
BERT Loses Patience:
Fast and Robust Inference with Early Exit

Wangchunshu Zhou1∗, Canwen Xu2∗, Tao Ge3, Julian McAuley2, Ke Xu1, Furu Wei3
1Beihang University 2University of California, San Diego 3Microsoft Research Asia

1zhouwangchunshu@buaa.edu.cn,kexu@nlsde.buaa.edu.cn
2{cxu,jmcauley}@ucsd.edu 3{tage,fuwei}@microsoft.com

Abstract

In this paper, we propose Patience-based Early Exit, a straightforward yet effective
inference method that can be used as a plug-and-play technique to simultaneously
improve the efficiency and robustness of a pretrained language model (PLM). To
achieve this, our approach couples an internal-classifier with each layer of a PLM
and dynamically stops inference when the intermediate predictions of the internal
classifiers remain unchanged for a pre-defined number of steps. Our approach
improves inference efficiency as it allows the model to make a prediction with
fewer layers. Meanwhile, experimental results with an ALBERT model show that
our method can improve the accuracy and robustness of the model by preventing
it from overthinking and exploiting multiple classifiers for prediction, yielding a
better accuracy-speed trade-off compared to existing early exit methods.2

1 Introduction

In Natural Language Processing (NLP), pretraining and fine-tuning have become a new norm for many
tasks. Pretrained language models (PLMs) (e.g., BERT [1], XLNet [2], RoBERTa [3], ALBERT [4])
contain many layers and millions or even billions of parameters, making them computationally
expensive and inefficient regarding both memory consumption and latency. This drawback hinders
their application in scenarios where inference speed and computational costs are crucial. Another
bottleneck of overparameterized PLMs that stack dozens of Transformer layers is the “overthinking”
problem [5] during their decision-making process. That is, for many input samples, their shallow
representations at an earlier layer are adequate to make a correct classification, whereas the represen-
tations in the final layer may be otherwise distracted by over-complicated or irrelevant features that
do not generalize well. The overthinking problem in PLMs leads to wasted computation, hinders
model generalization, and may also make them vulnerable to adversarial attacks [6].

In this paper, we propose a novel Patience-based Early Exit (PABEE) mechanism to enable models
to stop inference dynamically. PABEE is inspired by the widely used Early Stopping [7, 8] strategy
for model training. It enables better input-adaptive inference of PLMs to address the aforementioned
limitations. Specifically, our approach couples an internal classifier with each layer of a PLM and
dynamically stops inference when the intermediate predictions of the internal classifiers remain
unchanged for t times consecutively (see Figure 1b), where t is a pre-defined patience. We first show
that our method is able to improve the accuracy compared to conventional inference under certain
assumptions. Then we conduct extensive experiments on the GLUE benchmark and show that PABEE
outperforms existing prediction probability distribution-based exit criteria by a large margin. In addi-
tion, PABEE can simultaneously improve inference speed and adversarial robustness of the original

∗Equal contribution. Work done during these two authors’ internship at Microsoft Research Asia.
2Code available at https://github.com/JetRunner/PABEE.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/JetRunner/PABEE


Embedding

It’s shocking, shockingly disappointing! 

Layer 1

Layer 2
C1

<latexit sha1_base64="vkSsjvKjI2YMRZp390bj0wZZv6w=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa+SWRpWaU3cWwpvgrqDWRMPqd7mQtEeVz+E4pLFkylJBjBm4TmS9lGjLqWDz0jA2LCJ0RiZskKEikhkvXcw6xxeZM8ZBqLOnLF64vztSIo1JpJ9VSmKnZj3Lzf+yQWyDWy/lKootU3T5URALbEOcL47HXDNqRZIBoZpns2I6JZpQm50nP4K7vvImdBt197reuHdrzStYqghncA6X4MINNOEO2tABClN4ghd4RRI9ozf0vizdQqueKvwR+vgB5pWPow==</latexit>

C1
<latexit sha1_base64="vkSsjvKjI2YMRZp390bj0wZZv6w=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa+SWRpWaU3cWwpvgrqDWRMPqd7mQtEeVz+E4pLFkylJBjBm4TmS9lGjLqWDz0jA2LCJ0RiZskKEikhkvXcw6xxeZM8ZBqLOnLF64vztSIo1JpJ9VSmKnZj3Lzf+yQWyDWy/lKootU3T5URALbEOcL47HXDNqRZIBoZpns2I6JZpQm50nP4K7vvImdBt197reuHdrzStYqghncA6X4MINNOEO2tABClN4ghd4RRI9ozf0vizdQqueKvwR+vgB5pWPow==</latexit>

Neu

Layer 3
C2

<latexit sha1_base64="WJlXG+1E+kaCGkIP5Lhfp9zo7GQ=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa9QojSo1p+4shDfBXUGtiYbV73IhaY8qn8NxSGPJlKWCGDNwnch6KdGWU8HmpWFsWETojEzYIENFJDNeuph1ji8yZ4yDUGdPWbxwf3ekRBqTSD+rlMROzXqWm/9lg9gGt17KVRRbpujyoyAW2IY4XxyPuWbUiiQDQjXPZsV0SjShNjtPfgR3feVN6Dbq7nW9ce/WmlewVBHO4BwuwYUbaMIdtKEDFKbwBC/wiiR6Rm/ofVm6hVY9Vfgj9PED6BqPpA==</latexit>

C2
<latexit sha1_base64="WJlXG+1E+kaCGkIP5Lhfp9zo7GQ=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa9QojSo1p+4shDfBXUGtiYbV73IhaY8qn8NxSGPJlKWCGDNwnch6KdGWU8HmpWFsWETojEzYIENFJDNeuph1ji8yZ4yDUGdPWbxwf3ekRBqTSD+rlMROzXqWm/9lg9gGt17KVRRbpujyoyAW2IY4XxyPuWbUiiQDQjXPZsV0SjShNjtPfgR3feVN6Dbq7nW9ce/WmlewVBHO4BwuwYUbaMIdtKEDFKbwBC/wiiR6Rm/ofVm6hVY9Vfgj9PED6BqPpA==</latexit>

Pos

Layer 4

Prediction
Score

0.43

0.92

Layer n

…

Cn
<latexit sha1_base64="CAp6NE4jUvIFl0giyXQ/E6JfHss=">AAAB6nicbZDNSgMxFIVvqtZarVa7dBMsggspM3Why0I3LivaH2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3LnwwimPwttPRD4OOdecu/1Y8G1cZwvlNva3snvFvaK+welw6Py8UlHR4mirE0jEameTzQTXLK24UawXqwYCX3Buv60Oc+7j0xpHskHk8bMC8lY8oBTYqx13xzKYbnq1JyF8Ca4K6g20KDyXcqnrWH5czCKaBIyaaggWvddJzZeRpThVLBZcZBoFhM6JWPWtyhJyLSXLUad4XPrjHAQKfukwQv3d0dGQq3T0LeVITETvZ7Nzf+yfmKCGy/jMk4Mk3T5UZAIbCI83xuPuGLUiNQCoYrbWTGdEEWosdcp2iO46ytvQqdec69q9Tu32riEpQpwCmdwAS5cQwNuoQVtoDCGJ3iBVyTQM3pD78vSHFr1VOCP0McPDjWPzA==</latexit>

Cn
<latexit sha1_base64="CAp6NE4jUvIFl0giyXQ/E6JfHss=">AAAB6nicbZDNSgMxFIVvqtZarVa7dBMsggspM3Why0I3LivaH2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3LnwwimPwttPRD4OOdecu/1Y8G1cZwvlNva3snvFvaK+welw6Py8UlHR4mirE0jEameTzQTXLK24UawXqwYCX3Buv60Oc+7j0xpHskHk8bMC8lY8oBTYqx13xzKYbnq1JyF8Ca4K6g20KDyXcqnrWH5czCKaBIyaaggWvddJzZeRpThVLBZcZBoFhM6JWPWtyhJyLSXLUad4XPrjHAQKfukwQv3d0dGQq3T0LeVITETvZ7Nzf+yfmKCGy/jMk4Mk3T5UZAIbCI83xuPuGLUiNQCoYrbWTGdEEWosdcp2iO46ytvQqdec69q9Tu32riEpQpwCmdwAS5cQwNuoQVtoDCGJ3iBVyTQM3pD78vSHFr1VOCP0McPDjWPzA==</latexit>

(a) Shallow-Deep Net [5]

Embedding

It’s shocking, shockingly disappointing! 

Layer 1

Layer 2
C1

<latexit sha1_base64="vkSsjvKjI2YMRZp390bj0wZZv6w=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa+SWRpWaU3cWwpvgrqDWRMPqd7mQtEeVz+E4pLFkylJBjBm4TmS9lGjLqWDz0jA2LCJ0RiZskKEikhkvXcw6xxeZM8ZBqLOnLF64vztSIo1JpJ9VSmKnZj3Lzf+yQWyDWy/lKootU3T5URALbEOcL47HXDNqRZIBoZpns2I6JZpQm50nP4K7vvImdBt197reuHdrzStYqghncA6X4MINNOEO2tABClN4ghd4RRI9ozf0vizdQqueKvwR+vgB5pWPow==</latexit>

C1
<latexit sha1_base64="vkSsjvKjI2YMRZp390bj0wZZv6w=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa+SWRpWaU3cWwpvgrqDWRMPqd7mQtEeVz+E4pLFkylJBjBm4TmS9lGjLqWDz0jA2LCJ0RiZskKEikhkvXcw6xxeZM8ZBqLOnLF64vztSIo1JpJ9VSmKnZj3Lzf+yQWyDWy/lKootU3T5URALbEOcL47HXDNqRZIBoZpns2I6JZpQm50nP4K7vvImdBt197reuHdrzStYqghncA6X4MINNOEO2tABClN4ghd4RRI9ozf0vizdQqueKvwR+vgB5pWPow==</latexit>

Neu

Layer 3
C2

<latexit sha1_base64="WJlXG+1E+kaCGkIP5Lhfp9zo7GQ=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa9QojSo1p+4shDfBXUGtiYbV73IhaY8qn8NxSGPJlKWCGDNwnch6KdGWU8HmpWFsWETojEzYIENFJDNeuph1ji8yZ4yDUGdPWbxwf3ekRBqTSD+rlMROzXqWm/9lg9gGt17KVRRbpujyoyAW2IY4XxyPuWbUiiQDQjXPZsV0SjShNjtPfgR3feVN6Dbq7nW9ce/WmlewVBHO4BwuwYUbaMIdtKEDFKbwBC/wiiR6Rm/ofVm6hVY9Vfgj9PED6BqPpA==</latexit>

C2
<latexit sha1_base64="WJlXG+1E+kaCGkIP5Lhfp9zo7GQ=">AAAB63icbZDNSgMxFIVv/Km1Wq126SZYBBdSZupCl4VuXFawP9AOJZNm2tAkMyQZYRj6Cm5cKOLWF3LnwwjOtF1o64HAxzn3knuvHwlurON8oa3tnd3CXnG/dHBYPjqunJx2TRhryjo0FKHu+8QwwRXrWG4F60eaEekL1vNnrTzvPTJteKgebBIxT5KJ4gGnxOZWa9QojSo1p+4shDfBXUGtiYbV73IhaY8qn8NxSGPJlKWCGDNwnch6KdGWU8HmpWFsWETojEzYIENFJDNeuph1ji8yZ4yDUGdPWbxwf3ekRBqTSD+rlMROzXqWm/9lg9gGt17KVRRbpujyoyAW2IY4XxyPuWbUiiQDQjXPZsV0SjShNjtPfgR3feVN6Dbq7nW9ce/WmlewVBHO4BwuwYUbaMIdtKEDFKbwBC/wiiR6Rm/ofVm6hVY9Vfgj9PED6BqPpA==</latexit>

Pos

Layer 4
C3

<latexit sha1_base64="Ky3/Cw6d8y3TnyDIfW8IazGK8NI=">AAAB6nicbZDLSgMxFIZPvNRarVa7dBMsggspM+1Cl4VuXFa0F2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3Lnwwiml4W2/hD4+P9zyDnHjwXXxnG+0Nb2zm5uL79fODgsHh2XTk47OkoUZW0aiUj1fKKZ4JK1DTeC9WLFSOgL1vWnzXnefWRK80g+mDRmXkjGkgecEmOt++awPixVnKqzEN4EdwWVBhqUv4u5tDUsfQ5GEU1CJg0VROu+68TGy4gynAo2KwwSzWJCp2TM+hYlCZn2ssWoM3xhnREOImWfNHjh/u7ISKh1Gvq2MiRmotezuflf1k9McONlXMaJYZIuPwoSgU2E53vjEVeMGpFaIFRxOyumE6IINfY6BXsEd33lTejUqm69WrtzK40rWCoPZ3AOl+DCNTTgFlrQBgpjeIIXeEUCPaM39L4s3UKrnjL8Efr4AbS6j5E=</latexit>

C3
<latexit sha1_base64="Ky3/Cw6d8y3TnyDIfW8IazGK8NI=">AAAB6nicbZDLSgMxFIZPvNRarVa7dBMsggspM+1Cl4VuXFa0F2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3Lnwwiml4W2/hD4+P9zyDnHjwXXxnG+0Nb2zm5uL79fODgsHh2XTk47OkoUZW0aiUj1fKKZ4JK1DTeC9WLFSOgL1vWnzXnefWRK80g+mDRmXkjGkgecEmOt++awPixVnKqzEN4EdwWVBhqUv4u5tDUsfQ5GEU1CJg0VROu+68TGy4gynAo2KwwSzWJCp2TM+hYlCZn2ssWoM3xhnREOImWfNHjh/u7ISKh1Gvq2MiRmotezuflf1k9McONlXMaJYZIuPwoSgU2E53vjEVeMGpFaIFRxOyumE6IINfY6BXsEd33lTejUqm69WrtzK40rWCoPZ3AOl+DCNTTgFlrQBgpjeIIXeEUCPaM39L4s3UKrnjL8Efr4AbS6j5E=</latexit>

Neg

Patience
Counter

0

0

1C4
<latexit sha1_base64="k3VTayZ07XgbLBWffrLA4fjdM14=">AAAB6nicbZDLSgMxFIZPvNRarVa7dBMsggspM1XQZaEblxXtBdqhZNJMG5rJDElGGIY+ghsXirj1idz5MILpZaGtPwQ+/v8ccs7xY8G1cZwvtLG5tZ3bye8W9vaLB4elo+O2jhJFWYtGIlJdn2gmuGQtw41g3VgxEvqCdfxJY5Z3HpnSPJIPJo2ZF5KR5AGnxFjrvjG4GpQqTtWZC6+Du4RKHfXL38Vc2hyUPvvDiCYhk4YKonXPdWLjZUQZTgWbFvqJZjGhEzJiPYuShEx72XzUKT6zzhAHkbJPGjx3f3dkJNQ6DX1bGRIz1qvZzPwv6yUmuPEyLuPEMEkXHwWJwCbCs73xkCtGjUgtEKq4nRXTMVGEGnudgj2Cu7ryOrRrVfeyWrtzK/ULWCgPJ3AK5+DCNdThFprQAgojeIIXeEUCPaM39L4o3UDLnjL8Efr4AbY+j5I=</latexit>

C4
<latexit sha1_base64="k3VTayZ07XgbLBWffrLA4fjdM14=">AAAB6nicbZDLSgMxFIZPvNRarVa7dBMsggspM1XQZaEblxXtBdqhZNJMG5rJDElGGIY+ghsXirj1idz5MILpZaGtPwQ+/v8ccs7xY8G1cZwvtLG5tZ3bye8W9vaLB4elo+O2jhJFWYtGIlJdn2gmuGQtw41g3VgxEvqCdfxJY5Z3HpnSPJIPJo2ZF5KR5AGnxFjrvjG4GpQqTtWZC6+Du4RKHfXL38Vc2hyUPvvDiCYhk4YKonXPdWLjZUQZTgWbFvqJZjGhEzJiPYuShEx72XzUKT6zzhAHkbJPGjx3f3dkJNQ6DX1bGRIz1qvZzPwv6yUmuPEyLuPEMEkXHwWJwCbCs73xkCtGjUgtEKq4nRXTMVGEGnudgj2Cu7ryOrRrVfeyWrtzK/ULWCgPJ3AK5+DCNdThFprQAgojeIIXeEUCPaM39L4o3UDLnjL8Efr4AbY+j5I=</latexit>

Layer n

…

Cn
<latexit sha1_base64="CAp6NE4jUvIFl0giyXQ/E6JfHss=">AAAB6nicbZDNSgMxFIVvqtZarVa7dBMsggspM3Why0I3LivaH2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3LnwwimPwttPRD4OOdecu/1Y8G1cZwvlNva3snvFvaK+welw6Py8UlHR4mirE0jEameTzQTXLK24UawXqwYCX3Buv60Oc+7j0xpHskHk8bMC8lY8oBTYqx13xzKYbnq1JyF8Ca4K6g20KDyXcqnrWH5czCKaBIyaaggWvddJzZeRpThVLBZcZBoFhM6JWPWtyhJyLSXLUad4XPrjHAQKfukwQv3d0dGQq3T0LeVITETvZ7Nzf+yfmKCGy/jMk4Mk3T5UZAIbCI83xuPuGLUiNQCoYrbWTGdEEWosdcp2iO46ytvQqdec69q9Tu32riEpQpwCmdwAS5cQwNuoQVtoDCGJ3iBVyTQM3pD78vSHFr1VOCP0McPDjWPzA==</latexit>

Cn
<latexit sha1_base64="CAp6NE4jUvIFl0giyXQ/E6JfHss=">AAAB6nicbZDNSgMxFIVvqtZarVa7dBMsggspM3Why0I3LivaH2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3LnwwimPwttPRD4OOdecu/1Y8G1cZwvlNva3snvFvaK+welw6Py8UlHR4mirE0jEameTzQTXLK24UawXqwYCX3Buv60Oc+7j0xpHskHk8bMC8lY8oBTYqx13xzKYbnq1JyF8Ca4K6g20KDyXcqnrWH5czCKaBIyaaggWvddJzZeRpThVLBZcZBoFhM6JWPWtyhJyLSXLUad4XPrjHAQKfukwQv3d0dGQq3T0LeVITETvZ7Nzf+yfmKCGy/jMk4Mk3T5UZAIbCI83xuPuGLUiNQCoYrbWTGdEEWosdcp2iO46ytvQqdec69q9Tu32riEpQpwCmdwAS5cQwNuoQVtoDCGJ3iBVyTQM3pD78vSHFr1VOCP0McPDjWPzA==</latexit>

Neg

0

(b) Patience-based Early Exit (PABEE)

Figure 1: Comparison between Shallow-Deep Net, a prediction score based early exit (threshold is
set to 0.9), and our Patience-based Early Exit (patience t = 1). A classifier is denoted by Ci, and
n is the number of layers in a model. In this figure, Shallow-Deep incorrectly exits based on the
prediction score while PABEE considers multiple classifiers and exits with a correct prediction.

model while retaining or even improving its original accuracy with minor additional effort in terms
of model size and training time. Also, our method can dynamically adjust the accuracy-efficiency
trade-off to fit different devices and resource constraints by tuning the patience hyperparameter
without retraining the model, which is favored in real-world applications [9]. Although we focus on
PLM in this paper, we also have conducted experiments on image classification tasks with the popular
ResNet [10] as the backbone model and present the results in Appendix A to verify the generalization
ability of PABEE.

To summarize, our contribution is two-fold: (1) We propose Patience-based Early Exit, a novel and
effective inference mechanism and show its feasibility of improving the efficiency and the accuracy
of deep neural networks with theoretical analysis. (2) Our empirical results on the GLUE benchmark
highlight that our approach can simultaneously improve the accuracy and robustness of a competitive
ALBERT model, while speeding up inference across different tasks with trivial additional training
resources in terms of both time and parameters.

2 Related Work

Existing research in improving the efficiency of deep neural networks can be categorized into two
streams: (1) Static approaches design compact models or compress heavy models, while the models
remain static for all instances at inference (i.e., the input goes through the same layers); (2) Dynamic
approaches allow the model to choose different computational paths according to different instances
when doing inference. In this way, the simpler inputs usually require less calculation to make
predictions. Our proposed PABEE falls into the second category.

Static Approaches: Compact Network Design and Model Compression Many lightweight neu-
ral network architectures have been specifically designed for resource-constrained applications,
including MobileNet [11], ShuffleNet [12], EfficientNet [13], and ALBERT [4], to name a few. For
model compression, Han et al. [14] first proposed to sparsify deep models by removing non-significant
synapses and then re-training to restore performance. Weight Quantization [15] and Knowledge
Distillation [16] have also proved to be effective for compressing neural models. Recently, existing
studies employ Knowledge Distillation [17–19], Weight Pruning [20–22] and Module Replacing [23]
to accelerate PLMs.

2



0 1 2 3 4
Epoch

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r R
at

e Overfitting

Training set
Dev set

(a) Overfitting in training

7 8 9 10 11 12
Layer

0.05

0.10

0.15

0.20

0.25

0.30

0.35

En
tro

py

12.5

13.0

13.5

14.0

14.5

15.0

15.5

Er
ro

r R
at

e

Overthinking

Pred. Entropy
Error Rate (dev)

(b) Overthinking in inference

Figure 2: Analogy between overfitting in training and overthinking in inference. (a) In training,
the error rate keeps going down on the training set but goes up later on the development set. (b)
We insert a classifier after every layer. Similarly, the predicted entropy keeps dropping when more
layers are added to inference but the error rate goes up after 10 layers. The results are obtained with
ALBERT-base on MRPC.

Dynamic Approaches: Input-Adaptive Inference A parallel line of research for improving the
efficiency of neural networks is to enable adaptive inference for various input instances. Adaptive
Computation Time [24, 25] proposed to use a trainable halting mechanism to perform input-adaptive
inference. However, training the halting model requires extra effort and also introduces additional
parameters and inference cost. To alleviate this problem, BranchyNet [26] calculated the entropy of
the prediction probability distribution as a proxy for the confidence of branch classifiers to enable
early exit. Shallow-Deep Nets [5] leveraged the softmax scores of predictions of branch classifiers to
mitigate the overthinking problem of DNNs. More recently, Hu et al. [27] leveraged this approach in
adversarial training to improve the adversarial robustness of DNNs. In addition, existing approaches
[24, 28] trained separate models to determine passing through or skipping each layer. Very recently,
FastBERT [29] and DeeBERT [30] adapted confidence-based BranchyNet [26] for PLMs while
RightTool [31] leveraged the same early-exit criterion as in the Shallow-Deep Network [5].

However, Schwartz et al. [31] recently revealed that prediction probability based methods often lead
to substantial performance drop compared to an oracle that identifies the smallest model needed to
solve a given instance. In addition, these methods only support classification and leave out regression,
which limits their applications. Different from the recent work that directly employs existing efficient
inference methods on top of PLMs, PABEE is a novel early-exit criterion that captures the inner-
agreement between earlier and later internal classifiers and exploit multiple classifiers for inference,
leading to better accuracy.

3 Patience-based Early Exit

Patience-based Early Exit (PABEE) is a plug-and-play method that can work well with minimal
adjustment on training.

3.1 Motivation

We first conduct experiments to investigate the overthinking problem in PLMs. As shown in Figure
2b, we illustrate the prediction distribution entropy [26] and the error rate of the model on the
development set as more layers join the prediction. Although the model becomes more “confident”
(lower entropy indicates higher confidence in BranchyNet [26]) with its prediction as more layers join,
the actual error rate instead increases after 10 layers. This phenomenon was discovered and named
“overthinking” by Kaya et al. [5]. Similarly, as shown in Figure 2a, after 2.5 epochs of training, the
model continues to get better accuracy on the training set but begins to deteriorate on the development
set. This is the well-known overfitting problem which can be resolved by applying an early stopping

3



mechanism [7, 8]. From this aspect, overfitting in training and overthinking in inference are naturally
alike, inspiring us to adopt an approach similar to early stopping for inference.

3.2 Inference

The inference process of PABEE is illustrated in Figure 1b. Formally, we define a common inference
process as the input instance x goes through layers L1 . . . Ln and the classifier/regressor Cn to predict
a class label distribution y (for classification) or a value y (for regression, we assume the output
dimension is 1 for brevity). We couple an internal classifier/regressor C1 . . . Cn−1 with each layer of
L1 . . . Ln−1, respectively. For each layer Li, we first calculate its hidden state hi:

hi = Li(hi−1)

h0 = Embedding(x)
(1)

Then, we use its internal classifier/regressor to output a distribution or value as a per-layer prediction
yi = Ci(hi) or yi = Ci(hi). We use a counter cnt to store the number of times that the predictions
remain “unchanged”. For classification, cnt i is calculated by:

cnt i =

{
cnt i−1 + 1 argmax(yi) = argmax(yi−1),

0 argmax(yi) 6= argmax(yi−1) ∨ i = 0.
(2)

While for regression, cnt i is calculated by:

cnt i =

{
cnt i−1 + 1 |yi − yi−1| < τ,

0 |yi − yi−1| ≥ τ ∨ i = 0.
(3)

where τ is a pre-defined threshold. We stop inference early at layer Lj when cntj = t. If this
condition is never fulfilled, we use the final classifier Cn for prediction. In this way, the model can
exit early without passing through all layers to make a prediction.

As shown in Figure 1a, prediction score-based early exit relies on the softmax score. As revealed by
prior work [32, 33], prediction of probability distributions (i.e., softmax scores) suffers from being
over-confident to one class, making it an unreliable metric to represent confidence. Nevertheless, the
capability of a low layer may not match its high confidence score. In Figure 1a, the second classifier
outputs a high confidence score and incorrectly terminates inference. With Patience-based Early Exit,
the stopping criteria is in a cross-layer fashion, preventing errors from one single classifier. Also,
since PABEE comprehensively considers results from multiple classifiers, it can also benefit from an
ensemble learning [34] effect.

3.3 Training

PABEE requires that we train internal classifiers to predict based on their corresponding layers’
hidden states. For classification, the loss function Li for classifier Ci is calculated with cross entropy:

Li = −
∑
z∈Z

[1 [yi = z] · logP (yi = z|hi)] (4)

where z and Z denote a class label and the set of class labels, respectively. For regression, the loss is
instead calculated by a (mean) squared error:

Li = (yi − ŷi)2 (5)

where ŷ is the ground truth. Then, we calculate and train the model to minimize the total loss L by a
weighted average following Kaya et al. [5]:

L =

∑n
j=1 j · Lj∑n

j=1 j
(6)

In this way, every possible inference branch has been covered in the training process. Also, the
weighted average can correspond to the relative inference cost of each internal classifier.

4



3.4 Theoretical Analysis

It is straightforward to see that Patience-based Early Exit is able to reduce inference latency. To
understand whether and under what conditions it can also improve accuracy, we conduct a theoretical
comparison of a model’s accuracy with and without PABEE under a simplified condition. We consider
the case of binary classification for simplicity and conclude that:

Theorem 1 Assuming the patience of PABEE inference is t, the total number of internal classifiers
(IC) is n, the misclassification probability (i.e., error rate) of all internal classifiers (excluding the
final classifier) is q, and the misclassification probability of the final classifier and the original
classifier (without ICs) is p. Then the PABEE mechanism improves the accuracy of conventional
inference as long as n− t < ( 1

2q )
t(pq )− p

(the proof is detailed in Appendix B).

We can see the above inequality can be easily satisfied. For instance, when n = 12, q = 0.2,
and p = 0.1, the above equation is satisfied as long as the patience t ≥ 4. However, it is notable
that assuming the accuracy of each internal classifiers to be equal and independent is generally not
attainable in practice. Additionally, we verify the statistical feasibility of PABEE with Monte Carlo
simulation in Appendix C. To further test PABEE with real data and tasks, we also conduct extensive
experiments in the following section.

4 Experiments

4.1 Tasks and Datasets

We evaluate our proposed approach on the GLUE benchmark [35]. Specifically, we test on Microsoft
Research Paraphrase Matching (MRPC) [36], Quora Question Pairs (QQP)3 and STS-B [37] for
Paraphrase Similarity Matching; Stanford Sentiment Treebank (SST-2) [38] for Sentiment Classifica-
tion; Multi-Genre Natural Language Inference Matched (MNLI-m), Multi-Genre Natural Language
Inference Mismatched (MNLI-mm) [39], Question Natural Language Inference (QNLI) [40] and
Recognizing Textual Entailment (RTE) [35] for the Natural Language Inference (NLI) task; The
Corpus of Linguistic Acceptability (CoLA) [41] for Linguistic Acceptability. We exclude WNLI [42]
from GLUE following previous work [1, 19, 23]. For datasets with more than one metric, we report
the arithmetic mean of the metrics.

4.2 Baselines

For GLUE tasks, we compare our approach with four types of baselines: (1) Backbone models: We
choose ALBERT-base and BERT-base, which have approximately the same inference latency and
accuracy. (2) Directly reducing layers: We experiment with the first 6 and 9 layers of the original
(AL)BERT with a single output layer on the top, denoted by (AL)BERT-6L and (AL)BERT-9L,
respectively. These two baselines help to set a lower bound for methods that do not employ any
technique. (3) Static model compression approaches: For pruning, we include the results of Layer-
Drop [22] and attention head pruning [20] on ALBERT. For reference, we also report the performance
of state-of-the-art methods on compressing the BERT-base model with knowledge distillation or
module replacing, including DistillBERT [17], BERT-PKD [18] and BERT-of-Theseus [23]. (4)
Input-adaptive inference: Following the settings in concurrent studies [31, 29, 30], we add inter-
nal classifiers after each layer and apply different early exit criteria, including that employed by
BranchyNet [26] and Shallow-Deep [5]. To make a fair comparison, the internal classifiers and their
insertions are exactly same in both baselines and Patience-based Early Exit. We search over a set of
thresholds to find the one delivering the best accuracy for the baselines while targeting a speed-up
ratio between 1.30× and 1.96× (the speed-up ratios of (AL)BERT-9L and -6L, respectively).

4.3 Experimental Setting

Training We add a linear output layer after each intermediate layer of the pretrained
BERT/ALBERT model as the internal classifiers. We perform grid search over batch sizes of

3https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

5

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs


Table 1: Experimental results (median of 5 runs) of models with ALBERT backbone on the develop-
ment set and the test set of GLUE. The numbers under each dataset indicate the number of training
samples. The acceleration ratio is averaged across 8 tasks. We mark “-” on STS-B for BranchyNet
and Shallow-Deep since they do not support regression.

Method #Param Speed CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Macro
-up (8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K) Score

Dev. Set

ALBERT-base [4] 12M 1.00× 58.9 84.6 89.5 91.7 89.6 78.6 92.8 89.5 84.4

ALBERT-6L 12M 1.96× 53.4 80.2 85.8 87.2 86.8 73.6 89.8 83.4 80.0
ALBERT-9L 12M 1.30× 55.2 81.2 87.1 88.7 88.3 75.9 91.3 87.1 81.9

LayerDrop [22] 12M 1.96× 53.6 79.8 85.9 87.0 87.3 74.3 90.7 86.5 80.6
HeadPrune [20] 12M 1.22× 54.1 80.3 86.2 86.8 88.0 75.1 90.5 87.4 81.1

BranchyNet [26] 12M 1.88× 55.2 81.7 87.2 88.9 87.4 75.4 91.6 - -
Shallow-Deep [5] 12M 1.95× 55.5 81.5 87.1 89.2 87.8 75.2 91.7 - -
PABEE (ours) 12M 1.57× 61.2 85.1 90.0 91.8 89.6 80.1 93.0 90.1 85.1

Test Set

ALBERT-base [4] 12M 1.00× 54.1 84.3 87.0 90.8 71.1 76.4 94.1 85.5 80.4
PABEE (ours) 12M 1.57× 55.7 84.8 87.4 91.0 71.2 77.3 94.1 85.7 80.9

{16, 32, 128}, and learning rates of {1e-5, 2e-5, 3e-5, 5e-5} with an Adam optimizer. We apply an
early stopping mechanism and select the model with the best performance on the development set. We
implement PABEE on the base of Hugging Face’s Transformers [43]. We conduct our experiments
on a single Nvidia V100 16GB GPU.

Inference Following prior work on input-adaptive inference [26, 5], inference is on a per-instance
basis, i.e., the batch size for inference is set to 1. This is a common latency-sensitive production
scenario when processing individual requests from different users [31]. We report the median
performance over 5 runs with different random seeds because the performance on relatively small
datasets such as CoLA and RTE usually has large variance. For PABEE, we set the patience t = 6 in
the overall comparison to keep the speed-up ratio between 1.30× and 1.96× while obtaining good
performance following Figure 4. We further analyze the behavior of the PABEE mechanism with
different patience settings in Section 4.5.

Table 2: Experimental results (median of 5 runs) of BERT
based models on the development set of GLUE. We mark
“-” on STS-B for BranchyNet and Shallow-Deep since they
do not support regression.

Method #Param Speed MNLI SST-2 STS-B
-up (393K) (67K) (5.7K)

BERT-base [1] 108M 1.00× 84.5 92.1 88.9

BERT-6L 66M 1.96× 80.1 89.6 81.2
BERT-9L 87M 1.30× 81.4 90.5 85.0

DistilBERT [17] 66M 1.96× 79.0 90.7 81.2
BERT-PKD [23] 66M 1.96× 81.3 91.3 86.2
BERT-of-Theseus [23] 66M 1.96× 82.3 91.5 88.7
BranchyNet [26] 108M 1.87× 80.3 90.4 -
Shallow-Deep [5] 108M 1.91× 80.5 90.6 -
PABEE (ours) 108M 1.62× 83.6 92.0 88.7

Table 3: Parameter numbers and training
time (in minutes) until the best perform-
ing checkpoint (on the development set)
with and without PABEE on ALBERT
and BERT as backbone models.

Method #Param Train. time (min)
MNLI SST-2 MNLI SST-2

ALBERT
w/o PABEE 12M 12M 234 113
w/ PABEE +36K +24K 227 108
BERT
w/o PABEE 108M 108M 247 121
w/ PABEE +36K +24K 242 120

4.4 Overall Comparison

We first report our main result on GLUE with ALBERT as the backbone model in Table 1. This
choice is made because: (1) ALBERT is a state-of-the-art PLM for natural language understanding.
(2) ALBERT is already very efficient in terms of the number of parameters and memory use because
of its layer sharing mechanism, but still suffers from the problem of high inference latency. We can
see that our approach outperforms all compared approaches on improving the inference efficiency
of PLMs, demonstrating the effectiveness of the proposed PABEE mechanism. Surprisingly, our

6



80

81

82

83

84

85
Ac

cu
ra

cy

MNLI

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Speed-up Ratio

91

92

93

Ac
cu

ra
cy

SST-2

BranchyNet
ShallowDeep
PABEE

Figure 3: Speed-accuracy curves of BranchyNet,
Shallow-Deep and PABEE on MNLI and SST-2
with ALBERT-base model.

83

85

Ac
c.

MNLI

92.5

93.0

Ac
c.

SST-2

3 4 5 6 7 8 9 10 11
Patience

88

89

90

Co
rr.

STS-B

w/ PABEE
w/o PABEE

2.35 2.06 1.78 1.57 1.39 1.27 1.14 1.05 1.0
Speed-up Ratio

Figure 4: Accuracy scores and speed-up ratios un-
der different patience with ALBERT-base model.
The baseline is denoted with gray dash lines.

approach consistently improves the performance of the original ALBERT model by a relatively
large margin while speeding-up inference by 1.57×. This is, to the best of our knowledge, the first
inference strategy that can improve both the speed and performance of a fine-tuned PLM.

To better compare the efficiency of PABEE with the method employed in BranchyNet and Shallow-
Deep, we illustrate speed-accuracy curves in Figure 3 with different trade-off hyperparameters (i.e.,
threshold for BranchyNet and Shallow-Deep, patience for PABEE). Notably, PABEE retains higher
accuracy than BranchyNet and Shallow-Deep under the same speed-up ratio, showing its superiority
over prediction score based methods.

To demonstrate the versatility of our method with different PLMs, we report the results on a repre-
sentative subset of GLUE with BERT [1] as the backbone model in Table 2. We can see that our
BERT-based model significantly outperforms other compared methods with either knowledge distil-
lation or prediction probability based input-adaptive inference methods. Notably, the performance
is slightly lower than the original BERT model while PABEE improves the accuracy on ALBERT.
We suspect that this is because the intermediate layers of BERT have never been connected to an
output layer during pretraining, which leads to a mismatch between pretraining and fine-tuning when
adding the internal classifiers. However, PABEE still has a higher accuracy than various knowledge
distillation-based approaches as well as prediction probability distribution based models, showing its
potential as a generic method for deep neural networks of different kinds.

As for the cost of training, we present parameter numbers and training time with and without PABEE
with both BERT and ALBERT backbones in Table 3. Although more classifiers need to be trained,
training PABEE is no slower (even slightly faster) than conventional fine-tuning, which may be
attributed to the additional loss functions of added internal classifiers. This makes our approach
appealing compared with other approaches for accelerating inference such as pruning or distillation
because they require separately training another model for each speed-up ratio in addition to training
the full model. Also, PABEE only introduces fewer than 40K parameters (0.33% of the original 12M
parameters).

4.5 Analysis

Impact of Patience As illustrated in Figure 4, different patience can lead to different speed-up
ratios and performance. For a 12-layer ALBERT model, PABEE reaches peak performance with
a patience of 6 or 7. On MNLI, SST-2 and STS-B, PABEE can always outperform the baseline
with patience between 5 and 8. Notably, unlike BranchyNet and Shallow-Deep, whose accuracy

7



Table 4: Experimental results (median of 5 runs) of different sizes of ALBERT on GLUE development
set.

Method #Param #Layer Speed MNLI SST-2 STS-B
-up (393K) (67K) (5.7K)

ALBERT-base [4] 12M 12 1.00× 84.6 92.8 89.5
+ PABEE 12M 12 1.57× 85.1 93.0 90.1
ALBERT-large [4] 18M 24 1.00× 86.4 94.9 90.4
+ PABEE 18M 24 2.42× 86.8 95.2 90.6

Table 5: Results on the adversarial robustness. “Query Number” denotes the number of queries the
attack system made to the target model and a higher number indicates more difficulty.

Metric ALBERT + Shallow-Deep [5] + PABEE (ours)
(↑ better) SNLI MNLI-m/-mm Yelp SNLI MNLI-m/-mm Yelp SNLI MNLI-m/-mm Yelp

Original Acc. 89.6 84.1 / 83.2 97.2 89.4 82.2 / 80.5 97.2 89.9 85.0 / 84.8 97.4
After-Attack Acc. 5.5 9.8 / 7.9 7.3 9.2 15.4 / 13.8 11.4 19.3 30.2 / 25.6 18.1
Query Number 58 80 / 86 841 64 82 / 86 870 75 88 / 93 897

drops as the inference speed goes up, PABEE has an inverted-U curve. We confirm this observation
statistically with Monte Carlo simulation in Appendix C. To analyze, when the patience t is set
too large, the later internal classifier may suffer from the overthinking problem and make a wrong
prediction that breaks the stable state among previous internal classifiers, which have not met the
early-exit criterion because t is large. This makes PABEE leave more samples to be classified by the
final classifier Cn, which suffers from the aforementioned overthinking problem. Thus, the effect of
the ensemble learning vanishes and undermines its performance. Similarly, when t is relatively small,
more samples may meet the early-exit criterion by accident before actually reaching the stable state
where consecutive internal classifiers agree with each other.

Impact of Model Depth We also investigate the impact of model depth on the performance of
PABEE. We apply PABEE to a 24-layer ALBERT-large model. As shown in Table 4, our approach
consistently improves the accuracy as more layers and classifiers are added while producing an even
larger speed-up ratio. This finding demonstrates the potential of PABEE for burgeoning deeper
PLMs [44–46].

4.6 Defending Against Adversarial Attack

Deep Learning models have been found to be vulnerable to adversarial examples that are slightly
altered with perturbations often indistinguishable to humans [47]. Jin et al. [6] revealed that PLMs
can also be attacked with a high success rate. Recent studies [5, 27] attribute the vulnerability partially
to the overthinking problem, arguing that it can be mitigated by early exit mechanisms.

In our experiments, we use a state-of-the-art adversarial attack method, TextFooler [6], which
demonstrates effectiveness on attacking BERT. We conduct black-box attacks on three datasets:
SNLI [48], MNLI [39] and Yelp [49]. Note that since we use the pre-tokenized data provided by
Jin et al. [6], the results on MNLI differ slightly from the ones in Table 1. We attack the original
ALBERT-base model, ALBERT-base with Shallow-Deep [5] and with Patience-based Early Exit.

As shown in Table 5, we report the original accuracy, after-attack accuracy and the number of queries
needed by TextFooler to attack each model. Our approach successfully defends more than 3×
attacks compared to the original ALBERT on NLI tasks, and 2× on the Yelp sentiment analysis
task. Also, PABEE increases the number of queries needed to attack by a large margin, providing
more protection to the model. Compared to Shallow-Deep [5], our model demonstrates significant
robustness improvements. To analyze, although the early exit mechanism of Shallow-Deep can
prevent the aforementioned overthinking problem, it still relies on a single classifier to make the final
prediction, which makes it vulnerable to adversarial attacks. In comparison, since Patience-based
Early Exit exploits multiple layers and classifiers, the attacker has to fool multiple classifiers (which
may exploit different features) at the same time, making it much more difficult to attack the model.
This effect is similar to the merits of ensemble learning against adversarial attack, discussed in
previous studies [50–52].

8



5 Discussion

In this paper, we proposed PABEE, a novel efficient inference method that can yield better accuracy-
speed trade-off than existing methods. We verify its effectiveness and efficiency on GLUE and provide
theoretical analysis. Empirical results show that PABEE can simultaneously improve the efficiency,
accuracy, and adversarial robustness upon a competitive ALBERT model. However, a limitation is
that PABEE currently only works on models with a single branch (e.g., ResNet, Transformer). Some
adaption is needed for multi-branch networks (e.g., NASNet [53]). For future work, we would like
to explore our method on more tasks and settings. Also, since PABEE is orthogonal to prediction
distribution based early exit approaches, it would be interesting to see if we can combine them with
PABEE for better performance.

Broader Impact

As an efficient inference technique, our proposed PABEE can facilitate more applications on mobile
and edge computing, and also help reduce energy use and carbon emission [54]. Since our method
serves as a plug-in for existing pretrained language models, it does not introduce significant new
ethical concerns but more work is needed to determine its effect on biases (e.g., gender bias) that
have already been encoded in a PLM.

Acknowledgments and Disclosure of Funding

We are grateful for the comments from the anonymous reviewers. We would like to thank the authors
of TextFooler [6], Di Jin and Zhijing Jin, for their help with the data for adversarial attack. Tao Ge is
the corresponding author. The authors did not receive third-party funding or support for this work.

References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of

deep bidirectional transformers for language understanding. In NAACL-HLT, 2019.

[2] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In NeurIPS,
2019.

[3] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[4] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. ALBERT: A lite BERT for self-supervised learning of language representations. In
ICLR, 2020.

[5] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding
and mitigating network overthinking. In ICML, 2019.

[6] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is BERT really robust? natural
language attack on text classification and entailment. In AAAI, 2020.

[7] Nelson Morgan and Hervé Bourlard. Generalization and parameter estimation in feedforward
netws: Some experiments. In NeurIPS, 1989.

[8] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pages 55–69.
Springer, 1998.

[9] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In ICLR, 2020.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

9



[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[12] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In CVPR, 2018.

[13] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In ICML, Proceedings of Machine Learning Research, 2019.

[14] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[15] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. In CVPR, 2016.

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[17] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[18] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for BERT model
compression. In EMNLP-IJCNLP, 2019.

[19] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. Tinybert: Distilling bert for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

[20] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In
NeurIPS, 2019.

[21] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In ACL, 2019.

[22] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In ICLR, 2020.

[23] Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, and Ming Zhou. Bert-of-theseus: Com-
pressing bert by progressive module replacing. In EMNLP, 2020.

[24] Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

[25] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Uni-
versal transformers. In ICLR, 2019.

[26] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference via early
exiting from deep neural networks. In ICPR, 2016.

[27] Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang. Triple wins: Boosting
accuracy, robustness and efficiency together by enabling input-adaptive inference. In ICLR,
2020.

[28] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. Skipnet: Learning
dynamic routing in convolutional networks. In ECCV, 2018.

[29] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. Fastbert: a
self-distilling bert with adaptive inference time. arXiv preprint arXiv:2004.02178, 2020.

[30] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting
for accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020.

10



[31] Roy Schwartz, Gabi Stanovsky, Swabha Swayamdipta, Jesse Dodge, and Noah A. Smith. The
right tool for the job: Matching model and instance complexities. In ACL, 2020.

[32] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

[33] Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to trust a classifier.
In NeurIPS, 2018.

[34] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active
learning. In NeurIPS, 1994.

[35] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
ICLR, 2019.

[36] William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential
paraphrases. In IWP@IJCNLP, 2005.

[37] Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence
representations. In LREC, 2018.

[38] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y.
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In EMNLP, 2013.

[39] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In NAACL-HLT, 2018.

[40] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+
questions for machine comprehension of text. In EMNLP, 2016.

[41] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability
judgments. TACL, 2019.

[42] Hector J. Levesque. The winograd schema challenge. In AAAI Spring Symposium: Logical
Formalizations of Commonsense Reasoning, 2011.

[43] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2020.

[44] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using gpu model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[45] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

[46] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[47] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. In ICLR (Workshop), 2017.

[48] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In EMNLP, 2015.

[49] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for
text classification. In NeurIPS, 2015.

11



[50] Thilo Strauss, Markus Hanselmann, Andrej Junginger, and Holger Ulmer. Ensemble meth-
ods as a defense to adversarial perturbations against deep neural networks. arXiv preprint
arXiv:1709.03423, 2017.

[51] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick D.
McDaniel. Ensemble adversarial training: Attacks and defenses. In ICLR, 2018.

[52] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness
via promoting ensemble diversity. In ICML, 2019.

[53] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable
architectures for scalable image recognition. In CVPR, 2018.

[54] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. arXiv preprint
arXiv:1907.10597, 2019.

[55] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

12


