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Abstract

Randomly initialized neural networks are known to become harder to train with
increasing depth, unless architectural enhancements like residual connections and
batch normalization are used. We here investigate this phenomenon by revisiting the
connection between random initialization in deep networks and spectral instabilities
in products of random matrices. Given the rich literature on random matrices,
it is not surprising to find that the rank of the intermediate representations in
unnormalized networks collapses quickly with depth. In this work we highlight
the fact that batch normalization is an effective strategy to avoid rank collapse for
both linear and ReLU networks. Leveraging tools from Markov chain theory, we
derive a meaningful lower rank bound in deep linear networks. Empirically, we
also demonstrate that this rank robustness generalizes to ReLU nets. Finally, we
conduct an extensive set of experiments on real-world data sets, which confirm that
rank stability is indeed a crucial condition for training modern-day deep neural
architectures.

1 Introduction and related work

Depth is known to play an important role in the expressive power of neural networks [28]. Yet,
increased depth typically leads to a drastic slow down of learning with gradient-based methods, which
is commonly attributed to unstable gradient norms in deep networks [15]. One key aspect of the
training process concerns the way the layer weights are initialized. When training contemporary
neural networks, both practitioners and theoreticians advocate the use of randomly initialized layer
weights with i.i.d. entries from a zero mean (Gaussian or uniform) distribution. This initialization
strategy is commonly scaled such that the variance of the layer activation stays constant across layers
[13, 14]. However, this approach can not avoid spectral instabilities as the depth of the network
increases. For example, [26] observes that for linear neural networks, such initialization lets all but
one singular values of the last layers activation collapse towards zero as the depth increases.

Nevertheless, recent advances in neural architectures have allowed the training of very deep neural
networks with standard i.i.d. initialization schemes despite the above mentioned shortcomings.
∗Shared first authorship
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Among these, both residual connections and normalization layers have proven particularly effective
and are thus in widespread use (see [17, 24, 14] to name just a few). Our goal here is to bridge the
explanatory gap between these two observations by studying the effect of architectural enhancements
on the spectral properties of randomly initialized neural networks. We also provide evidence for a
strong link of the latter with the performance of gradient-based optimization algorithms.

One particularly interesting architectural component of modern day neural networks is Batch Nor-
malization (BN) [17]. This simple heuristics that normalizes the pre-activation of hidden units
across a mini-batch, has proven tremendously effective when training deep neural networks with
gradient-based methods. Yet, despite of its ubiquitous use and strong empirical benefits, the research
community has not yet reached a broad consensus, when it comes to a theoretical explanation for its
practical success. Recently, several alternatives to the original “internal covariate shift” hypothesis
[17] have appeared in the literature: decoupling optimization of direction and length of the parame-
ters [20], auto-tuning of the learning rate for stochastic gradient descent [3], widening the learning
rate range [7], alleviating sharpness of the Fisher information matrix [18], and smoothing the opti-
mization landscape [25]. Yet, most of these candidate justifications are still actively debated within
the community. For example, [25] first made a strong empirical case against the original internal
covariate shift hypothesis. Secondly, they argued that batch normalization simplifies optimization
by smoothing the loss landscape. However, their analysis is on a per-layer basis and treats only the
largest eigenvalue. Furthermore, even more recent empirical studies again dispute these findings, by
observing the exact opposite behaviour of BN on a ResNet20 network [34].

1.1 On random initialization and gradient based training

In light of the above discussion, we take a step back – namely to the beginning of training – to find an
interesting property that is provably present in batch normalized networks and can serve as a solid
basis for a more complete theoretical understanding.

The difficulty of training randomly initialized, un-normalized deep networks with gradient methods
is a long-known fact, that is commonly attributed to the so-called vanishing gradient effect, i.e., a
decreasing gradient norm as the networks grow in depth (see, e.g., [27]). A more recent line of
research tries to explain this effect by the condition number of the input-output Jacobian (see, e.g.,
[32, 33, 23, 7]). Here, we study the spectral properties of the above introduced initialization with a
particular focus on the rank of the hidden layer activations over a batch of samples. The question
at hand is whether or not the network preserves a diverse data representation which is necessary to
disentangle the input in the final classification layer.

As a motivation, consider the results of Fig. 1, which plots accuracy and output rank when training
batch-normalized and un-normalized neural networks of growing depth on the Fashion-MNIST
dataset [31]. As can be seen, the rank in the last hidden layer of the vanilla networks collapses with
depth and they are essentially unable to learn (in a limited number of epochs) as soon as the number
of layers is above 10. The rank collapse indicates that the direction of the output vector has become
independent of the actual input. In other words, the randomly initialized network no longer preserves
information about the input. Batch-normalized networks, however, preserve a high rank across all
network sizes and their training accuracy drops only very mildly as the networks reach depth 32.

The above example shows that both rank and optimization of even moderately-sized, unnormalized
networks scale poorly with depth. Batch-normalization, however, stabilizes the rank in this setting
and the obvious question is whether this effect is just a slow-down or even simply a numerical
phenomenon, or whether it actually generalizes to networks of infinite depth.

In this work we make a strong case for the latter option by showing a remarkable stationarity aspect
of BN. Consider for example the case of passing N samples xi ∈ Rd arranged column-wise in an
input matrix X ∈ Rd×N through a very deep network with fully-connected layers. Ideally, from an
information propagation perspective, the network should be able to differentiate between individual
samples, regardless of its depth [27]. However, as can be seen in Fig. 2, the hidden representation
of X collapses to a rank one matrix in vanilla networks, thus mapping all xi to the same line in Rd.
Hence, the hidden layer activations and along with it the individual gradient directions become

3Computed using torch.matrix_rank(), which regards singular values below σmax × d× 10−7 as zero.
This is consistent with both Matlab and Numpy.
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Figure 1: Effect of depth on rank and learning, on the Fashion-MNIST dataset with ReLU multilayer
perceptrons (MLPs) of depth 1-32 and width 128 hidden units. Left: Rank3 after random initialization as in
PyTorch [22]. Right: Training accuracy after training 75 epochs with SGD, batch size 128 and grid-searched
learning rate. Mean and 95% confidence interval of 5 independent runs.

independent from the input xi as depth goes to infinity. We call this effect “directional” gradient
vanishing (see Section 3 for a more thorough explanation).

Interestingly this effect does not happen in batch-normalized networks, which yield – as we shall
prove in Theorem 2 – a stable rank for any depth, thereby preserving a disentangled representation of
the input and hence allowing the training of very deep networks. These results substantiate earlier
empirical observations made by [7] for random BN-nets, and also validates the claim that BN helps
with deep information propagation [27].
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Figure 2: Rank comparison of last hidden activation: Log(rank) of the last hidden layer’s activation
over total number of layers (blue for BN- and orange for vanilla-networks) for Gaussian inputs.
Networks are MLPs of width d = 32. (Left) Linear activations, (Right) ReLU activations. Mean
and 95% confidence interval of 10 independent runs. While the rank quickly drops in depth for both
networks, BN stabilizes the rank above

√
d.

1.2 Contributions

In summary, the work at hand makes the following two key contributions:

(i) We theoretically prove that BN indeed avoids rank collapse for deep linear neural nets under
standard initialization and for any depth. In particular, we show that BN can be seen as a computa-
tionally cheap rank preservation operator, which may not yield hidden matrices with full rank but
still preserves sufficient modes of variation in the data to achieve a scaling of the rank with Ω(

√
d),

where d is the width of the network. Subsequently, we leverage existing results from random matrix
theory [9] to complete the picture with a simple proof of the above observed rank collapse for linear
vanilla networks, which interestingly holds regardless of the presence of residual connections (Lemma
3). Finally, we connect the rank to difficulties in gradient based training of deep nets by showing that
rank collapse makes the directional component of the gradients independent of the input.

(ii) We empirically show that the rank is indeed a crucial quantity for gradient-based learning. In
particular, we show that both the rank and the final training accuracy quickly diminish in depth unless
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BN layers are incorporated in both simple feed-forward and convolutional neural nets. To take this
reasoning beyond mere correlations, we actively intervene with the rank of networks before training
and show that (a) one can break the training stability of BN by initializing in a way that reduces its
rank-preserving properties, and (b) a rank-increasing pre-training procedure for vanilla networks can
recover their training ability even for large depth. Interestingly, our pre-training method allows vanilla
SGD to outperform BN on very deep MLPs. In all of our experiments, we find that SGD updates
preserve the order of the initial rank throughout optimization, which underscores the importance of
the rank at initialization for the entire convergence behavior.

2 Background and Preliminaries

Network description. We consider a given input X ∈ Rd×N containing N samples in Rd. Let
1k ∈ Rk denote the k-dimensional all one vector and H(γ)

` denote the hidden representation of X
in layer ` of a BN-network with residual connections. The following recurrence summarizes the
network mapping

H
(γ)
`+1 = BN0,1d(H

(γ)
` + γW`H

(γ)
` ), H

(γ)
0 = X, (1)

where W` ∈ Rd×d and γ regulates the skip connection strength (in the limit, γ = ∞ recovers a
network without skip connection)4. Throughout this work, we consider the network weights W` to be
initialized as follows.
Definition 1 (Standard weight initialization). The elements of weight matrices W` are i.i.d. samples
from a distribution P that has zero-mean, unit-variance, and its density is symmetric around zero5.
We use the notation µ for the probability distribution of the weight matrices.

We define the BN operator BNα,β as in the original paper [17], namely

BNα,β(H) = β ◦ (diag (M(H)))
−1/2

H + α1>N ,M(H) :=
1

N
HH>, (2)

where ◦ is a row-wise product. Both α ∈ Rd and β ∈ Rd are trainable parameters. Throughout this
work we assume the initialization α = 0 and β = 1d, and also omit corrections of the mean activity.
As demonstrated empirically in Fig. 5, and theoretically in App. C this simplification does not change
the performance of BN in our settings.

Rank notions. To circumvent numerical issues involved in rank computations we introduce a soft
notion of the rank denoted by rankτ (H) (soft rank). Specifically, let σ1, . . . , σd be the singular values
of H . Then, given a τ > 0, we define rankτ (H) as

rankτ (H) =
d∑
i=1

1(σ2
i /N ≥ τ). (3)

Intuitively, rankτ (H) indicates the number of singular values whose absolute values are greater than√
Nτ . It is clear that rankτ (H) is less or equal to rank(H) for all matrices H . For analysis purposes,

we need an analytic measure of the collinearity of the columns and rows of H . Inspired by the
so-called stable rank (see, e.g., [29]), we thus introduce the following quantity

r(H) = Tr(M(H))2/‖M(H)‖2F , M(H) = HH>/N. (4)

In contrast to the algebraic rank, r(H) is differentiable with respect to H . Furthermore, the next
lemma proves that the above quantity lower-bounds the soft-rank for the hidden representations.

Lemma 1. For an arbitrary matrix H ∈ Rd×d, rank(H) ≥ r(H). For the sequence {H(γ)
` }∞`=1

defined in Eq. (2), rankτ (H
(γ)
` ) ≥ (1− τ)2r(H

(γ)
` ) holds for τ ∈ [0, 1].

4For the sake of simplicity, we here assume that the numbers of hidden units is equal across layers. In App. E
we show how our results extend to nets with varying numbers of hidden units.

5Two popular choices for P are the Gaussian distributionN (0, 1) and the uniform distribution U([−1, 1]).
The variance can be scaled with the choice of γ to match the prominent initializations from [14] and [13]. Note
that the symmetry implies that the law of each element [W`]ij equates the law of −[W`]ij .

4



3 Batch normalization provably prevents rank collapse

Since our empirical observations hold equally for both non-linear and linear networks, we here
focus on improving the theoretical understanding in the linear case, which constitutes a growing area
of research [26, 19, 6, 2]. First, inspired by [10] and leveraging tools from Markov Chain theory,
our main result proves that the rank of linear batch-normalized networks scales with their width
as Ω(

√
width). Secondly, we leverage results from random matrix theory [8] to contrast our main

result to unnormalized linear networks which we show to provably collapse to rank one, even in the
presence of residual connections.

3.1 Main result

In the following we state our main result which proves that batch normalization indeed prevents
the rank of all hidden layer activations from collapsing to one. Please see Appendix E for the more
formal version of this theorem statement.
Theorem 2. [Informal] Suppose that the rank(X) = d and that the weights W` are initialized in a
standard i.i.d. zero-mean fashion (see Def. 1). Then, the following limits exist such that

lim
L→∞

1

L

L∑
`=1

rankτ (H
(γ)
` ) ≥ lim

L→∞

(1− τ)2

L

L∑
`=1

r(H
(γ)
` ) = Ω((1− τ)2

√
d) (5)

holds almost surely for a sufficiently small γ (independent of `) and any τ ∈ [0, 1), under some
additional technical assumptions. Please see Theorem 14 in the Appendix for the formal statement.

Theorem 2 yields a non trivial width-dependency. Namely, by setting for example τ := 1/2, the
result states that the average number of singular values with absolute value greater than

√
N/2 is

at least Ω(
√
d) on average. To put this into context: If one were to replace diag(M)−

1/2 by the full
inverse (M)−

1/2 in Eq. (2), then BN would effectively constitute a classical whitening operation such
that all {H(γ)

` }L`=1 would be full rank (equal to d). However, as noted in the original BN paper [17],
whitening is obviously expensive to compute and furthermore prohibitively costly to incorporate
in back-propagation. As such, BN can be seen as a computationally inexpensive approximation of
whitening, which does not yield full rank hidden matrices but still preserves sufficient variation in the
data to provide a rank scaling as Ω(

√
d). Although the lower-bound in Thm. 2 is established on the

average over infinite depth (i.e., L→∞), Corollary 15 (in App. E) proves that the same bound holds
for all rank(H`) and rankτ (H`).

Necessary assumptions. The above result relies on two key assumptions: (i) First, the input X
needs to be full rank. (ii) Second, the weights have to be drawn according to the standard initialization
scheme. We believe that both assumptions are indeed necessary for BN to yield a robust rank.

Regarding (i), we consider a high input rank a natural condition since linear neural nets cannot
possibly increase the rank when propagating information through their layers. Of course, full rank is
easily achieved by an appropriate data pre-processing. Yet, even when the matrix is close to low rank
we find that BN is actually able to amplify small variations in the data (see Fig. 3.b).6 Notably, we
observed that hidden representations remain full rank ifH(γ)

0 is full-rank andN = O(
√
d). Regarding

(ii), we derive – based on our theoretical insights – an adversarial initialization strategy that corrupts
both the rank robustness and optimization performance of batch-normalized networks, thus suggesting
that the success of BN indeed relies heavily on the standard i.i.d. zero-mean initialization.

Experimental validation. In order to underline the validity of Theorem 2 we run multiple simu-
lations by feeding Gaussian data of dimensionality d = N into networks of growing size and with
different residual strengths. For each network, we compute the mean and standard deviation of the soft
rank rankτ with τ = 0.5. As depicted in Fig. 3, the curves clearly indicate a Ω(

√
d) dependency for

limL→∞
∑L
`=1 rankτ (H`)/L, just as predicted in the Theorem. Although the established guarantee

requires the weight on the parametric branch (i.e., γ) to be small, the results of Fig. 3 indicate that
6Intuitively this means that even if two data points are very close to each other in the input space, their hidden

presentation can still be disentangled in batch-normalized networks (see Appendix E for more details)
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the established lower bound holds for a much wider range including the case where no residual
connections are used at all (γ =∞).
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Figure 3: a) Result of Theorem 2 for different values of γ, where γ = ∞ depicts networks without skip
connections. Each point is the average rank1/2 over depth (L = 106) of nets of width d ∈ {8, 16, .., 256} an on
x-axis. b) Top 10 singular values of H(γ)

` for increasing values of ` given nearly collinear inputs. As can be
seen, BN quickly amplifies smaller variations in the data while reducing the largest one.

3.2 Comparison with unnormalized networks

In order to stress the importance of the above result, we now compare the predicted rank of H` with
the rank of unnormalized linear networks, which essentially constitute a linear mapping in the form
of a product of random matrices. The spectral distribution of products of random matrices with
i.i.d. standard Gaussian elements has been studied extensively [7, 12, 21]. Interestingly, one can
show that the gap between the top and the second largest singular value increases with the number of
products (i.e., `) at an exponential rate7 [12, 21]. Hence, the matrix converges to a rank one matrix
after normalizing by the norm. In the following, we extend this result to products of random matrices
with a residual branch that is obtained by adding the identity matrices. Particularly, we consider the
hidden states Ĥ` of the following linear residual network:

Ĥ` = B`X, B` :=
∏̀
k=1

(I + γWk). (6)

Since the norm of Ĥ` is not necessarily bounded, we normalize as H̃` = B`X/‖B`‖. The next
lemma characterizes the limit behaviour of {H̃`}.
Lemma 3. Suppose that γ ∈ (0, 1) and assume the weights W` to be initialized as in Def. 1 with
element-wise distribution P . Then we have for linear networks, which follow recursion (6), that:

a. If P is standard Gaussian, then the sequence {H̃`} converges to a rank one matrix.

b. If P is uniform[−
√

3,
√

3], then there exists a monotonically increasing sequence of integers
`1 < `2, . . . such that the sequence {H̃`k} converges to a rank one matrix.

This results stands in striking contrast to the result of Theorem 2 established for batch-normalized
networks.8 Interestingly, even residual skip connections cannot avoid rank collapse for very deep
neural networks, unless one is willing to incorporate a depth dependent down-scaling of the parametric
branch as for example done in [1], who set γ = O( 1

L ) . Remarkably, Theorem 2 shows that BN layers
provably avoid rank collapse without requiring the networks to become closer and closer to identity.
Remarkably, the remaining direction after rank collapse depends exclusively on the random weights
and it is independent of the input.

7The growth-rate of the i-th singular value is determined by the i-th Lyapunov exponent of the product of
random matrices. We refer the reader to [12] for more details on Lyapunov exponents.

8According to the observations in Fig. 2, the result of part b holds for the usual sequence of indices {`k = k},
which indicates that {H̃k} converges to a rank one matrix even in the case of uniform initialization.
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Implications of rank collapse on gradient based learning. In order to explain the severe conse-
quence of rank collapse on optimization performance reported in Fig. 1, we study the effect of rank
one hidden-layer representations on the gradient of the training loss for distinct input samples. Let Li
denote the training loss for datapoint i on a vanilla network as in Eq. (6). Furthermore, let the final
classification layer be parametrized by WL+1 ∈ Rdout×d. Then, given that the hidden presentation
at the last hidden layer L is rank one, the normalized gradients of the loss with respect to weights
of individual neurons k ∈ 1, ..., dout in the classification layer (denoted by ∇WL+1,k

Li, where
‖∇WL+1,k

Li‖ = 1) are collinear for any two datapoints i and j, i.e. ∇WL+1,k
Li = ∓∇WL+1,k

Lj .
A formal statement is presented in Prop. 19 in the Appendix alongside empirical validations on a
VGG19 network (Fig. 10). This result implies that the commonly accepted vanishing gradient norm
hypothesis is not descriptive enough since SGD does not take small steps into the right direction, but
into a random direction that is independent from the input. In other words, deep neural networks are
prone to directional gradient vanishing after initialization, which is caused by the collapse of the
last hidden layer activations to a very small subspace (one line in Rd in the extreme case of rank one
activations).

4 The important role of the rank

The preceding sections highlight that the rank of the hidden representations is a key difference between
random vanilla and BN networks. We now provide three experimental findings that substantiate the
particular importance of the rank at the beginning of training: First, we find that an unsupervised,
rank-increasing pre-training allows SGD on vanilla networks to outperform BN networks. Second,
we show that the performance of BN-networks is closely tied to a high rank at initialization. Third,
we report that SGD updates preserve the initial rank magnitude throughout the optimization process.

Outperforming BN using a pre-training step. As discussed above, batch normalization layers
are very effective at avoiding rank collapse. Yet, this is of course not the only way to preserve rank.
Based upon our theoretical insights, we leverage the lower bound established in Eq. (4) to design
a pre-training step that not only avoids rank collapse but also accelerates the convergence of SGD.
Our proposed procedure is both simple and computationally cheap. Specifically, we maximize the
lower-bound r(H`) (in Eq. (4)) on the rank of the hidden presentation H` in each layer `. Since this
function is differentiable with respect to its input, it can be optimized sufficiently by just a few steps
of (stochastic) gradient ascent (see Section G in the Appendix for more details).
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Figure 4: Pre-training versus BN: Loss over epochs on CIFAR-10 for MLPs of increasing depth with 128
hidden units and ReLU activation. Trained with SGD (batchsize 64) and grid-searched stepsize. See Fig. 11 for
the corresponding test loss and accuracy as well as Fig. 12 for FashionMNIST results.

Fig. 4 compares the convergence rate of SGD on pre-trained vanilla networks and BN-networks.
As can be seen, the slow down in depth is much less severe for the pre-trained networks. This
improvement is, also, reflected both in terms of training accuracy and test loss (see Fig. 11 in
Appendix). Interestingly, the pre-training is not only faster than BN on deep networks, but it is also
straight-forward to use in settings where the application of BN is rather cumbersome such as for very
small batch sizes or on unseen data [16, 30].

Breaking batch normalization. Some scholars hypothesize that the effectiveness of BN stems
from a global landscape smoothing [25] or a certain learning rate tuning [3], that are thought to be
induced by the normalization. Under these hypotheses, one would expect that SGD converges fast on
BN-nets regardless of the initialization. Yet, we here show that the way that networks are initialized
does play a crucial role for the subsequent optimization performance of BN-nets.
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Figure 5: Breaking Batchnorm: CIFAR-10 on VGG19 with standard PyTorch initialization as well as a
uniform initialization of same variance. (Left) training accuracy, (Right) Rank of last hidden layer computed
using torch.matrix_rank(). Plot also shows results for standard initialization and BN without mean deduction.
Avg. and 95% CI of 5 independent runs. (See Fig. 13 in Appendix for similar results on ResNet-50).

Particularly, we train two MLPs with batchnorm, but change the initialization for the second
net from the standard PyTorch way Wl,i,j ∼ uniform

[
−1/
√
dl, 1/

√
dl
]

[22, 13] to Wl,i,j ∼
uniform

[
0,+2/

√
dl
]
, where dl is the layer size. As can be seen to the right, this small change

reduces the rank preserving quality of BN significantly, which is reflected in much slower learning
behaviour. Even sophisticated modern day architectures such as VGG and ResNet networks are
unable to fit the CIFAR-10 dataset after changing the initialization in this way (see Fig. 5).

Rank through the optimization process. The theoretical result of Theorem 2 considers the rank
at random initialization. To conclude, we perform two further experiments which confirm that the
initial rank strongly influences the speed of SGD throughout the entire optimization process. In this
regard, Fig. 6 reports that SGD preserves the initial magnitude of the rank to a large extent, regardless
of the specific network type. This is particularly obvious when comparing the two BN initializations.
A further noteworthy aspect is the clear correlation between the level of pre-training and optimization
performance on vanilla nets. Interestingly, this result does again not only hold on simple MLPs but
also generalizes to modern day networks such as the VGG-19 (see Fig. 5) and ResNet50 architecture
(see Appendix I).

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Epochs

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 lo
ss

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Epochs

100

101

Lo
we

r b
ou

nd
 o

n 
ra

nk

Figure 6: Pretraining: Fashion-MNIST on MLPs of depth 32 and width 128. (Left) Training accuracy, (Right)
Lower bound on rank. Blue line is a ReLU network with standard initialization. Other solid lines are pre-trained
layer-wise with 25 (orange) and 75 (green) iterations to increase the rank. Dashed lines are batchnorm networks
with standard and asymmetric initialization. Average and 95% confidence interval of 5 independent runs.

5 Discussions

In summary, our work highlights a key difference between random vanilla- and BN networks. While
the rank of the hidden representations quickly collapses to one as the depth of vanilla networks
increases, BN is robust against such rank collapse. This intriguing property arises due to the standard
initialization of weights and also it is preserved through the optimization process. Notably, our
theoretical analysis proves this striking difference for linear MLPs and holds empirically across a
wide range of data sets and network architectures. Our experiments further highlight the determining
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role of the rank quantity in the training speed. Inspired by these observations, we develop a novel pre-
training method that allows previously un-trainable very deep vanilla networks to learn, sometimes
even faster than BN-MLPs of the same size. Thereby our study reveals a key requirement for a proper
initialization of deep neural networks, opening doors to the development of effective initialization
schemes for modern-day architectures.

We thus consider our work a relevant step towards a better understanding of optimization for deep
neural networks. Furthermore, our findings give rise to several interesting follow-up questions: (i)
Can one generalize the analysis of Theorem 2 to ReLU and other non-linear nets to prove the observed
rank robustness (e.g. Fig. 2)? (ii) is it possible to rigorously prove that SGD updates preserve the rank
magnitude throughout optimization, as observed in Fig. 6)? (iii) Is it possible to use the develop a
similarly effective pre-training for convolution and recurrent networks? (iv) How can one theoretically
characterize the connection between the convergence of SGD and the rank quantity (a follow-up on
directional gradient vanishing)? (v) Does rank robustness explain the success of related architectures
such as layer normalization [4], weight normalization [24]) and modern initialization techniques such
as fix up initialization [35]? We believe that these questions will spark an interesting line of future
research towards the goal of fully understanding optimization in deep neural networks.
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Broader impact

As we only contribute to a better understanding of neural network training in general, we consider
our work fundamental research without any specific application. Hence a broader impact discussion
is not applicable.

Funding

This project is fully supported by ETH-Zurich fellowships.

Acknowledgement

We thank Dr. Aran Raoufi, Dr. Olivier Ledoit, Gary Becigneul, and Olivier Ledoit for their helpful
discussions.

References
[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via

over-parameterization. arXiv preprint arXiv:1811.03962, 2018.

[2] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. arXiv preprint arXiv:1810.02281, 2018.

[3] Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. arXiv preprint arXiv:1812.03981, 2018.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[5] Boaz Barak and David Steurer. Proofs, beliefs, and algorithms through the lens of sum-of-
squares. Course notes: http://www. sumofsquares. org/public/index. html, 2016.

[6] Peter L. Bartlett, David P. Helmbold, and Philip M. Long. Gradient descent with identity
initialization efficiently learns positive-definite linear transformations by deep residual networks.
Neural computation, 31(3):477–502, 2019.

[7] Nils Bjorck, Carla P. Gomes, Bart Selman, and Kilian Q. Weinberger. Understanding batch
normalization, 2018.

[8] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

[9] Philippe Bougerol. Products of Random Matrices with Applications to Schrödinger Operators,
volume 8. Springer Science & Business Media, 2012.

[10] Aymeric Dieuleveut, Alain Durmus, and Francis Bach. Bridging the gap between constant step
size stochastic gradient descent and Markov chains. arXiv preprint arXiv:1707.06386, 2017.

[11] Randal Douc, Eric Moulines, Pierre Priouret, and Philippe Soulier. Markov Chains. Springer,
2018.

[12] Peter J. Forrester. Lyapunov exponents for products of complex Gaussian random matrices.
Journal of Statistical Physics, 151(5):796–808, 2013.

[13] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

10



[15] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and
problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 6(02):107–116, 1998.

[16] Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-
normalized models. In Advances in neural information processing systems, pages 1945–1953,
2017.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[18] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. The normalization method for alleviating
pathological sharpness in wide neural networks. In Advances in Neural Information Processing
Systems, pages 6403–6413, 2019.

[19] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in neural information
processing systems, pages 586–594, 2016.

[20] Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Ming Zhou, Klaus Neymeyr, and Thomas
Hofmann. Exponential convergence rates for batch normalization: The power of length-direction
decoupling in non-convex optimization. arXiv preprint arXiv:1805.10694, 2018.

[21] Dang-Zheng Liu, Dong Wang, and Lun Zhang. Bulk and soft-edge universality for singu-
lar values of products of ginibre random matrices. In Annales de l’Institut Henri Poincaré,
Probabilités et Statistiques, volume 52, pages 1734–1762. Institut Henri Poincaré, 2016.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024–8035, 2019.

[23] Jeffrey Pennington, Samuel S Schoenholz, and Surya Ganguli. The emergence of spectral
universality in deep networks. arXiv preprint arXiv:1802.09979, 2018.

[24] Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. In Advances in Neural Information Processing
Systems, pages 901–909, 2016.

[25] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization?(no, it is not about internal covariate shift). arXiv preprint
arXiv:1805.11604, 2018.

[26] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[27] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep infor-
mation propagation. arXiv preprint arXiv:1611.01232, 2016.

[28] Matus Telgarsky. Benefits of depth in neural networks. arXiv preprint arXiv:1602.04485, 2016.

[29] Joel A. Tropp. An introduction to matrix concentration inequalities. arXiv preprint
arXiv:1501.01571, 2015.

[30] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 3–19, 2018.

[31] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[32] Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. In
Advances in neural information processing systems, pages 7103–7114, 2017.

[33] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz.
A mean field theory of batch normalization. arXiv preprint arXiv:1902.08129, 2019.

11



[34] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael Mahoney. PyHessian: Neural networks
through the lens of the Hessian. arXiv preprint arXiv:1912.07145, 2019.

[35] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning
without normalization. arXiv preprint arXiv:1901.09321, 2019.

12


