
A Notations

Gs demographic group, s ∈ {a, b}
Xt feature at t, X ∈ Rd
Yt true qualification state at t, Yt ∈ {0, 1}
S sensitive attribute S ∈ {a, b}
ps group proportion of s, i.e., ps = P(S = s)
Dt institute’s decision at t, Dt ∈ {0, 1}
πst (x) policy for Gs at t, i.e., πst (x) = P(Dt = 1 | Xt = x, S = s)
Gsy(x) feature distribution of unqualified (y = 0) or qualified (y = 1) people from Gs , i.e.,

P(Xt = x | Yt = y, S = s)
Gsy(x) CDF of Gsy(x), i.e., Gsy(x) =

∫ x
−∞Gsy(z)dx

PsC(x) a probability distribution over Xt that specifies the fairness metric C
αst qualification rate of Gs at t, i.e., P(Yt = 1 | S = s)
γst (x) qualification profile of Gs at t, i.e., P(Yt = 1 | Xt = x, S = s)
T syd transition probability of Gs, i.e., P(Yt+1 = 1 | Yt = y,Dt = d, S = s)
u+ benefit the institute gains by accepting a qualified individual
u− cost incurred to the institute by accepting an unqualified individual
θsC threshold in a threshold policy for Gs under constraint C, i.e., πst (x) = 1(x ≥ θsC)
α̂sC qualification rate of Gs at the equilibrium under policy with constraint C ∈ {UN, DP, EqOpt}

B Additional results on experiments

Gaussian distributed synthetic data. We first verify the conclusions in Section 4 and 5 using the
synthetic data, where Xt | Yt = y, S = s ∼ N (µsy, (σ

s)2).

In Section 4, Figure 2 illustrates sample paths of {(αat , αbt)}t under EqOpt, DP, UN optimal policies.
The specific parameters are as follows: [µa0 , µ

a
1 , µ

b
0, µ

b
1] = [−5, 5,−5, 5], [σa, σb] = [5, 5], u+

u−
= 1,

pa = pb = 0.5, [T a00, T
a
01, T

a
10, T

a
11] = [0.4, 0.5, 0.5, 0.9], [T b00, T

b
01, T

b
10, T

b
11] = [0.1, 0.5, 0.5, 0.7].

Table 2 and 3 illustrate the impacts of EqOpt and DP fairness on the equilibrium, where each column
shows the value of α̂aC − α̂bC when C = UN, EqOpt, DP under different sets of parameters. Specifically,
in Table 2, pa = pb = 0.5, u+

u−
= 1, [µs0, µ

s
1, σ

s] = [−5, 5, 5],∀s ∈ {a, b} and transitions satisfying
either Condition 1(A) or 1(B) are randomly generated; in Table 3, transitions satisfying Condition
1(B) and Gsy(x) that satisfy Condition 2 are randomly generated, u+

u−
also satisfies the condition in

Theorem 5. These results are consistent with Theorem 4 and 5.

Table 2: α̂aC − α̂bC when C = UN, EqOpt, DP: Gay(x) = Gby(x) and T ayd 6= T byd.
Condition 1(A)

UN (×10−2) -18.45 16.89 19.82 -7.21 -16.34 -26.56 16.66 -6.03 -38.63
EqOpt (×10−2) -21.11 19.13 21.78 -7.62 -18.56 -29.21 18.14 -6.28 -41.52
DP (×10−2) -27.98 23.11 25.65 -8.90 -23.11 -33.22 21.09 -6.66 -43.35

Condition 1(B)
UN (×10−2) -19.05 18.18 -0.70 -58.80 -40.91 61.30 12.82 -44.67 2.66
EqOpt (×10−2) -18.40 17.98 -0.64 -57.62 -34.50 48.66 12.35 -41.43 2.61
DP (×10−2) -17.52 17.73 -0.57 -55.62 -28.97 36.10 11.69 -37.97 2.57

Table 3: α̂aC − α̂bC when C = UN, EqOpt, DP: Gay(x) 6= Gby(x) and T ayd = T byd under Condition 1(B).
UN (×10−2) 1.88 26.35 2.12 0.38 5.64 12.35 11.70 0.20 4.12
EqOpt (×10−2) 0.57 17.43 1.75 0.32 5.05 7.81 7.21 0.18 1.68
DP (×10−4) 16.26 18.29 -5.94 -0.93 -2.25 1.47 0.92 -1.68 -0.80
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(a) D-invariant transitions (b) D-variant transitions

Figure 5: Results on the FICO dataset: Points are the repayment rates of GAA,GC at the equilibria
under Condition 1(B) with different sets of transitions. Arrows indicate the direction of increasing
T s01; a more transparent point represents the smaller value of T s10. In panel (a), TAAyd = TCyd, while in
panel (b), TAAyd < TCyd.

Caucasian repaid

Caucasian defaulted

African-American repaid

African-American defaulted

Figure 4: The feature distributions: the
scores are rescaled so that they are be-
tween 0 and 1.

FICO score data. From the pre-processed FICO dataset,
we got P(X = x | S = s) and P(Y = 1 | X = x, S = s).
In this experiment, we consider two demographic groups,
12% the African American GAA and 88% the Caucasian
GC . According to the empirical feature distributions, we
can first simulate the FICO dataset with credit scoresX , re-
payment Y , and sensitive attribute S. We then compute the
initial qualification (repayment) rates (αAA0 , αC0 ), which
is 0.34 in GAA and 0.76 in GC ; and fit Beta distributions
to get the feature distribution P(X = x | S = s, Y = y),
as shown in Fig. 4. Since the feature distributions are the
Beta distributions, we can compute optimal UN, EqOpt, DP
thresholds directly using Eqn. (3) and update the repay-
ment rates based on dynamics (4). This process proceeds
and (αAAt , αCt ) changes over time.

We then consider the demographic-invariant (D-invariant) and demographic-variant (D-variant)
transitions and examine the impact of the transition interventions. Specifically, in the context of loan
repayment prediction and group lending [41], the transitions would satisfy Condition 1(B). Fig. 5
illustrates the equilibria (α̂AA, α̂C) under different sets of transitions. Their specific values are listed
as follows, where the system has an equilibrium in all cases.

D-invariant: T00 = 0.1, T11 = 0.9, T10, T01 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
D-variant: TAA00 = 0.1, TAA11 = 0.9, TAA10 , TAA01 ∈ {0.20, 0.36, 0.53, 0.69, 0.85}

TC00 = 0.4, TC11 = 0.9, TC10, T
C
01 ∈ {0.45, 0.55, 0.65, 0.75, 0.85}

COMPAS data. The COMPAS dataset is a high-dimensional dataset with mixed data types (e.g.,
continuous, binary, and categorical). The number of samples is 5278. There are 10 features and two
demographic groups: 60% African American (GAA) and 40% Caucasian (GC ). The qualification rate
in COMPAS is the recidivism rate. The initial recidivism rates are 52.3% in GAA and 39.1% in GC .

Due to the complexity of the feature distribution, the system can be either in the equilibrium state
or oscillate between two recidivism rates in the long-run. Since the feature distribution is fixed and
approximated from the COMPAS dataset, we investigate that under which transitions, the system
is in an equilibrium state under unconstrained optimal policy. For this purpose, it is sufficient to
study the demographic-invariant transitions TAA = TC and consider the entire population without
distinguishing two groups; moreover, in the context of recidivism prediction, the transitions would
satisfy Condition 1 (A). Therefore, we consider T00 and T10 taking the values 0.1, 0.3, 0.5, 0.7 and
0.9. Figure 6 shows the results when T01 = k×T00 and T11 = k×T10. We find that when Corollary
1 is satisfied, e.g., when k ≥ 0.5, most of the corresponding systems have a unique equilibrium (blue
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Figure 6: The oscillation level of recidivism rates in the long run is represented by the size of red
circles, of which the bigger one represents severer oscillation. The blue dots represent the scenarios
with a unique equilibrium. T00 and T10 axes represent their values respectively; k axis represents the
scalar k, where T01 = k × T00 and T11 = k × T10.
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(a) T01 = 0.1× T00.
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(b) T01 = 0.3× T00.
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(c) T01 = 0.5× T00.
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(d) T01 = 0.7× T00.
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(e) T01 = 0.9× T00.

Figure 7: The oscillation level of recidivism rates under different transitions. In each panel, scalar k
denotes the ratio, of which T11 = k × T10.

dot). Moreover, when T00 ≤ 0.5, the system is also mostly in the unique equilibrium state. For the
other transitions, the system oscillates between two states (red circle). We also show the results under
all the combinations of T01 and T11 in Figure 7.

Next, we study the impact of policy interventions in cases with equilibrium. We randomly choose the
transitions under which the system has an equilibrium and then apply the unconstrained policy with
optimal threshold (classifier threshold 0.5), a higher and a lower threshold (classifier thresholds 0.8
and 0.2 respectively) compared to the optimum respectively. The results are show in Table 4.

Table 4: Recidivism rates in the long run. UN∗: unconstrained policy (UN) with the optimal threshold;
UNθH : UN with a higher threshold; UNθL : UN with a lower threshold.

UN∗ UNθH UNθL
α̂1 0.164 0.166 0.147
α̂2 0.343 0.356 0.307
α̂3 0.230 0.246 0.162
α̂4 0.306 0.3415 0.156
α̂5 0.162 0.166 0.140
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C Generalization to high-dimensional feature space

All analysis and conclusions in this paper can be generalized to high-dimensional feature space
x ∈ Rd, where the qualification profile of Gs is defined as γst (x) = P(Yt = 1 | Xt = x, S =
s) ∈ [0, 1], x ∈ Rd. Different from one-dimensional case where decisions are made based on
features, here decisions are made based on γst (x), i.e., high-dimensional features are mapped into a
one-dimensional space first and decisions are made in this transformed space. The threshold policy
in this case becomes πst (x) = 1(γst (x) ≥ θst ) with threshold θst ∈ [0, 1]. Let γs

−1

t (θ) ⊂ Rd be
defined as the preimage of θ under qualification profile γst , then all analysis in one-dimensional
settings can be adjusted using γs

−1

t (·). For example, Assumption 1 in high-dimensional case can
be adjusted to the following: ∀s ∈ {a, b}, given any two thresholds 0 ≤ θsj < θsk ≤ 1, we have

γs
−1

t (Ks) ⊂ γs−1

t (Js), where Js = {θ : θ ∈ [θsj , 1]} and Ks = {θ : θ ∈ [θsk, 1]}; in other words, if
an individual can get accepted by a policy with the higher threshold, it must be accepted if a policy
with a lower threshold was used. Note that this assumption is still mild and always hold if Gsy(x)
belongs to exponential family.

Specifically, if ∀s ∈ {a, b},∀y ∈ {0, 1}, distribution of X|Y = y, S = s belongs to exponential
family and can be written as Gsy(x) := B(x) exp

(
〈η(ωsy), ξ(x)〉 − A(ωsy)

)
for some functions

B(·), η(·), ξ(·), A(·), where 〈x,y〉 represents inner product of two vectors x,y and ωsy is the parame-

ter. Then Gs0(x)
Gs1(x) = exp

(
−〈ηs, ξ(x)〉+As

)
where ηs := η(ωs1)− η(ωs0) and As := A(ωs1)−A(ωs0).

Then

γs
−1

t (Js) = {x : γst (x) ≥ θsj} = {x : 〈ηs, ξ(x)〉 ≥ As + log
( 1
αst
− 1

1
θsj
− 1

)
}

If θsj < θsk, then log
( 1
αst
−1

1
θs
j
−1

)
< log

( 1
αst
−1

1
θs
k
−1

)
. We have γs

−1

t (Ks) ⊂ γs−1

t (Js).

D Discussions

Transitions under Condition 1(C) or 1(D). This paper mainly focus on transitions satisfying
Condition 1(A) and 1(B). As mentioned in Section 4.2, there are the other two combinations: (C)
T s01 ≥ T s00 and T s11 ≤ T s10; (D) T s01 ≤ T s00 and T s11 ≥ T s10, in which there is more uncertainty when
conducting equilibrium analysis. The slight changes in the feature distributions or the values of
transitions may change conclusions significantly.

Because the system has equilibrium if there is solution to balanced equations defined as Eqn. (5) in
Appendix F, i.e., 1

αs − 1 = 1−g1s(θs(αa,αb))
g0s(θs(αa,αb))

, ∀s ∈ {a, b}. Since

1− g1s(θs(αa, αb))

g0s(θs(αa, αb))
=

1− (T s10Gs1(θs(αa, αb)) + T s11

(
1−Gs1(θs(αa, αb))

)
)

T s00Gs0(θs(αa, αb)) + T s01

(
1−Gs0(θs(αa, αb))

) .

Under optimal (fair) policies and Condition 1(A) or 1(B), 1−g1s(θs(αa,αb))
g0s(θs(αa,αb))

is guaranteed to be
either decreasing or increasing in αs. This monotonicity is critical to determine the properties (e.g.,
uniqueness, quantity, value, etc.) of the consequent equilibrium (α̂aC , α̂

b
C) so that impacts of different

fairness can be compared. In contrast, under Condition 1(C) or 1(D), 1−g1s(θs(αa,αb))
g0s(θs(αa,αb))

is no longer
monotonic, and its intersection with function 1

αs − 1, i.e., equilibrium, is thus hard to characterize.
As a consequence, the impacts of different fairness constraints cannot be compared in general.

Comparison between sufficient conditions in Theorem 2 and Lipschitz condition. Let a pair
of qualification rats of Ga,Gb be noted as α := (αa, αb) ∈ [0, 1]× [0, 1], and let mapping Φ : [0, 1]×
[0, 1] → [0, 1] × [0, 1] be defined such that dynamical system (4) can be written as αt+1 = Φ(αt).
Then this dynamical system has an equilibrium α̂ if Φ(α̂) = α̂. According to Banach Fixed Point
Theorem, such equilibrium exists and is unique if the mapping Φ satisfies L-Lipschitz condition
with L < 1, i.e., Φ is a contraction mapping. Specifically, d(Φ(α0),Φ(α1)) ≤ Ld(α0, α1) for some
distance function d and Lipschitz constant L < 1.
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While Lipschitz condition also ensures the uniqueness of equilibrium, the sufficient conditions
given in Theorem 2 are weaker. Use unconstrained optimal policies as an example, in this case
dynamics of two groups can be decoupled because threshold θs(αa, αb) used in Gs is independent of
qualification of the other group α−s. Therefore, sufficient condition |∂h

s(θs(αa,αb))
∂α−s | = 0 < 1 under

Condition 1(A) always holds. In contrast, for dynamics of Gs after decoupling αst+1 = Φs(αst ) =
g0s(θs(αst ))(1− αst ) + g1s(θs(αst ))α

s
t , Φs is not necessarily a contraction mapping.

Although sufficient conditions in Theorem 2 are weaker, they do not guarantee the stability of the
equilibrium. In contrast, Lipschitz condition with L < 1 ensures the unique equilibrium is also stable,
i.e., we have (αat , α

b
t)→ (α̂a, α̂b) given an arbitrary initial state (αa0 , α

b
0).

E Derivations

Qualification profile of a group.

γst (x) = P(Yt = 1|Xt = x, S = s) =
1

P(Xt=x,Yt=0,S=s)
P(Xt=x,Yt=1,S=s) + 1

=
1

P(Xt=x|Yt=0,S=s)P(Yt=0|S=s)
P(Xt=x|Yt=1,S=s)P(Yt=1|S=s) + 1

=
1

P(Xt=x|Yt=0,S=s)
P(Xt=x|Yt=1,S=s) ( 1

P(Yt=1|S=s) − 1) + 1

=
1

Gs0(x)
Gs1(x) ( 1

αst
− 1) + 1

.

Utility of an institute.

U(Dt, Yt) = E[Rt(Dt, Yt)] = P(S = a)E[Rt(Dt, Yt)|S = a] + P(S = b)E[Rt(Dt, Yt)|S = b]

Under policy πs, we have

E[Rt(Dt, Yt)|S = s] = P(Dt = 1, Yt = 1|S = s)u+ − P(Dt = 1, Yt = 0|S = s)u−

=

∫
x

(
P(Dt = 1, Yt = 1, Xt = x|S = s)u+ − P(Dt = 1, Yt = 0, Xt = x|S = s)u−

)
dx

=

∫
x

P(Xt = x|S = s)
(
P(Dt = 1 | Xt = x, S = s)P(Yt = 1 | Xt = x, S = s)u+

−P(Dt = 1 | Xt = x, S = s)P(Yt = 0 | Xt = x, S = s)u−

)
dx

=

∫
x

P(Xt = x|S = s)
(
πs(x)γst (x)u+ − πs(x)(1− γst (x))u−

)
dx

= EXt|S=s[π
s(Xt)(γ

s
t (Xt)(u+ + u−)− u−)].

Therefore,

U(Dt, Yt) = paEXt|S=a[πa(Xt)(γ
a
t (Xt)(u+ + u−)− u−)] + pbEXt|S=b[π

b(Xt)(γ
b
t (Xt)(u+ + u−)− u−)]
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Dynamics of qualification rate.

αst+1 = P(Yt+1 = 1 | S = s) =

∫
x

∑
y,a

P(Yt+1 = 1, Yt = y,Dt = d,Xt = x | S = s)dx

=

∫
x

∑
y,a

P(Yt+1 = 1 | Yt = y,Xt = x,Dt = d, S = s)P(Dt = d | Xt = x, S = s)

P(Xt = x | Yt = y, S = s)P(Yt = y | S = s)dx

=

∫
x

∑
a

{
P(Yt+1 = 1 | Yt = 0, Xt = x,Dt = d, S = s)

P(Dt = d | Xt = x, S = s)P(Xt = x | Yt = 0, S = s)
}
P(Yt = 0 | S = s)dx

+

∫
x

∑
d

{
P(Yt+1 = 1 | Yt = 1, Xt = x,Dt = d, S = s)

P(Dt = d | Xt = x, S = s)P(Xt = x | Yt = 1, S = s)
}
P(Yt = 1 | S = s)dx

= EXt|Yt=0,S=s

[
(1− πst (Xt))T

s
00 + πst (Xt)T

s
01

]
(1− αst )

+ EXt|Yt=1,S=s

[
(1− πst (Xt))T

s
10 + πst (Xt)T

s
11

]
αst

= g0s(αat , α
b
t) · (1− αst ) + g1s(αat , α

b
t) · αst

F Proofs

We define balanced equations and functions for the rest proofs. The dynamics system (4) can reach
equilibrium if αst = αst−1 holds. Therefore, the system has equilibrium if there exists solution to the
balanced equations defined as (5).

1

αa
− 1 =

1− g1a(θa(αa, αb))

g0a(θa(αa, αb))
;

1

αb
− 1 =

1− g1b(θb(αa, αb))

g0b(θb(αa, αb))
. (5)

By removing subscript t and writing threshold θs as a function of αa, αb, we have gys(θs(αa, αb)) =

T sy0Gsy(θs(αa, αb)) + T sy1

(
1−Gsy(θs(αa, αb))

)
, denote CDF of Gsy(x) as Gsy(θ) =

∫ θ
−∞Gsy(x)dx.

∀s ∈ {a, b}, let −s := {a, b} \ s. ∀α−s ∈ [0, 1], define balanced set w.r.t. dynamics as Ψs(α−s) :=

{αs : 1
αs − 1 = 1−g1s(θa(αs,α−s))

g0s(θs(αs,α−s)) }. If the set size |Ψs(α−s)| = 1 holds ∀α−s ∈ [0, 1], we define
balanced functions w.r.t. dynamics as ψs : [0, 1]→ [0, 1] with ψs(α−s) ∈ Ψs(α−s),∀α−s ∈ [0, 1].

The proof that the threshold policies are optimal under our formulation.

Proof. In the following proof, we focus on optimal policy at t and omit the subscript t.

First consider unconstrained optimal policy, noted as πsUN, we have,

πsUN = arg max
πs

EX|S=s[π
s(X)(γs(X)(u+ + u−)− u−)]

Therefore, the optimal policy satisfies πsUN(x) = 1(γs(x) ≥ u−
u++u−

). Since γs(x) is monotonically
increasing in x under Assumption 1, πsUN(x) = 1(x ≥ (γs)−1( u−

u++u−
)) is threshold policy where

(γs)−1(·) denotes the inverse function of γ(·).

Now consider optimal fair policy under some fairness constraint C satisfying Assumption 2. Consider
any pair of policies (πa, πb) that satisfies fairness constraint C, and define fairness constant c =
EX∼PaC [πa(X)] = EX∼PbC [π

b(X)] ∈ [0, 1]. To show the optimal fair policy is threshold policy, we
will show that there always exists a pair of threshold policies (πad , π

b
d) such that EX∼PaC [πad(X)] =

EX∼PbC [π
b
d(X)] = c, i.e., the fairness constant is the same as (πa, πb), and the utility of (πad , π

b
d) is

no less than the utility attained under (πa, πb).
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∀s ∈ {a, b}, let threshold policy πsd be defined such that πsd(x) = 1(x ≥ θsd) and EX∼PsC [π
s
d(X)] = c

are satisfied. Such policy must exist and the threshold is given by θsd = (PsC)−1(1 − c), where
PsC(θs) =

∫ θs
−∞ P

s
C(x)dx is CDF of PsC and (PsC)−1(·) is the inverse of it.

Let Rπsd(D,Y ), Rπs(D,Y ) denote the utility attained under policies πsd, πs respectively. Next we
will show that ∀s ∈ {a, b}, E[Rπsd(D,Y ) | S = s] ≥ E[Rπs(D,Y ) | S = s] holds, i.e.,

EX|S=s[π
s
d(X)(γs(X)(u+ + u−)− u−)] ≥ EX|S=s[π

s(X)(γs(X)(u+ + u−)− u−)]

Since πsd(x) = 1(x ≥ θsd), we have the followings,

EX|S=s[π
s
d(X)(γs(X)(u+ + u−)− u−)] =

∫∞
θsd

(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

EX|S=s[π
s(X)(γs(X)(u+ + u−)− u−)] =

∫∞
θsd

(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

+
∫ θsd
−∞ πs(x)(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

−
∫∞
θsd

(1− πs(x))(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

Since EX∼PsC [π
s(X)] = c = EX∼PsC [π

s
d(X)], we have∫ ∞

θsd

(1− πs(x))PsC(x)dx =

∫ θsd

−∞
πs(x)PsC(x)dx (6)

Under Assumption 2, P(X=x|S=s)
PsC(x) is non-decreasing. Since γs(x) = αs

Gs1(x)
P(X=x|S=s) is non-

decreasing and 1 − γs(x) = (1 − αs) Gs0(x)
P(X=x|S=s) is non-increasing, we have Gs1(x)

P(X=x|S=s) is non-

decreasing and Gs0(x)
P(X=x|S=s) is non-increasing. Therefore,

(γs(x)(u+ + u−)− u−)
P(X = x | S = s)

PsC(x)

= αs
Gs1(x)

PsC(x)
u+ − (1− αs)G

s
0(x)

PsC(x)
u−

= αs
Gs1(x)

P(X = x | S = s)

P(X = x | S = s)

PsC(x)
u+ − (1− αs) Gs0(x)

P(X = x | S = s)

P(X = x | S = s)

PsC(x)
u−

is non-decreasing in x. Combine with Eqn. (6), we have the followings,∫ θsd

−∞
πs(x)(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

=

∫ θsd

−∞
πs(x)(γs(x)(u+ + u−)− u−)

P(X = x | S = s)

PsC(x)
PsC(x)dx

≤
∫ θsd

−∞
πs(x)(γs(θsd)(u+ + u−)− u−)

P(X = θsd | S = s)

PsC(θsd)
PsC(x)dx

=

∫ ∞
θsd

(1− πs(x))(γs(θsd)(u+ + u−)− u−)
P(X = θsd | S = s)

PsC(θsd)
PsC(x)dx

≤
∫ ∞
θsd

(1− πs(x))(γs(x)(u+ + u−)− u−)
P(X = x | S = s)

PsC(x)
PsC(x)dx

=

∫ ∞
θsd

(1− πs(x))(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx.

Therefore, the following holds ∀s ∈ {a, b},
EX|S=s[π

s
d(X)(γs(X)(u+ + u−)− u−)] ≥ EX|S=s[π

s(X)(γs(X)(u+ + u−)− u−)].

It shows that the utility attained under threshold policy (πad , π
b
d) is no less than the utility of (πa, πb),

which concludes that the optimal fair policy (πaC , π
b
C) must be threshold policies.
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Lemma 2 below further shows that the optimal threshold policy θs(αa, αb) is continuous and non-
increasing in αa and αb.

Lemma 2. Let
(
θa(αa, αb), θb(αa, αb)

)
be a pair of solutions to Eqn. (3) under αa, αb. ∀s ∈ {a, b},

if G
s
1(x)
PsC(x) and Gs0(x)

PsC(x) are continuous everywhere in x, then θs(αa, αb) is continuous in both αa and αb.

Moreover, under Assumption 2, θs(αa, αb) is non-increasing in αa and αb.

Proof. To prove that a sufficient condition under which θs(αa, αb) is continuous in αa, αb ∈ [0, 1] is
that G

s
1(x)
PsC(x) and Gs0(x)

PsC(x) are continuous everywhere in x, we define a function fs(θs, αa, αb):

fs(θs, αa, αb) = (γs(θs)− u−
u+ + u−

)
P(X = θs | S = s)

PsC(θs)

= [αsu+G
s
1(θs) + αsu−G

s
0(θs)− u−Gs0(θs)]

1

PsC(θs)

= [αs
Gs1(θs)

PsC(θs)
u+ + (αs − 1)

Gs0(θs)

PsC(θs)
u−].

According to Equation (3), we have pafa(θa, αa, αb) + pbf
b(θb, αa, αb) = 0.

Given any αa and αb, and any constant k, let θ̃si be one solution to fs(θs, αa, αb) = k, where
i = 1, ..., N and N is the number of solutions. Firstly, we show that θ̃si (α

a, αb) is continuous
in αa and αb, for any i ∈ {1, ..., N}. Because Gs1(x)

PsC(x) and Gs0(x)
PsC(x) are continuous, fs(θs, αa, αb) is

continuous in αa, αb, and θs. Therefore, ∀ε > 0, ∃δ > 0 such that for all |αa′ − αa| < δ and
|αb′ − αb| < δ =⇒ |θ̃s′i − θ̃si | < ε. Thus, θ̃si (α

a, αb) is continuous in αa and αb, ∀i ∈ {1, ..., N}.

Next, we show that given αa and αb, the solutions to pafa(θa, αa, αb) + pbf
b(θb, αa, αb) = 0

under fairness constraint C are continuous in αa and αb ∈ [0, 1]. Under fairness constraints in
Equation (1), θa = φC(θ

b) holds for some continuous function φC(·). Consequently, we have
paf

a(φC(θ
b), αa, αb)+pbf

b(θb, αa, αb) = 0. Because fs(·, ·, ·) and φC(·) are continuous functions,
with the same reasoning, givenαa andαb, the solutions to pafa(φC(θ

b), αa, αb)+pbf
b(θb, αa, αb) =

0 are continuous in αa and αb. In other words, θsi (α
a, αb) is continuous.

Under Assumption 2, fs(θs, αa, αb) and θs(αa, αb) are continuous. We then prove that if G
s
1(x)
PsC(x) is

non-decreasing and Gs0(x)
PsC(x) is non-increasing in x, then θs(αa, αb) is non-increasing in αa and αb.

Let (φC(θ
b), θb) be a pair that satisfies fairness constraint, where φC(·) is some continuous and strictly

increasing function, then the optimal one is the pair that satisfies Equation (3) as follows:

pa(γa(φC(θ
b))− u−

u++u−
)P(X=φC(θb)|S=a)

PaC (φC(θb))
+ pb(γ

b(θb)− u−
u++u−

)P(X=θb|S=b)

PbC(θb)

= pa

[
αa

Ga1 (φC(θb))
PaC (φC(θb))

u+ + (αa − 1)
Ga0 (φC(θb))
PaC (φC(θb))

u−

]
+ pb

[
αb

Gb1(θb)

PbC(θb)
u+ + (αb − 1)

Gb0(θb)

PbC(θb)
u−

]
= 0.

Note that ∀s ∈ {a, b}, LHS of above equation is strictly increasing in αs because the coefficient of
αs is positive. Because Gs1(x)

PsC(x) is non-decreasing and Gs0(x)
PsC(x) is non-increasing in x, G

s
1(x)
PsC(x) −

Gs0(x)
PsC(x) is

non-decreasing in x. As αs increases, both Ga1 (φC(θb))
PaC (φC(θb))

− Ga0 (φC(θb))
PaC (φC(θb))

and Gb1(θb)

PbC(θb)
− Gb0(θb)

PbC(θb)
must not

increase so that the optimal fair equation can be maintained. It requires that both θb and θa = φC(θ
b)

must not increase. In other words, ∀s ∈ {a, b}, θs(αa, αb) must be non-increasing in αa and αb.

The proof of Lemma 1.

Proof. In the following proof, we focus on optimal policy at t and omit the subscript t.
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First consider unconstrained optimal policy. Under threshold policy,

θs∗UN = arg max
θs

EX|S=s[π
s(X)(γs(X)(u+ + u−)− u−)]

= arg max
θs

∫ ∞
θs

(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

Since γs(x) is monotonically increasing in x under Assumption 1, θs∗UN satisfies γs(θs∗UN ) = u−
u++u−

.

Now consider optimal policy under fairness constraint, to satisfy constraint C,
∫∞
θa
PaC (x)dx =∫∞

θb
PbC(x)dx should hold. Denote CDF PsC(θs) =

∫ θs
−∞ P

s
C(x)dx, then for any pair (θa, θb) that is

fair, we have θa = (PaC)−1PbC(θb) = φC(θ
b) hold for some strictly increasing function φC(·). Denote

u = PbC(θb) and θa = (PaC)−1(u), the following holds,

dφC(θb)
dθb

=
d(PaC)−1PbC(θb)

dθb
=

d(PaC)−1(u)
du

du
dθb

= 1
(PaC)′((PaC)−1(u))

du
dθb

=
(PbC)′(θb)
(PaC)′(θa) =

PbC(θb)
PaC (θa) .

Denote fs(x) := (γs(x)(u+ + u−)− u−)P(X = x | S = s), then we have

θb∗C = arg max
θb
U(D,Y ) = arg max

θb

(
pa

∫ ∞
φC(θb)

fa(x)dx+ pb

∫ ∞
θb

f b(x)dx

)
.

Let F (θb) := pa
∫∞
φC(θb)

fa(x)dx+ pb
∫∞
θb
f b(x)dx. Because γs(x) is monotonically increasing in

x under Assumption 1, the optimal θb∗C satisfies

dF (θb)

dθb

∣∣∣
θb=θb∗C

= −pafa(φC(θ
b))
dφC(θ

b)

dθb
− pbf b(θb)

∣∣∣
θb=θb∗C

= −pa(γa(φC(θ
b∗
C ))(u+ + u−)− u−)P(X = φC(θ

b∗
C ) | S = a)

PbC(θb∗C )

PaC (φC(θb∗C ))

−pb(γb(θb∗C )(u+ + u−)− u−)P(X = θb∗C | S = b)

= 0.

Therefore,

pa(γa(θa∗C )(u+ + u−)− u−)
P(X=θa∗C |S=a)
PC(θa∗C ) + pb(γ

b(θb∗C )(u+ + u−)− u−)
P(X=θb∗C |S=b)

PC(θb∗C )
= 0.

The proof of Theorem 1.

Proof. ∀s ∈ {a, b}, define function ls(αs) := 1
αs − 1 and hs(θs(αa, αb)) := 1−g1s(θs(αa,αb))

g0s(θs(αa,αb))
,

hs(θs(αa, αb)) =
1− (T s10Gs1(θs(αa, αb)) + T s11

(
1−Gs1(θs(αa, αb))

)
)

T s00Gs0(θs(αa, αb)) + T s01

(
1−Gs0(θs(αa, αb))

) .

Firstly, we prove that given a fixed α−s ∈ [0, 1] there must exist at least one αs ∈ (0, 1) such that
hs(θs(α−s, αs)) = ls(αs), s ∈ {a, b}, −s = {a, b} \ s.

Since Gsy(x) is continuous in x, and θs(αa, αb) is continuous in αa and αb, Gsy(θs(αa, αb)) is
continuous in αa and αb. Therefore, hs(θs(αa, αb)) is continuous in αa and αb.

Moreover, g1s(θs(αa, αb)) is the convex combination of T s11 and T s10, and g0s(θs(αa, αb)) is the
convex combination of T s01 and T s00, the following holds ∀αa ∈ [0, 1], αb ∈ [0, 1],

min{T s10, T
s
11} ≤ g1s(θs(αa, αb)) ≤ max{T s10, T

s
11} ;

min{T s00, T
s
01} ≤ g0s(θs(αa, αb)) ≤ max{T s00, T

s
01} ,

which implies 0 <
1−max{T s10,T

s
11}

max{T s00,T s01}
≤ hs(θs(αa, αb)) ≤ 1−min{T s10,T

s
11}

min{T s00,T s01}
< +∞.
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Furthermore, ls(αs) := 1
αs − 1 is continuous and strictly decreasing in αs, and

lim
αs→0

ls(αs) = +∞; lim
αs→1

ls(αs) = 0,

Given a fixed αa ∈ [0, 1], because hb(θb(αa, αb)) is continuous over αb ∈ [0, 1] and with value

varying between 1−max{T b10,T
b
11}

max{T b00,T b01}
and 1−min{T b10,T

b
11}

min{T b00,T b01}
, and lb(αb) is continuous with value varying

from +∞ to 0, there must exist at least one αb ∈ (0, 1) such that hb(θb(αa, αb)) = lb(αb). Similarly,
given a fixed αb ∈ [0, 1], there must exist at least one αa ∈ (0, 1) such that ha(θa(αa, αb)) = la(αa).

Secondly, we prove that all the solutions (αa, αb) and (αa, αb) are on continuous curves in the 2D
plane {(αa, αb) : αa ∈ [0, 1], αb ∈ [0, 1]}.

According to the continuity of ls(·) and hs(·), we have ∀αa ∈ [0, 1], limαa′→αa l
a(αa

′
) = la(αa);

furthermore, ∀αa ∈ [0, 1] and ∀θai ∈ {θa : la(αa) = ha(θa)}, limθa
′
i →θai

ha(θa
′

i ) = ha(θai ).

Thus, ∀ε > 0, ∃δ > 0, such that ∀αa ∈ [0, 1], |αa′ − αa| < δ =⇒ |θa′i − θai | < ε. Consequently,
∀ε > 0, ∃δ′ > 0 and ∃δ > 0, such that ∀αa ∈ [0, 1], |αa′ − αa| < δ =⇒ |θa′i − θai | < δ′

=⇒ |αb′i − αbi | < ε, the last statement is because of the continuity of θa(αa, αb); in other words,
∀αa ∈ [0, 1], limαa′→αa α

b′

i = αbi , where i = 1, ..., N . Therefore, (αa, αb) is on a set of continuous
curves with αb varying from 0 to 1. Similarly, one can prove that (αa, αb) is also on a set of
continuous curves with αa varying from 0 to 1.

Finally, we show the existence of equilibrium (α̂a, α̂b).

Consider a 2D plane {(αa, αb) : αa ∈ [0, 1], αb ∈ [0, 1]}, and C1 = {(αa, αb)} and C2 = {(αa, αb)}
that are two sets of continuous curves in the plane defined earlier. It is straightforward to see that there
is at least one curve among C1 whose αb varies from 0 to 1 and at least one curve among C2 whose
αa varies from 0 to 1. These two continuous curves must have at least one intersection. Moreover,
this intersection (α̂a, α̂b) satisfies hb(θb(α̂a, α̂b)) = lb(α̂b) and ha(θa(α̂a, α̂b)) = la(α̂a), is an
equilibrium of system.

Moreover, we also realized that the proof can also be done by using Brouwer’s Fixed Point Theorem
in topology.

The proof of Theorem 2.

Proof. Following the proof of Theorem 1,

hs(θs(αa, αb)) =
1− g1s(θs(αa, αb))

g0s(θs(αa, αb))
=

1− (T s10Gs1(θs(αa, αb)) + T s11

(
1−Gs1(θs(αa, αb))

)
)

T s00Gs0(θs(αa, αb)) + T s01

(
1−Gs0(θs(αa, αb))

) .

Note that ∀y ∈ {0, 1}, T sy0Gsy(θs(αa, αb)) + T sy1

(
1−Gsy(θs(αa, αb))

)
is the convex combination

of T sy0 and T sy1 with CDF Gsy(θs(αa, αb)) as the weight. Because Gsy(θs(αa, αb)) is continuous and
non-decreasing in θs(αa, αb), under Condition 1(A), hs(θs(αa, αb)) is non-decreasing in θs(αa, αb);
while under Condition 1(B), hs(θs(αa, αb)) is non-increasing in θs(αa, αb).

Under unconstrained optimal policy or optimal fair policy with constraint C satisfying Assumption 1
and 2, θs(αa, αb) is non-increasing in αa, αb. Therefore, under Condition 1(A), hs(θs(αa, αb)) is
non-decreasing in αa, αb, while under Condition 1(B), hs(θs(αa, αb)) is non-increasing in αa, αb.
Moreover,

Under Condition 1(A): 0 <
1− T s10

T s00

≤ hs(θs(αa, αb)) ≤ 1− T s11

T s01

< +∞

Under Condition 1(B): 0 <
1− T s11

T s01

≤ hs(θs(αa, αb)) ≤ 1− T s10

T s00

< +∞

First consider the case when Condition 1(A) is satisfied.

Because function ls(αs) := 1
αs − 1 is continuous and strictly decreasing from +∞ to 0 over

αs ∈ [0, 1], ∀s ∈ {a, b}. Thus, given any fixed αb ∈ [0, 1], strictly decreasing function la(αa) and
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non-decreasing function ha(θa(αa, αb)) has exactly one intersection, i.e., ∃ only one αa such that
ha(θa(αa, αb)) = la(αa). ∀αb, the set Ψa(αb) = {αa : ha(θa(αa, αb)) = la(αa)} has only one
element, and they constitute continuous function αa = ψa(αb) (balanced function). Similarly, ∀αa,
set Ψb(αa) = {αb : hb(θb(αa, αb)) = lb(αb)} also has only one element, which forms continuous
function αb = ψb(αa).

Because given any αa, ha(θa(αa, αb)) is non-decreasing in αb, as αb increases, the intersection
with la(αa) is non-increasing. Therefore, ψa(αb) is non-increasing in αb. Similarly, ψb(αa) is also
non-increasing in αa.

On the 2D plane {(αa, αb) : αa ∈ [0, 1], αb ∈ [0, 1]}, two curves C1 = {(αa, αb) : αa =
ψa(αb), αb ∈ [0, 1]} and C2 = {(αa, αb) : αb = ψb(αa), αa ∈ [0, 1]} are both continuous and
non-increasing. One sufficient condition to guarantee C1 and C2 have exact one intersection, is that
|dψ

a(αb)
dαb

| < 1,∀αb ∈ [0, 1] and |dψ
b(αa)
dαa | < 1,∀αa ∈ [0, 1]. In the followings, we show these

sufficient conditions will hold if |∂h
a(θa(αa,αb))

∂αb
| < 1 and |∂h

b(θb(αa,αb))
∂αa | < 1,∀αa, αb.

Denote u := ha(θa(ψa(αb), αb)), because la(ψa(αb)) = ha(θa(ψa(αb), αb)),∀αb,

dψa(αb)

dαb
=

d(la)−1(u)

dαb
=
d(la)−1(u)

du

du

dαb
=

1

(la)′((la)−1(u))

du

dαb
= −((la)−1(u))2 du

dαb
.

Because (la)−1(u) = ψa(αb) ∈ [0, 1],−((la)−1(u))2 ∈ [−1, 0]. Moreover, because of the condition
|dh

a(θa(αa,αb))
dαb

| < 1, we have ∣∣∣dψa(αb)

dαb

∣∣∣ < 1.

Similarly, we can show that |dψ
b(αa)
dαa | < 1 holds ∀αa if |∂h

b(θb(αa,αb))
∂αa | < 1. Therefore, C1, C2 have

only one intersection, the equilibrium (α̂a, α̂b) is unique.

Now consider the case when Condition 1(B) is satisfied.

Because dls(αs)
dαs = − 1

(αs)2 < −1,∀αs ∈ (0, 1), and −1 ≤ ∂hs(θs(αa,αb))
∂αs ≤ 0 for any fixed

α−s ∈ [0, 1]. Strictly decreasing function ls(αs) and non-increasing function hs(θs(αa, αb)) has
exactly one intersection. Therefore, ∀αb, balanced set Ψa(αb) = {αa : ha(θa(αa, αb)) = la(αa)}
has only one element, and they constitute continuous function αa = ψa(αb) (balanced function).
Similarly, ∀αb, set Ψa(αb) = {αa : ha(θa(αa, αb)) = la(αa)} also has only one element, which
forms continuous function αa = ψa(αb).

Because given any αa, ha(θa(αa, αb)) is non-increasing in αb. As αb increases, the intersection
with la(αa) is non-decreasing. Therefore, ψa(αb) is non-decreasing in αb. Similarly, ψb(αa) is also
non-decreasing in αa.

On the 2D plane {(αa, αb) : αa ∈ [0, 1], αb ∈ [0, 1]}, two curves C1 = {(αa, αb) : αa =
ψa(αb), αb ∈ [0, 1]} and C2 = {(αa, αb) : αb = ψb(αa), αa ∈ [0, 1]} are both continuous and
non-decreasing. One sufficient condition to guarantee C1 and C2 have exact one intersection, is
that dψ

a(αb)
dαb

< 1,∀αb ∈ [0, 1] and dψb(αa)
dαa < 1,∀αa ∈ [0, 1]. Using the same analysis as the case

under Condition 1(A), we can show these sufficient conditions will hold if | ∂h
a(θa(αa,αb))

∂αb
|< 1 and

| ∂h
b(θb(αa,αb))
∂αa |< 1,∀αa, αb.

Therefore, C1, C2 have only one intersection, the equilibrium (α̂a, α̂b) is unique.

The proof of Corollary 1.

Corollary 1. For any feature distribution {Gsy(x)}s,y, suppose that
∣∣∂Gsy(θs(αa,αb))

∂αu

∣∣ ≤ My holds
for some constant My ∈ [0,∞), ∀y ∈ {0, 1},∀u ∈ {a, b}. Under either Condition 1(A) or 1(B),
∃εsy > 0 such that for any transitions that satisfy |T sy1 − T sy0| < εsy, s ∈ {a, b}, y ∈ {0, 1}, the
corresponding dynamics system has a unique equilibrium.
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Proof. Define notations Gsy := Gsy(θs(αa, αb)), ∆T s0 := T s01 − T s00 and ∆T s1 := T s11 − T s10.

hs(θs(αa, αb)) =
(1− T s10)Gs1 + (1− T s11)

(
1−Gs1

)
T s00Gs0 + T s01

(
1−Gs0

) =
(1− T s11) + ∆T s1Gs1
T s00 + ∆T s0

(
1−Gs0

)
Take derivative w.r.t. αu, ∀u ∈ {a, b},

∂hs(θs(αa, αb))

∂αu
=

∆T s1
∂Gs1
∂αu (T s00 + ∆T s0

(
1−Gs0

)
) + ∆T s0

∂Gs0
∂αu ((1− T s11) + ∆T s1Gs1)

(T s00 + ∆T s0
(
1−Gs0

)
)2

Consider case under Condition 1(A). Since ∆T s0 < 0, ∆T s1 < 0, T s00 + ∆T s0
(
1 − Gs0

)
> 0, and

(1− T s11) + ∆T s1Gs1 > 0 , we have |∂h
s(θs(αa,αb))
∂αu | ≤| ∆T s1M1T

s
00+∆T s0M0(1−T s11)

(T s01)2 |.

Take εs1 = εs0 =
(T s01)2

M1T s00+M0(1−T s11) , if |∆T s1 | < εs1 and |∆T s0 | < εs0, then |∂h
s(θs(αa,αb))
∂αu | < 1 holds.

From Theorem 2, the equilibrium of dynamics 4 is unique.

Consider case under Condition 1(B).

Since ∆T s0 > 0 and ∆T s1 > 0, we have |∂h
s(θs(αa,αb))
∂αu | ≤ ∆T s1M1T

s
01+∆T s0M0(1−T s10)

(T s00)2 .

Take εs1 = εs0 =
(T s00)2

M1T s01+M0(1−T s10) , if ∆T s1 < εs1 and ∆T s0 < εs0, then |∂h
s(θs(αa,αb))
∂αu | < 1 holds.

From Theorem 2, the equilibrium of dynamics 4 is unique.

The proof of Theorem 3.

Proof. ∀s ∈ {a, b}, an equilibrium α̂sUN satisfies:

1− g1s(θsUN(α̂
s
UN))

g0s(θsUN(α̂
s
UN))

=
1−

(
T s11(1−Gs1(θsUN(α̂

s
UN))) + T s10Gs1(θsUN(α̂

s
UN))
)

T s01(1−Gs0(θsUN(α̂
s
UN))) + T s00Gs0(θsUN(α̂

s
UN))

=
1

α̂sUN
− 1.

One solution to the above equation is:

α̂sUN = T s11(1−Gs1(θsUN(α̂
s
UN))) + T s10Gs1(θsUN(α̂

s
UN)) = T s01(1−Gs0(θsUN(α̂

s
UN))) + T s00Gs0(θsUN(α̂

s
UN))

It shows that α̂sUN is a convex combination of T s00, T s01, and also a convex combination of T s10, T s11.

∀αUN and Gs0(x), Gs1(x), there is a set of transitions with T s00 < αUN < T s01 and T s10 < αUN < T s11
(satisfy Condition 1(B)), or T s01 < αUN < T s00 and T s11 < αUN < T s10 (satisfy Condition 1(A)), such
that the above equation holds with α̂sUN = αUN, ∀s ∈ {a, b}, i.e., equitable equilibrium is attained.

Next we show that if Gay(x) 6= Gby(x), then α̂bC 6= α̂aC under these sets of transitions. Under
the conditions of Theorem 2, (α̂aC , α̂

b
C) is the intersection of two curves C1 = {(αa, αb) : αa =

ψaC(α
b), αb ∈ [0, 1]} and C2 = {(αa, αb) : αb = ψbC(α

a), αa ∈ [0, 1]}; furthermore, let α̃aC , α̃bC be
defined such that α̃aC = ψaC(α̃

a
C), α̃bC = ψbC(α̃

b
C), which are the intersections of αa = ψaC(α

b) and
αa = αb, as well as αb = ψbC(α

a) and αa = αb, respectively. Then in order to prove α̂bC 6= α̂aC , it is
sufficient to show α̃aC 6= α̃bC .

Given αa = αb = αUN, because Gay(x) 6= Gby(x), we have θsUN(αUN) 6= θsC(αUN, αUN) and to satisfy
Eqn. (3), there are only two possibilities: (1) θaUN(αUN) > θaC(αUN, αUN), θbUN(αUN) < θbC(αUN, αUN); (2)
θaUN(αUN) < θaC(αUN, αUN), θbUN(αUN) > θbC(αUN, αUN).

WLOG, suppose the first case holds. Under Condition 1(B),

1− g1b(θbUN(αUN))

g0b(θbUN(αUN))
<

1− g1b(θbC(αUN, αUN))

g0b(θbC(αUN, αUN))
;

1− g1a(θaUN(αUN))

g0a(θaUN(αUN))
>

1− g1a(θaC(αUN, αUN))

g0a(θaC(αUN, αUN))

It implies that α̃bC < α̂bUN = α̂aUN < α̃aC . Similarly, under Condition 1(A), α̃bC > α̂bUN = α̂aUN > α̃aC .
Therefore, α̂aC 6= α̂bC .

In contrast, if Gay(x) = Gby(x), we have θsUN(α) = θsC(α, α) and α̃bC = α̃aC . Therefore, α̂aC = α̂bC .
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The proof of Theorem 4.

Proof. WLOG, suppose that α̂aUN > α̂bUN in the proof. Let ψaC(·), ψbC(·) be balanced functions
as defined in Theorem 2 under constraint C. Firstly, we show that α̂bUN and α̂aUN are solutions to{
αb = ψbC(α

a)

αa = αb
and

{
αa = ψaC(α

b)

αa = αb
, respectively, i.e., α̂bUN = ψbC(α̂

b
UN) and α̂aUN = ψaC(α̂

a
UN).

Because Gay(x) = Gby(x), ∀y ∈ {0, 1},∀x, when αa = αb = α, we have γa(x) = γb(x),
PaEqOpt(x) = PbEqOpt(x) and PaDP(x) = PbDP(x), which implies θaC(α, α) = θbC(α, α); furthermore, the
optimal fair policies of DP and EqOpt satisfy γa(θaC(α, α)) = γb(θbC(α, α)) = u−

u++u−
according to

the optimal fair policy equation:

paα
a

γa(θaEqOpt)
+

pbα
b

γb(θbEqOpt)
=

paα
a

u−
u++u−

+
pbα

b

u−
u++u−

; paγ
a(θaDP) + pbγ

b(θbDP) =
u−

u+ + u−
.

Because γa(θaUN(α)) = γb(θbUN(α)) = u−
u++u−

we have γa(θaUN(α)) = γa(θaC(α, α)) = γb(θbUN(α)) =

γb(θbC(α, α)) so that θaC(α, α) = θaUN(α) = θbC(α, α) = θbUN(α) holds under any α. ∀s ∈ {a, b},
because α̂sUN is the solution to balanced equation, i.e., ls(α̂sUN) = hs(θsUN(α̂

s
UN)). We have ls(α̂sUN) =

hs(θsC(α̂
s
UN, α̂

s
UN)), which further implies α̂sUN = ψsC(α̂

s
UN).

Under Condition 1(B), according to the proof of Theorem 2, we know that 0 ≤ dψbC(αa)
dαa < 1 and

0 ≤ dψaC(αb)
dαb

< 1. Because α̂bUN = ψbC(α̂
b
UN) < α̂aUN = ψaC(α̂

a
UN), we have α̂bUN < ψbC(α

a) < αa,
∀αa ∈ [α̂bUN, α̂

a
UN]. Similarly, we have αb < ψaC(α

b) < α̂aUN, ∀αb ∈ [α̂bUN, α̂
a
UN]. Therefore, after

representing the two balanced functions as two curves C1 = {(αa, αb) : αa = ψaC(α
b), αb ∈ [0, 1]}

and C2 = {(αa, αb) : αb = ψbC(α
a), αa ∈ [0, 1]} on the 2D plane {(αa, αb) : αa ∈ [0, 1], αb ∈

[0, 1]}, the intersection (α̂aC , α̂
b
C) of C1 and C2 satisfies: 1) α̂aC > α̂bC; 2) α̂bUN < α̂aC < α̂aUN; 3)

α̂bUN < α̂bC < α̂aUN. Therefore, |α̂aC − α̂bC | ≤ |α̂aUN − α̂bUN|.

Under Condition 1(A), according to the proof of Theorem 2, we know that −1 <
dψbC(αa)
dαa ≤ 0

and −1 <
dψaC(αb)
dαb

≤ 0. Because α̂bUN = ψbC(α̂
b
UN) < α̂aUN = ψaC(α̂

a
UN), we have ψbC(α

a) < α̂bUN,
∀αa > α̂bUN. Similarly, we have ψaC(α

b) > α̂aUN, ∀αb < α̂aUN. Due to the existence of equilibrium, the
intersection (α̂aC , α̂

b
C) of C1 and C2 must satisfy: 1) α̂aC > α̂bC ; 2) α̂aUN < α̂aC ; 3) α̂bC < α̂bUN. Therefore,

|α̂aC − α̂bC | ≥ |α̂aUN − α̂bUN|.

The proof of Theorem 5.

Proof. The proof is under the conditions of Theorem 2 such that there is unique equilibrium of
qualification rate. Under fairness constraint C = EqOpt or DP, consider 2D plane {(αa, αb) :
αa ∈ [0, 1], αb ∈ [0, 1]}, and note that equilibrium (α̂aC , α̂

b
C) is the intersection of two curves

C1 = {(αa, αb) : αa = ψaC(α
b), αb ∈ [0, 1]} and C2 = {(αa, αb) : αb = ψbC(α

a), αa ∈ [0, 1]}.
Consider a line {(αa, αb) : αa = αb, αa ∈ [0, 1], αb ∈ [0, 1]}, which has unique intersection α̃aC
with C1, and unique intersection α̃bC with C2. That is, α̃aC = ψaC(α̃

a
C), α̃bC = ψbC(α̃

b
C).

First of all, we show that if u+

u−
≥ 1−T10

T00
β(x̂), under Condition 1(B), α̂bUN < α̂aUN.

By Condition 2, given any αa = αb = α, the corresponding qualification profiles of Ga, Gb satisfy the
followings: γb(x̂) = γa(x̂); γb(x) < γa(x),∀x < x̂; γb(x) > γa(x),∀x > x̂. Let α be qualification

rate such that γa(x̂) = γb(x̂) = u−
u++u−

=⇒u+

u−
= β(x̂)( 1

α − 1), where β(x̂) :=
Ga0 (x̂)
Ga1 (x̂) =

Gb0(x̂)

Gb1(x̂)
,

then ∀α ∈ [α, 1], γa(θaUN(α)) = γb(θbUN(α)) = u−
u++u−

< 1
β(x̂)( 1

α−1)+1
= γa(x̂) = γb(x̂). Thus,

∀α ∈ [α, 1], θaUN(α) < θbUN(α) < x̂, which implies Ga1(θaUN(α)) < Gb1(θbUN(α)) and Ga0(θaUN(α)) <
Gb0(θbUN(α)); furthermore, under Condition 1(B), we have

1− T11

T01
<

1− g1a(θaUN(α))

g0a(θaUN(α))
<

1− g1b(θbUN(α))

g0b(θbUN(α))
<

1− T10

T00
, ∀α ∈ [α, 1].
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Because α̂aUN and α̂bUN are solutions to balance equations, i.e., 1
α̂aUN
− 1 =

1−g1a(θaUN(α̂
a
UN))

g0a(θaUN(α̂
a
UN))

, 1
α̂bUN
− 1 =

1−g1b(θbUN(α̂
b
UN))

g0b(θbUN(α̂
b
UN))

. If α ≤ α̂bUN, the α̂bUN < α̂aUN must hold under Condition 1(B). Next, we show that a

sufficient condition of α ≤ α̂bUN is u+

u−
≥ 1−T10

T00
β(x̂).

u+

u−
≥ 1−T10

T00
β(x̂) =⇒ 1

α − 1 ≥ 1−T10

T00
. Since 1

α̂bUN
− 1 < 1−T10

T00
, we have 1

α̂bUN
− 1 < 1

α − 1. Thus,

α ≤ α̂bUN. Therefore, if u+

u−
≥ 1−T10

T00
β(x̂), under Condition 1(B), α̂bUN < α̂aUN.

Fairness constraint EqOpt. Secondly, we show that for EqOpt fair policy, if u+

u−
≥ 1−T10

T00
β(x̂),

under Condition 1(B), α̂aUN − α̂bUN > α̂aEqOpt − α̂bEqOpt ≥ 0. Because two curves C1, C2 are monotonic
increasing. It’s sufficient to show two parts: (1) α̃aEqOpt < α̂aUN, α̃bEqOpt > α̂bUN; (2) α̃aEqOpt ≥ α̃bEqOpt.

Under EqOpt constraint, ∀αa, αb, Ga1(θaEqOpt(α
a, αb)) = Gb1(θbEqOpt(α

a, αb)) must hold so that
θaEqOpt(α

a, αb) = θbEqOpt(α
a, αb). Consider the case αa = αb = α, ∀α ≥ α, we have θaEqOpt(α, α) =

θbEqOpt(α, α) and θaUN(α) < θbUN(α). It implies that θaUN(α) < θaEqOpt(α, α) = θbEqOpt(α, α) < θbUN(α) <

x̂, otherwise Equation (3) will be violated. Therefore, the followings hold ∀α ∈ [α, 1],

1− g1a(θaEqOpt(α, α))

g0a(θaEqOpt(α, α))
>

1− g1a(θaUN(α))

g0a(θaUN(α))
;

1− g1b(θbEqOpt(α, α))

g0b(θbEqOpt(α, α))
<

1− g1b(θbUN(α))

g0b(θbUN(α))
.

∀s ∈ {a, b}, α̃sEqOpt is the solution to
1−g1s(θsEqOpt(α,α))

g0s(θsEqOpt(α,α)) = 1
α − 1 while α̂sUN is the solution to

1−g1s(θsUN(α))
g0s(θsUN(α)) = 1

α − 1. Since α ≤ α̂bUN < α̂aUN, it implies α̃aEqOpt < α̂aUN, α̃bEqOpt > α̂bUN.

Next, show that α̃aEqOpt ≥ α̃bEqOpt. ∀α ≥ α, θaEqOpt(α, α) = θbEqOpt(α, α) implies Ga1(θaEqOpt(α, α)) =

Gb1(θbEqOpt(α, α)) and Ga0(θaEqOpt(α, α)) ≤ Gb0(θbEqOpt(α, α)). Therefore,

1− g1a(θaEqOpt(α, α))

g0a(θaEqOpt(α, α))
≤

1− g1b(θbEqOpt(α, α))

g0b(θbEqOpt(α, α))
.

Intersections with function 1
α − 1 satisfies α̃aEqOpt ≥ α̃bEqOpt.

It thus concludes that α̂aUN − α̂bUN > α̂aEqOpt − α̂bEqOpt ≥ 0.

Fairness constraint DP. Finally, consider DP fair policy, where ∀αa, αb, (1−αa)Ga0(θaDP(α
a, αb))+

αaGa1(θaDP(α
a, αb)) = (1− αb)Gb0(θbDP(α

a, αb)) + αbGb1(θbDP(α
a, αb)) must hold.

We first show that under Condition 1(B), α̃aDP < α̂aUN, α̃bDP > α̂bUN. Consider the case αa = αb = α,
∀α ≥ α. Since ∀x, (1− α)Gb0(x) + αGb1(x) ≥ (1− α)Ga0(x) + αGa1(x), (1− α)Ga0(θaDP(α, α)) +
αGa1(θaDP(α, α)) = (1−α)Gb0(θbDP(α, α))+αGb1(θbDP(α, α)) implies θaDP(α, α) ≥ θbDP(α, α). Because
θaUN(α) < θbUN(α), ∀α ≥ α. It implies that θaDP(α, α) > θaUN(α) and x̂ > θbUN(α) > θbDP(α, α) must
hold. Therefore, ∀α ∈ [α, 1],

1− g1a(θaDP(α, α))

g0a(θaDP(α, α))
>

1− g1a(θaUN(α))

g0a(θaUN(α))
;

1− g1b(θbDP(α, α))

g0b(θbDP(α, α))
<

1− g1b(θbUN(α))

g0b(θbUN(α))

Similar to reasoning in EqOpt case, we have α̃aDP < α̂aUN, α̃bDP > α̂bUN.

Different from EqOpt fairness where α̃aEqOpt ≥ α̃bEqOpt, both α̃aDP ≥ α̃bDP and α̃aDP ≤ α̃bDP are likely
to occur, depending on distributions Ga0(x), Gb0(x), Ga1(x) and Gb1(x). It is because θaDP(α, α) >
θbDP(α, α) can result in either Ga0(θaDP(α, α)) ≤ Gb0(θbDP(α, α)) or Ga0(θaDP(α, α)) ≥ Gb0(θbDP(α, α)).

For these two outcomes, if α̃aDP ≥ α̃bDP, then DP fair policy results in a more equitable equilibrium
than unconstrained policy; if α̃aDP ≤ α̃bDP, it means the disadvantaged group is flipped from Gb to Ga.

The proof of Proposition 1.

27



Proof. In the proof, we simplify the notations by removing subscript C.

Let ψs(·), ψs
′
(·) be balanced function of policies (θa, θb) and (θa

′
, θb
′
), respectively.

According to the balanced equation (5),

1

αs
− 1 =

1− g1s(θs(αa, αb))

g0s(θs(αa, αb))
=

1− (T s11(1−Gs1(θs(αa, αb))) + T s10Gs1(θs(αa, αb)))

T s01(1−Gs0(θs(αa, αb))) + T s00Gs0(θs(αa, αb))
.

Under Condition (B), ∀αa, αb ∈ [0, 1], θa
′
(αa, αb) < θa(αa, αb) and θb

′
(αa, αb) < θb(αa, αb).

Under Condition (A), ∀αa, αb ∈ [0, 1], θa
′
(αa, αb) > θa(αa, αb) and θb

′
(αa, αb) > θb(αa, αb).

Both imply that 1−g1s(θs(αa,αb))
g0s(θs(αa,αb))

> 1−g1s(θs
′
(αa,αb))

g0s(θs′ (αa,αb))
, and ∀αa, αb ∈ [0, 1], ψa(αb) < ψa

′
(αb) and

ψb(αa) < ψb
′
(αa) hold. As a consequence, α̂a

′
> α̂a and α̂b

′
> α̂b.

Now consider the long-run average utility of institute U(θa, θb) = limT→∞
1
T

∑T
t=1 Ut(θa, θb),

where the instantaneous utility at t under threshold policies θa, θb is

Ut(θa, θb) =
∑
s=a,b

psEXt|S=s[1(Xt ≥ θs)(γst (Xt)(u+ + u−)− u−)]

=
∑
s=a,b

ps

∫ ∞
θs

(γst (x)(u+ + u−)− u−)P(Xt = x | S = s)dx

=
∑
s=a,b

ps

∫ ∞
θs

αst
(
Gs1(x)u+ +Gs0(x)u−

)
−Gs0(x)u−dx

In the followings, we use a special case (C = EqOpt, Gay(x) = Gby(x),∀x, y = 0, 1, under Condition
1(B)) to show that U(θa

′
, θb
′
) > U(θa, θb) can be attained, i.e., the long-run average utility under

policy (θa
′
, θb
′
) can be higher than myopic optimal policy (θa, θb).

Since the qualification rates of two groups converge to equilibrium, U(θa, θb) = U∞(θa, θb) is the
same as instantaneous expected utility of institute at the equilibrium state. To show that U(θa

′
, θb
′
) >

U(θa, θb), we prove the following holds,∑
s=a,b

ps

∫ ∞
θs′ (α̂a′ ,α̂b′ )

f(x; α̂s
′
)dx >

∑
s=a,b

ps

∫ ∞
θs(α̂a,α̂b)

f(x; α̂s)dx (7)

where f(x; α̂s) := α̂s
(
Gs1(x)u+ +Gs0(x)u−

)
−Gs0(x)u−.

Because α̂s
′
> α̂s, θs

′
(α̂a

′
, α̂b

′
) < θs(α̂a

′
, α̂b

′
) < θs(α̂a, α̂b) holds under Condition (B). LHS of

above inequality can be written as∑
s=a,b

ps

(∫ θs(α̂a,α̂b)

θs′ (α̂a′ ,α̂b′ )

f(x; α̂s
′
)dx+

∫ ∞
θs(α̂a,α̂b)

f(x; α̂s
′
)dx
)
.

Inequality (7) can further be re-organized,∑
s=a,b

ps

∫ θs(α̂a,α̂b)

θs′ (α̂a′ ,α̂b′ )

f(x; α̂s
′
)dx >

∑
s=a,b

ps

∫ ∞
θs(α̂a,α̂b)

(
f(x; α̂s)− f(x; α̂s

′
)
)
dx (8)

Consider a special case where C = EqOpt and Gay(x) = Gby(x) = Gy(x),∀x, ∀y ∈ {0, 1}. Then
∀αa, αb, we have θa(αa, αb) = θb(αa, αb) and θa

′
(αa, αb) = θb

′
(αa, αb). Inequality (8) can be

reduced to the following, ∀s ∈ {a, b}, simplify notations and let θ̂ := θs(α̂a, α̂b), θ̂′ := θs
′
(α̂a

′
, α̂b

′
).(

paα̂
a′ + pbα̂

b′
)(

G1(θ̂)−G1(θ̂′)
)
u+

+
(
u+(1−G1(θ̂)) + u−(1−G0(θ̂))

)(
pa(α̂a

′
− α̂a) + pb(α̂

b′ − α̂b)
)

︸ ︷︷ ︸
term 1

>
(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)(

G0(θ̂)−G0(θ̂′)
)
u− (9)
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Because 1
α̂s′
− 1 = 1−g1s(θ̂′)

g0s(θ̂′)
and 1

α̂s − 1 = 1−g1s(θ̂)
g0s(θ̂)

.

α̂s
′
− α̂s > T s01 − T s00

1− T s10 + T s01

(G0(θ̂)−G0(θ̂′))

We have term 1 >(u+

u−
(1−G1(θ̂)) + (1−G0(θ̂))

)(
pa

T a01 − T a00

1− T a10 + T a01

+ pb
T b01 − T b00

1− T b10 + T b01

)
︸ ︷︷ ︸

:=h(θ̂)>0

(
G0(θ̂)−G0(θ̂′)

)
u−

For the optimal EqOpt fair threshold θ(α̂a
′
, α̂b

′
), the following holds(

paα̂
a′ + pbα̂

b′
)
G1(θ(α̂a

′
, α̂b

′
))u+ =

(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)
G0(θ(α̂a

′
, α̂b

′
))u−(

paα̂
a′ + pbα̂

b′
)
G1(x)u+ >

(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)
G0(x)u−,∀x > θ(α̂a

′
, α̂b

′
)(

paα̂
a′ + pbα̂

b′
)
G1(x)u+ <

(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)
G0(x)u−,∀x < θ(α̂a

′
, α̂b

′
)

It implies that ∃ some δ > 0 s.t. ∀x ∈ (θ(α̂a
′
, α̂b

′
)− δ, θ(α̂a′ , α̂b′) + δ) := B(θ(α̂a

′
, α̂b

′
), δ),(

paα̂
a′ + pbα̂

b′
)
G1(x)u+ + h(θ̂)G0(x)u− >

(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)
G0(x)u−.

θ̂, θ̂′ ∈ B(θ(α̂a
′
, α̂b

′
), δ) can be satisfied as long as |θs(αa, αb) − θs′(αa, αb)| ≤ ε for some suffi-

ciently small ε > 0.

Using the mean value theorem, ∃Gy(x) and x̃ ∈ (θ̂′, θ̂) ⊂ B(θ(α̂a
′
, α̂b

′
), δ) s.t.(

paα̂
a′ + pbα̂

b′
)

(G1(θ̂)−G1(θ̂′))u+ + h(θ̂)(G0(θ̂)−G0(θ̂′))u−

=
((
paα̂

a′ + pbα̂
b′
)
G1(x̃)u+ + h(θ̂)G0(x̃)u−

)
(θ̂ − θ̂′)

>
((
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)
G0(x̃)u−

)
(θ̂ − θ̂′)

≥
(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)

(G0(θ̂)−G0(θ̂′))u−.

Therefore, inequality (9) holds and U(θa
′
, θb
′
) > U(θa, θb).

The proof of Proposition 2.

Proof. To ensure αst → α̂, threshold policy θs(αs) as a function of αs ∈ [0, 1] should
be designed such that 1−g1s(θs(αs))

g0s(θs(αs)) = 1
αs − 1 has a unique solution α̂. Let Is :=[ 1−max{T s11,T

s
10}

max{T s01,T s00}
,

1−min{T s11,T
s
10}

min{T s01,T s00}
]
, then 1−g1s(θs(αs))

g0s(θs(αs)) ∈ Is for any threshold policy θs(αs).

If Ia ∩ Ib = ∅, then 1−g1a(θa(α))
g0a(θa(α)) = 1−g1b(θb(α))

g0b(θb(α))
can never be attained, i.e., no threshold policy can

result in equitable equilibrium.

If Ia ∩ Ib 6= ∅, then ∀α̂ ∈ Ia ∩ Ib and ∀s ∈ {a, b}, there exists threshold policy θs(αs) such that
1−g1s(θs(α̂))
g0s(θs(α̂)) = 1

α̂ − 1. Specifically, under Condition 1(B) (resp. 1(A)), function

hs(x) :=
1− g1s(x)

g0s(x)
=

1− (T s11(1−Gs1(x)) + T s10Gs1(x))

T s01(1−Gs0(x)) + T s00Gs0(x)

is strictly increasing (resp. decreasing) in x ∈ (−∞,+∞) from 1−T s11
T s01

(resp. 1−T s10
T s00

) to 1−T s10
T s00

(resp.
1−T s11
T s01

) and any non-increasing function θs(αs) that satisfies θs(α̂) = (hs)−1( 1
α̂ − 1) can result in

αst → α̂, where (hs)−1(·) is the inverse function of hs(·).
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The proof of Proposition 3.

Proof. According to the balanced equation (5),

1

αs
− 1 =

1− g1s(θs(αa, αb))

g0s(θs(αa, αb))
=

1− (T s11(1−Gs1(θs(αa, αb))) + T s10Gs1(θs(αa, αb)))

T s01(1−Gs0(θs(αa, αb))) + T s00Gs0(θs(αa, αb))
.

∀αa, αb ∈ [0, 1], increasing any T syd decreases 1−g1s(θs(αa,αb))
g0s(θs(αa,αb))

. Let ψs
′
(·) be the consequent

balanced function after increasing T syd, and α̂s
′

be corresponding equilibrium. Given any αa, αb ∈
[0, 1], we have ψa(αb) < ψa

′
(αb) and ψb(αa) < ψb

′
(αa). Therefore, α̂a

′
> α̂a and α̂b

′
> α̂b.
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