0”)) _ Gi(gc(6”) G1(0°) _ Gp(8")
Pé(¢c(6%)  P(¢c(6")) PL(O%)  Pe(6b)
increase so that the optimal fair equation can be maintained. It requires that both 6° and 6% = ¢¢(6°)
must not increase. In other words, Vs € {a, b}, #°(a®, a’) must be non-increasing in a® and o®. O

and

non-decreasing in x. As o increases, both must not

O
The proof of Lemmal ]

Proof. In the following proof, we focus on optimal policy at ¢ and omit the subscript £.
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First consider unconstrained optimal policy. Under threshold policy,

O = argmaxByjs—[m" (X)(y"(X)(us +u-) —u-)]

_ argr%%x/jo(’ys(x)(u_i_ tu)—u )B(X =z | S = s)dz

U_
uptu_ "

Since *(x) is monotonically increasing in « under Assumption |1} 655 satisfies v*(65y) =

Now consider optimal policy under fairness constraint to satisfy constraint C, fgof Pé(x)dx =
Jo» Pé(x)da should hold. Denote CDF Pg (6°) f P& (z)dx, then for any pair (6¢,6°) that is
fair, we have 0% = (P4)~'P%(6°) = ¢¢(6°) hold for some strictly increasing function ¢¢ (-). Denote
u=P4(0°) and 6 = (P%)~!(u), the following holds,

dpc(0®) _ d(PE)"'Pe(6°) _ d(PE) '(u) du _ 1 _ (PY)(0") _ Pa(o%)

dob dob du dob — (P2) ((PE&)~T(u)) dGb T (Pg)(6e) T Pg(oe)”

Denote f°(z) == (v*(x)(u+ +u—) —u_)P(X = | S = s), then we have

o0

0% = argmax(D,Y) = arg max ( a/ f(x)dx + py fb(x)d:r) .
0 ov ® ob

c(0%)
Let F(6°) == p, fgs ov) f(@)dz + py [4 f°(x)dz. Because v*(x) is monotonically increasing in
2 under Assumptionm the optimal Hc satlsﬁes
dF(60°) by e (0°) bigh
= pafi(de(6) 2T rb(h
e . pof* (el o~ s 0",
= (el ) s+ ) — uJBX = (8 | § = a) L)
Pé(de(be7))
(O + ) —u )P(X = 0% | S =)
= 0.
Therefore,
x P(X=02%|S= * P(X=02"|S=b
Pa(y (6 s+ u—) — u ) FESEEISE oy (30 (007) (g + ) — un ) FESIS — 0,
O
The proof of Theorem I}
Proof. Vs € {a, b}, define function I*(a®) :== & — 1 and h*(6°(a®,a’)) == M,

9°°(6° (a®,a’))

1 — (T7,G3 (9( ))"‘Tn(l—G( *(a® b)))'

. a’)
h® (0 (O[ ab)) TOOGa(93<aa7ab)) _|_T01(1 —(G:»‘S 08 a®, ab ))

Firstly, we prove that given a fixed a—* € [0, 1] there must exist at least one @® € (0, 1) such that
h*(0°(a=*,@%)) =1°(@°), s € {a,b}, —s = {a,b} \ s.
Since G} (z) is continuous in z, and 0%(a”, a’) is continuous in a® and a®, G5(0%(a®, o)) is
continuous in a® and a®. Therefore, h*(6°(a®, o)) is continuous in o and a®.
Moreover, g'*(0%(a®, a’)) is the convex combination of 75, and T%,, and g°*(0°(a®, a’)) is the
convex combination of T, and 7§, the following holds Ya¢ € [0,1],a® € [0, 1],

min{T7o, 7, } < g'*(6° (%, @) < max{T7o, 7 } ;

min{Tgy, Tg,} < g% (6° (0, a”)) < max{Tg,, T}
which implies 0 < 22240101} < s (g3 (e, ob)) < ZminllioTnd o 4o

max{Tg,,T5; } min{7s,, 75, }
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Furthermore, *(a®) = % — 1 is continuous and strictly decreasing in o®, and
lim °(a®) = 4o00; lim I°(a®) =0,
as—0 as—1

Given a fixed a® € [0, 1], because h’(6°(a®, a’)) is continuous over a® € [0, 1] and with value
1-—max{T7, 77 } 1—min{T},, 77, }
max{T¢, . T¢ } min{T¢,,T% }
from 400 to 0, there must exist at least one @’ € (0, 1) such that h®(6°(a®,@®)) = I*(@®). Similarly,
given a fixed a® € [0, 1], there must exist at least one @® € (0, 1) such that h%(9%(@®, a®)) = 1%(a®).

varying between and , and 1°(a?) is continuous with value varying

Secondly, we prove that all the solutions (@®, a®) and (a®, @”) are on continuous curves in the 2D
plane {(a®,a®) : a® € [0,1],a’ € [0,1]}.

According to the continuity of /5(-) and h*(-), we have Ya® € [0, 1], lim_u/ , . [%(@®) = 1*(a®);
furthermore, Ya* € [0,1] and VO € {6 : [*(a®) = h%(6%)}, limg? he(0%) = h*(6%).
Thus, Ye > 0, 36 > 0, such that Yo € [0,1], |a® — a%| < § = 6% — 0%| < e. Consequently,
Ve > 0,36 > 0and 36 > 0, such that Ya® € [0,1], [ — a®| < § = 6% — 0% < &
— |a? — a?| < e, the last statement is because of the continuity of #%(a®, a®); in other words,
Va® € [0,1], limg. . ol =, where i = 1, ..., N. Therefore, (@®, a®) is on a set of continuous
curves with a® varying from 0 to 1. Similarly, one can prove that (a®,@”) is also on a set of
continuous curves with o varying from O to 1.

'—02

Finally, we show the existence of equilibrium (a%, a°).

Consider a 2D plane {(a®,a’) : a® € [0,1],a’ € [0,1]},and C; = {(@*, a®)} and C; = {(a®, @)}
that are two sets of continuous curves in the plane defined earlier. It is straightforward to see that there
is at least one curve among C; whose o varies from 0 to 1 and at least one curve among C, whose
«a® varies from O to 1. These two continuous curves must have at least one intersection. Moreover,
this intersection (a%,a’) satisfies h®(0°(a¢,a’)) = 1°(ab) and he(9%(a%,a’)) = 1%(a%), is an
equilibrium of system.

Moreover, we also realized that the proof can also be done by using Brouwer’s Fixed Point Theorem
in topology. O

The proof of Theorem 2}

Proof. Following the proof of Theorem|[T}
1—g"(#°(a%,a") _ 1= (T3G5(0°(e%,a®) + T§ (1 — G§(0° (o, 0”))))
9% (6°(at, %)) T5oGg(0<(an, ab)) + T (1 — G§(62(a, a?)))

(6% (a®, ab)) =

Note that Vy € {0, 1}, T5,G5 (0% (a®, o)) + T3 (1 — G5(6°(a®, ab))) is the convex combination
of T3 and T7;; with CDF G (6°(a, a”)) as the weight. Because G5 (6°(a*, a”)) is continuous and
non-decreasing in 6% (a®, a®), under Condition[I{A)| ~°(6%(a®, a®)) is non-decreasing in 6° (a®, a’);
while under Condition I{B)| 2*(6*(a?, a®)) is non-increasing in 6% (a?, a®).

Under unconstrained optimal policy or optimal fair policy with constraint C satisfying Assumption
and[2} 6°(a®, a®) is non-increasing in a®, a®. Therefore, under Condition[I[A)] h*(8°(a®, a?)) is
non-decreasing in a®, a’, while under Condition|I{B), 2*(6*(a®, a®)) is non-increasing in a®, a®.
Moreover,

1-1T5 1-1T7
Under Condition [IA)) 0 < —— <h%(0%(a”,a)) < 1L < 4o
T, T3,
i - 1 -T7 s(ps(.a b 1 -T7
Under Condition [[B) 0< —— <h(0°(a", ) < — < +oo
15 To
First consider the case when Condition [l[(A)|is satisfied.
Because function 1*(a®) = ai — 1 is continuous and strictly decreasing from o0 to 0 over

a® €[0,1], Vs € {a,b}. Thus, given any fixed a® € [0, 1], strictly decreasing function [%(a®) and
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non-decreasing function h%(6%(a®, a®)) has exactly one intersection i.e., 3 only one & such that
he (0% (@®, ab)) = 1%(a®). Val, the set ¥ (ab) = {a h“(@“ a®)) = 1%(@*)} has only one
element, and they constitute continuous function a® = 1[)“( ) (balanced function). Similarly, Vo,
set U0 (a?) = {a : h?(6°(a®,@")) = I*(a®)} also has only one element, which forms continuous
function @’ = ¢*(a®).

Because given any o, h%(0%(a®, a’)) is non-decreasing in a’, as o’ increases, the intersection

with [%(@?) is non-increasing. Therefore, 1) () is non-increasing in a’. Similarly, ¥*(a?) is also
non-increasing in .

On the 2D plane {(a% ab) : a® € [0,1],a® € [0,1]}, two curves C; = {(a%,a’) : a® =
Pe(ab),a® € [0,1]} and Co = {(a®,ab) : a® = ¥*(a?),a® € [0,1]} are both continuous and
non- increasing One sufficient condition to guarantee C; and C, have exact one intersection, is that
|dw (o) | < 1,Vab € [0,1] and |2~ n')| < 1,Va® € [0,1]. In the followings, we show these

sufficient conditions will hold if |%ab))\ < land |W| < 1,Ya®,ab.
Denote u := h®(6%(y%(a’), ab)), because 1%(1)*(a)) = h*(0%(1p*(a®), a’)), Va?,
dy®(ab) d(1*)Y(u)  d(1*)"H(u) du 1 du 1, o du

da dab T du dab - @) T dar — )W) g

Because (14) 71 (u) = *(a®) € [0,1], —=((1)~*(u))? € [~1,0]. Moreover, because of the condition
|%ﬁ,a’ab))| < 1, we have

dip*(a”)
———=| <L

‘ dab ‘
Similarly, we can show that \%| < 1 holds Va* if |%
only one intersection, the equilibrium (@, @) is unique.

Now consider the case when Condition [I[{B)]is satisfied.

| < 1. Therefore, Cy, Co have

Because dl;(aoés) = — (a£)2 < —1,Va* € (0,1), and —1 < %ﬁ:”‘b)) < 0 for any fixed
a~* € [0,1]. Strictly decreasing function /*(«*) and non-increasing function 2*(6*(a®, a®)) has
exactly one intersection. Therefore, Va?, balanced set U2 (a?) = {@® : h*(6%(a®, a’)) = 1*(a®)}
has only one element, and they constitute continuous function @ = w”'(ab) (balanced function).
Similarly, Va?, set ¥¢(a?) = {@* : h*(6%(@*,a’)) = 1%(a”)} also has only one element, which
forms continuous function @® = %(a?).

Because given any a?, h*(0%(a®, a’)) is non-increasing in a’. As a? increases, the intersection
with [*(a®) is non-decreasing. Therefore, 1)®(a?) is non-decreasing in a®. Similarly, ¢)*(a®) is also
non-decreasing in a“.

On the 2D plane {(a®, ab) : a® € [0,1],a® € [0,1]}, two curves C; = {(a®,a’) : a® =
P(al),a’ € [0,1]} and C2 = {(a?,a’) : a® = ¥*(a?),a® € [0,1]} are both continuous and
non- decreasing One sufficient condition to guarantee C; and Cy have exact one intersection, is
that dw (O‘ ) < 1,Va? € [0,1] and dw (a ) < 1,Va® € [0,1]. Using the same analysis as the case

under Condltlon we can show these sufficient conditions will hold if | W |< 1and
8}& eb a7 b
| 2h(0 (a%,07)) a(aaa @) |< I,Va“7ab.

Therefore, C1, Co have only one intersection, the equilibrium (¢, @) is unique. O

The proof of Corollary 1}

Corollary 1. For any feature distribution {G:(z)} s, suppose that |M| < M, holds

for some constant M, € [0,00), Vy € {0,1},Vu € {a b}. Under either Condztzonor

Je;, > 0 such thatfor any transitions that satisfy [T, — Tjo| < €;, s € {a,b},y € {0,1}, the
corresponding dynamics system has a unique equilibrium.
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Proof. Define notations G5 = G3 (6 (a®, a’)), ATy = T, — Ty and ATy = T, — T+,

B0 (a0 oty = L TRIGT+ (A -T)(1 = CF) _ (1 -T) + AT{G

T50G5 + Ts1 (1 — Gp) T + AT (1 - Gy)
Take derivative w.r.t. o*, Vu € {a, b},
K] 8@; S S S S GGS S SIS
Oh* (6°(a”, %)) _ AT} 5o (Tgo + ATS (1 - Gj)) + AT§ 5ot (1 - T7y) + ATEGY)
D (Tgy + AT; (1 - Gy) 2

Consider case under Condition |l A)| Since AT§ < 0, AT} < 0, Ty, + ATg (1 — G§) > 0, and

Ah® (6% (a®,a® AT M To,+ATE Mo(1-T5,)
(1—1T5) + AT:GS > 0, we have |22 Ao )| <| ATM |

Take € = ¢ = ——— 00" f [ATS| < ¢ and |ATS| < €, then | 272%™ 9 poigs
€1 =6 = M Tg,+Mo(1-T},)’ 1 €1 0 €0’ dat .
From Theorem 2] the equilibrium of dynamics[4]is unique.

Consider case under Condition

s(ps(na b s s s s
Since ATg > 0 and AT§ > 0, we have | 2~ (O (0%a)) | < AT M T, + 2Ty Mo(1=Tjo)

Oav — (T§5)?
Take € = € = 3rpe e if AT} < €f and ATg < e, then |2 (07200 < 1 holds.
01 10
From Theorem 2} the equilibrium of dynamics @]is unique. O
The proof of Theorem 3}

Proof. Vs € {a,b}, an equilibrium & satisfies:

L— g (03u(G) _ 1~ (T1i(1 — Gi(0n(@)) + T5oGi (B5u(@) _ 1 L

9% (O (@) T51 (1 = G (0w (agw))) + Too G (O (@) Qi

One solution to the above equation is:
ag =T (1 = G (O (@gn)) + TG (O (atw)) = To1 (1 — G (0w (@tw))) + Too G (Om (0iom))

It shows that &y is a convex combination of T, 7§, and also a convex combination of 775, 77, .

Vayy and G§(z), G5 (z), there is a set of transitions with 7§, < ayy < T§; and T5, < awy < T7,
(satisfy Condition[[{B)), or T, < ayy < Ty and T5; < ayy < T7, (satisfy Condition [TfA)), such
that the above equation holds with &y = au, Vs € {a, b}, i.e., equitable equilibrium is attained.

Next we show that if G4(x) # GY(x), then & # @@ under these sets of transitions. Under
the conditions of Theorem [2| (@¢,a%) is the intersection of two curves C; = {(a%,a®) : a® =
P&(a®),a’ € [0,1]} and C2 = {(a®,a®) : ab = PE(a®),a® € [0,1]}; furthermore, let &2, a4 be
defined such that a¢ = ¥g(a2), a2 = ¥4(ak), which are the intersections of a® = ¥2(a’) and
a® = ab, as well as o’ = 1% (a®) and a® = o, respectively. Then in order to prove Q% # ag, it is
sufficient to show & # &b
Given o = o = ayy, because G (z) # GY(x), we have (o) # 02 (own, ouy) and to satisfy
Eqn. (3), there are only two possibilities: (1) % (cuw) > 0 (awn, o) Oy (aun) < 0% (cw, aun); (2)
O (o) < O3 (cwum, ), Oy (coon) > 0 (aow, aom).
WLOG, suppose the first case holds. Under Condition

1 —g"(O(am)) _ 1—g"(0¢(am, am)) 1-g"(O(am) _ 1—g"*(0¢(am, am))

9% (Ot (cow)) g% (0% (o, am)) g% (O (cow)) 9°*(0¢ (o, aomr) )

It implies that &% < afy, = @ < &4. Similarly, under Condition |I(A)} a% > afy, = @, > ag.
Therefore, A% # Q5.

In contrast, if G (z) = G (x), we have 05y (a) = 03(v, @) and &% = a@. Therefore, 4% = a}. [
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The proof of Theorem 4}

Proof. WLOG, suppose that &g, > @y in the proof. Let ¥3(-),2(-) be balanced functions
as defined in Theorem I under constraint C. Firstly, we show that &%, and &g, are solutions to

— ahb a
{aa 1/J (o) and { w (o) , respectively, i.e., Ay = 14 (a%y) and &gy = V& (ag).

Oé—Oé O[*Oé

Because G(z) = GY(z), Yy € {0,1},Vz, when a® = o = a, we have 7*(z) = *(z),
Piaopt () = Plyope () and Pl () = Php(x), which implies 63 (av, ar) = 64 (v, v); furthermore, the

optimal fair policies of DP and EqOpt satisfy v*(03(a, ) = 7°(0%(cv, @) = u::u, according to
the optimal fair policy equation:
Pat® ppad Pa® ppa? U_
(g2 = i+~ PaV"(05) + 7 () = ————.
Y ( Equt) Y (eEqut) urfu_ Ut tu_ Uy + U

Because 7 (6 (ar)) = 7 (0gy(@)) = -7~ we have 7% (0 () = 7 (0¢ (v, @) = 1" (O (@) =

72 (05 (a, @) so that 0% (a, ) = O%(a) = 05(a, ) = 0% () holds under any a. Vs € {a,b},

because Qi 1s the solution to balanced equation, ie., I°(agy) = h* (03 (ady)). We have I°(ay) =
h? (02 (agy, Cfy)), which further implies &y = ¥&(agy).

Under Condition |I(B)} according to the proof of Theoreml we know that 0 < M < 1and

0< %(?b) < 1. Because afy = wc(aUN) < Ay = Y3(A,), we have afy < wc( a%) < a%,
Va® € [@fy,ag). Similarly, we have o’ < 9g(a’) < ag, Vab € [&IZ}N,&UN] Therefore, after
representing the two balanced functions as two curves C; = {(a%,a’) : « 1/16( ) ab € 0,1]}
and Cy = {(a%,a’) : a® = ¢4(a®),a € [0,1]} on the 2D plane {(a ab) 1 a® € [0,1],ab
[0,1]}, the intersection (ag,ag) of C; and Cy satisfies: 1) @% > a%; 2) @y < a3 < Ay 3)
Qby < A% < ady. Therefore, |a% — a%| < |agy — abyl.

Under Condition 1 according to the proof of Theorem we know that —1 < % <0

and —1 < dw#.(f) < 0. Because afy = Y4 (ay) < %y = Y&(ag), we have ¢4 (a®) < @by,
Va® > afy,. Similarly, we have ¢&(a®) > ady, Vab < @g;. Due to the existence of equilibrium, the
intersection (¢, @%) of C; and Co must satisfy: 1) @% > a%; 2) @y < @%; 3) @ < afy. Therefore,

|a¢ — ael > |agy — al. 0

The proof of Theorem 5}

Proof. The proof is under the conditions of Theorem 2] such that there is unique equ111br1um of
qualification rate. Under fairness constraint C = EqOpt or DP, consider 2D plane {(a®, a®) :
a® € [0,1],ab € [0,1]}, and note that equilibrium (&%, Q%) is the intersection of two curves
C1 = {(a%,ab) : a® = ¢P4(ab),ab € [0,1]} and C2 = {(a®, ab) : ab = P8(a®),a® € [0,1]}.
Consider a line {(a?,ab) : a® = ab,a® € [0,1],a’ € [0,1]}, which has unique intersection &'
with Cy, and unique intersection & with Co. That is, a2 = ¥&(ag), a% = ¢4 (a%).

First of all, we show that if 7= > 1200 3(Z), under Condition n aby < agy.

By Condition|2] glven any o = a® = a, the corresponding qualification profiles of G, G, satisfy the

followings: v°(Z) = v%(Z); 7*(z) < v%(x), Vo < T;7%(x) > 7%(x), Vo > 7. Let@ be qualification
= u— u o~ ~ Ga@ Gh @@
e such a1 < D) =1*(@) = i =iE =A@ — 1, where 53) = FHE = G,
then Voo € [a’ 1]’ ’ya(egN(a)) = ryb(egl\l(a)> = u++7u, < 13(55)(%71)4»1 - 'Ya(x) =7 ( ) ThllS
a

Va € [@,1], 64 (a) < 05 (a) < 7, which implies G$(0%(a)) < GY (65, () and G& (0% () <
GY(0%y()); furthermore, under Condition[[{B)] we have
1-Tn _ 1=¢"(0() _ 1-9"(0n(@) _ 1-Tio
Tox 9% (0 (a)) 9% (O () Too

, Va € [@, 1].
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g% (05, (agy)) ’a{;’“

If @ < @y, the &y < gy must hold under Condition [1{B)} Next, we show that a

Because Gy and dgy are solutions to balance equations, i.e., = — 1 = 1mg @) 1 g
UN

1— glb(e (O‘UN))

Ob(g (QUN)) b T

.. . _ .

sufficient condition of & < oy is = > Tt B(Z).

%2%6(3):>%—12 1TT1“ Slnce¢71< L OT“’ wehave¢71<%fl. Thus,

Qg
@ < @Y. Therefore, if *+ > % B(), under Condltlon L Ay < Ay

Fairness constraint EqOpt. Secondly, we show that for EqOpt fair policy, if &= > 170 g(z),
under Condition [l B)| &%, — &%, > &% .. — al.,.. > 0. Because two curves C;, Co are monotonic
UN UN EqOpt EqOpt

increasing. It’s sufficient to show two parts: (1) Gfyone < Qs Ahgops > Aoy: (2) Voopt = Ohgope-

Under EqOpt constraint, Yo, a®, G (0gqp. (@, a?)) = GY(620p: (@, a’)) must hold so that
08 ope (%, %) = 08 o (', aP). Consider the case a® = o’ = a, Va > @, we have 9Equpt(a, a) =
ngopt(a, ) and 0%, (o) < 0%, (c). Tt implies that 0%, (o) < 0Eq0pt(a, a) = GZE’qut(a,a) <0 (a) <
Z, otherwise Equation @) will be violated. Therefore, the followings hold Vo € [&, 1],

1 — g" (03 0ps (a, ) - 1—g'(Og(a)) 11— 9" (BRqops (v, @) < 1 —g"(0t())
9% (Ozqope (@, @) 9o (O8u(a)) 7 g% (BRgepe (@, @) 9% (O6u ()

. . 9" (Oigope (@)
Vs € {a,b}, aqupt is the solution to WM
N (O(0) _

~b ~b
09(95 &) = a — 1. Sincea < aUN < afy, it implies & aqupt < gy, Qgqopt > Oyy-

— é — 1 while &3 is the solution to

Next, show that Ao, > GRgope- Yor > @, o (v, @) = O g0 (@, ) implies G (Og o, (a, @) =
A (PEygpe(01,0)) ad G (P01, 0)) < G} (Bl ). Therefore,

1- gla(agqﬂpt(aa a)) 1- 1b(egq0pt (Cl{, a))

goa(aqupt (Oé, Oé)) B gOb(glEJqOPt(a7 O[))

. . . 1 . ~a ~b
Intersections with function - — 1 satisfies @gyg, > gggpy -

It thus concludes that &y — Ay > Qfcope — Vegop > 0-

Fairness constraint DP. Flnally, consider DP fair policy, where Va?, a?, (1—a®)G& (6 (a®, a®))+
G (0% (%, ab)) = (1 — a®)GY (85 (a?, a’)) + a’ G4 (0% (a® 7ab)) must hold.
We first show that under Condition |l B), &, < ad;, agp > afy. Consider the case a® = o’ = a,
Ya > @. Since Vr, (1 — a)Gl(z) + aGl(z) > (1 — a)GE(z) + aG{(z), (1 — a)GE (0% (a, ) +
aG{ (0% (a, a)) = (1—a)GE (05 (o, ) +aGh (0% (v, ) implies 0% (v, o) > 0% (v, ). Because
08 (a) < 0% (), Ya > @. It implies that 0% (o, o) > 0% (o) and T > 0 (a) > 05 (v, @) must
hold. Therefore, Vo € [@, 1],
L= g"(0h( ) _ 1=9"(0fu(e) 1= 9" (p(,)) _ 19" (O(a))
9% (0gp (v, @) 9o (05(e)) T g™ (O (cv, @) 9% (0(a))

Similar to reasoning in Eq0pt case, we have &g, < ady, alp > aby.

Different from EqOpt fairness where agqq,, > aqupt, both ag, > &l and ag, < afp are likely
to occur, depending on distributions G&(x), G5(x), G¢(z) and G4 (z). It is because 9,‘)1?(04 a) >
055 (v, @) can result in either G¢ (0% (v, @) < G4 (05 (v, ) or G& (0% (v, @) > G (05 (v, ).

For these two outcomes, if &% > agp, then DP fair policy results in a more equitable equilibrium
than unconstrained policy; if &%, < &3, it means the disadvantaged group is flipped from Gy, to G,,.

O

The proof of Proposition [T}
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Proof. In the proof, we simplify the notations by removing subscript C.
Let 1% (-), 1’ (-) be balanced function of policies (6%, 6°) and (6%, 6"), respectively.
According to the balanced equation (3)),

L _1=g"(F(e%a”) _ 1= (T(1 = Gi(*(a”,a")) + TR Gi(6°(a”, a")))

a0 ge@s(anal)) T (1 - Gi8*(a%, b)) + TG5 (65 (at, )
Under Condition (B), Yo, a® € [0,1], % (a®, a?) < 6%(a®, o) and 8% (a®, a?) < 6°(a®, ab).

Under Condition Voo, ab € [0,1], 0% (a%, a) > 0%(a®, o) and 6 (a®, a®) > 6°(a®, ab).

s b scps’ (a b /
Both imply that gf(gg(iff a?)))) > 1;(?:(9(3((537(;?)))), and Va?, o’ € [0, 1], ¥*(a®) < ¢ (a’) and

PP (a®) < ¥ (a®) hold. As a consequence, &@® > & and &% > aP.
Now consider the long-run average utility of institute U(6%,6%) = limp_.o0 7 23:1 U (64,6°),
where the instantaneous utility at ¢ under threshold policies 6%, #° is

U(6°,6") = Y peEx,js=s[1(Xe 2 0°)(37 (Xo) (ur +u-) —u-)]
s=a,b
= Z ps/ ) (uy +u_) —u_ )P Xy =2 | S =s)dz
s=a,b
- 3 / s + Gy(w)u_) — Gi(a)u_da
s=a,b

In the followings, we use a special case (C = EqOpt, Gy (z) = Gg(x), Vz,y = 0, 1, under Condition
1(B)) to show that T (#*',0"") > T (6*,6") can be attained, i.e., the long-run average utility under
policy (6%, 6"") can be higher than myopic optimal policy (6%, 6?).

Since the qualification rates of two groups converge to equilibrium, U (0%, 8°) = U, (6%, 6°) is the
same as instantaneous expected utility of institute at the equilibrium state. To show that U(Gal ,0Y) >
U(6%,6°), we prove the following holds,

Z / o flx;@® dx> Zps/ :a)dx (7)

s=a,b s=a,b
where f(z;a%) = a* (G‘{(az)u+ + G§(z)u_) — G§(x)u—

Because &° > af, 05 (a%,a?’) < 65(a”,a?) < 05(@*,a’) holds under Condition LHS of
above inequality can be written as

0°(@*,a") , ) ,
> ps(/ fla:a® )d:c—i—/ fl:a ).
s=ab o' (@2’ @) 0= (a*,ab)

Inequality (7) can further be re-organized,

9'5(@ Oé ’
Z / ) fla; @ )dx > Zps/ ;0°) — f(z;a°))da (8)

s/ (aa (aa ’\b)

s=a,b s=a,b
Consider a special case where C = EqOpt and Gy (7) = Gg(x) = Gy(x),Vz, Yy € {0,1}. Then
Va®, ab, we have 0%(a®, a’) = 0°(a®, o) and 0% (a®, o) = 6" (a®, ab). Inequality (@) can be

reduced to the following, Vs € {a, b}, simplify notations and let 0 := 0°(a2,ab), 0 == 0’ (a*,a").
(rad” + ) (61(0) - G1(8) )us
+ (0 (1= Ga@) +u-(1 = Go(@)) (pa@ — ") + (@ — "))

> (pa(1=a") 451 3")) (Go(B) = Co(@) Ju- ©
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Because % —1= 17?15£ Dand L — 1= 1-g"( ),

‘We have term 1 >

(B0 610+ 1~ Go@)) (pop o Ty BT ) (0,0) - 0@

=h(8)>0
For the optimal EqOpt fair threshold §(@* , @), the following holds
(pa&“/ +pbab,)G1(9(&“,,&b/))u+ = (pa(l - aa/) +pp(1 — ab/))Go(e(aa/v ab/))lL
(paa + ppa )Gl( Juy > ( (1—a%)+pp(1—a ))GO( Yu_, Vo > 6@, a")
(o™ + e ) Ga(@)us < (pall = &) + po(1 = &)) Gofa)u—, ¥ < (@, &)

It implies that I some 6 > 0s.t. Vz € ((@*,a" ) — 6,0(@* ,a") + 6) == B(O(@*,a" ), ),

~

(paaa’ +pbab’)G1(x)u+ + h(0)Go(z)u_ > ( o(1—a%) +pp(1—a ))Go( Yu_

0.0 c B(6(a” ,a""), d) can be satisfied as long as |0%(a®, a®) — 0% (a®, al)| < e for some suffi-
ciently small € > 0.

Using the mean value theorem, 3G, (z) and Z € (@,6) c B(O@,a"), ) s.t.

(Pod™ + e ) (G1(8) = G2 (@))u + h(B) (Go(®) — Co(@))u-

-~

((pod” + " ) G2 @) + (@) Go(@)u- ) @~

> ((pau—a )+ m(l - & >) o@ )< 68
> (pa(1-a") + (1 - @) (Go o())u_.
Therefore, inequality (O) holds and T (8%, 6%") > T (6%, 6°). O

The proof of Proposition 2}

Proof. To ensure of — @, threshold policy 0°(a®) as a function of o® € [0,1] should

be designed such that % = -1 — 1 has a unique solution &. Let Z, :=

1—max{T}, TS} 1—min{Ts,,T5,} 1—g'* (6% (a*)) . S( 8
[ maj{TmnToolf T |, then ~ @ ey € Zs for any threshold policy 6°(a®).

If Z, N Z, = 0, then 1;(?:(“9(3 :OE;‘))) = 1;09;:9(,? (bOE;)) can never be attained, i.e., no threshold policy can

result in equitable equilibrium.

IfZ, N7y, # 0, then Va € Z, NI, and Vs € {a, b}, there exists threshold policy 0°(a®) such that

w*;()o‘))) = = — 1. Specifically, under Condition [I{ B)| (resp. |1 A)I), function
po(a) = Lm0 1= (B0~ Gi)) + TG )
9% (x) T5, (1 = G () + TG (=)
is strictly increasing (resp. decreasing) in z € (—o0, +00) from Ts“ (resp 10) to - Tio (resp.

1— T11

) and any non-increasing function 0°(«®) that satisfies §°(a) = (h®)~ (5 1) can result in

o —> @, where (h®)~1(-) is the inverse function of h*(-). O
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The proof of Proposition 3}

Proof. According to the balanced equation (),
1 1—g"(0°(a%0”) 11— (T3 (1 - Gi(0°(a”, 0))) + TG (0° (2%, a?)))

as T g0 (0(anab)) T T (1 - Gy(0%(an, ah))) + TG (0% (o, b))

s(ps a b ’
Ya*,a’ € [0,1], increasing any T, decreases %. Let * () be the consequent

balanced function after increasing 7'7;, and a*’ be corresponding equilibrium. Given any a®, a® €
[0, 1], we have ¢%(a?) < ¢¥* (a?) and ¥°(a®) < ¥ (o). Therefore, @ > a® and & > a’. [
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