
A Proof of Proposition 1

In this section we give a self-contained proof of Proposition 1, restated here for convenience:

Proposition 1 Given a sample/target distribution P = (A1, B1), . . . , (Am, Bm), the problem of
evaluating the performance p of a semilinear estimation algorithm specified by vectors a1, . . . , am ∈
Rn is NP-hard to estimate to within a multiplicative factor of π2 . However, lettingM = 1

m

∑m
i=1(ai−

bi)
T (ai − bi), the optimum of the convex (semidefinite) program

max
V psd, V(j,j)≤1

n∑
j,k=1

M(j,k)V(j,k)

is in the interval [p, π2 p], and can be found in polynomial time by standard semidefinite programming
algorithms.

The proof of this proposition leverages the connection to the positive semidefinite Grothendieck
problem:
Definition 6. The positive semidefinite Grothendieck problem, given an n× n positive semidefinite
matrix M is to evaluate:

max
x1,...,xn∈{−1,1}

xTMx (4)

(Note that this problem is sometimes phrased as the optimization over a pair of vectors x, y, of the
expression xTMy, though for positive semidefinite M , an optimum will always be attained when
x = y.)

The positive semidefinite Grothendieck problem includes MAX-CUT as a special case, since, for an
undirected graph G, its Laplacian L is positive semidefinite, and for any vector x ∈ {−1, 1}n that
labels its vertices, the value of xTLx will equal the total degree of the graph plus the size of the cut
induced by the labels of x. Thus, since MAX-CUT is NP-hard, evaluating the performance of a fixed
estimator is also NP-hard. Further, Håstad showed that it is NP-hard to even approximate MAX-CUT
to within a multiplicative factor of 17

16 [13]. For the more general case of the semidefinite Grothendieck
problem considered here, Khot and Naor showed the unique-games hardness of approximating the
optimum to within a factor of π

2 ; this result was recently strengthened by Briët, Regev, and Saket
to show it is in fact NP-hard to get an approximation ratio better than π

2 [17, 3]. Thus, even for a
fixed semilinear estimation algorithm, we cannot hope to approximate its performance—given by
Equation 1—to within a factor of π2 .

Analogously to the Goemans-Williamson semidefinite relaxation of MAX-CUT, we consider the
semidefinite relaxation of the semidefinite Grothendieck problem, replacing each scalar variable xj
with a vector vj in the n-dimensional unit ball.
Definition 7. Given an n × n positive semidefinite matrix M , the semidefinite relaxation of the
positive semidefinite Grothendieck problem is to evaluate:

max
vj∈Rn:||vj ||≤1

n∑
j,k=1

M(j,k)(v
T
j vk) (5)

or, equivalently, letting “psd" denote the property of a matrix being positive semidefinite,

max
V psd, V(j,j)≤1

n∑
j,k=1

M(j,k)V(j,k)

Crucially, the set of positive semidefinite matrices is convex, so thus the optimization problem of
Definition 7 (in its second form) maximizes a linear function over a convex set, and thus can be
computed in polynomial time.

Goemans and Williamson famously showed, via a randomized rounding scheme, that the gap between
MAX-CUT and the result of the induced positive semidefinite relaxation is bounded by a factor of
1.14 [11]. For the more general setting here, of arbitrary positive semidefinite matrices instead of
graph Laplacians, Nesterov showed a bound of π2 [20]. We include a self-contained derivation here,
for the sake of completeness.
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Since scaling a single vector vj affects Equation 5 in a convex quadratic manner, there will always be
an optimum of Equation 5 where ||vj || = 1 for all j. We assume this, for simplicity, when describing
the randomized rounding procedure below.

Definition 8. Given n unit vectors vj ∈ Rn, for j ∈ {1, . . . , n}, the Goemans-Williamson ran-
domized rounding procedure chooses a random direction r, and for each vector vj returns a scalar
xj = sign(rT vj).

Proposition 2. Given an n× n positive semidefinite matrix M , and n unit vectors v1, . . . , vn ∈ Rn,
the value of the relaxed Grothendieck problem,

∑n
j,k=1M(j,k)(v

T
j vk) is at most π2 times the expected

value of the original Grothendieck problem evaluated on scalars x1, . . . , xn ∈ [−1, 1] obtained from
v1, . . . , vn by the Goemans-Williamson randomized rounding procedure, E[

∑n
j,k=1M(j,k)xjxk].

Thus for any objective value that can be achieved in the relaxed problem, with vectors v1, . . . , vn,
the original problem can achieve an objective value at least a 2

π fraction of it, since it does so in
expectation over scalars x1, . . . , xn obtained by the randomized rounding procedure.

Proof of Proposition 2. As in the analysis of the Goemans-Williamson randomized rounding scheme
for MAX-CUT, note that the expected value E[xjxk] = Er[sign(rT vj)sign(rT vk)], where r is a
randomly chosen direction. Because of the rotational symmetry of the distribution of r, we may
equivalently rotate vj and vk into the plane, from which we can see that, for r also projected into
the plane, sign(rT vj)sign(rT vk) equals 1 when r is within π

2 radians of both vj , vk or neither of
them. For a randomly chosen r in the plane, this happens with probability 1− 1

π θj,k, where θj,k is
the angle between vj , vk, yielding that E[xjxk] = 1− 2

π θj,k.

As θj,k may be computed as arccos(vTj vk), we may express the expected objective value after
randomized rounding as

E[
n∑

j,k=1

M(j,k)xjxk] =

n∑
j,k=1

M(j,k)(1−
2

π
arccos(vTj vk))

Recall our overall aim, to show that this value times π
2 is greater than or equal to∑n

j,k=1M(j,k)(v
T
j vk). Subtracting these two quantities means that we need to show that the follow-

ing quantity is nonpositive:

n∑
j,k=1

M(j,k)(v
T
j vk −

π

2
+ arccos(vTj vk)) (6)

The power series expansion of arccos(y) starts arccos(y) = π
2 − y +

∑
`≥3 c` y

` where all the
remaining coefficients c` are nonpositive, and converges on the entire interval y ∈ [−1, 1]. Thus
Equation 6 equals

n∑
j,k=1

M(j,k)

∑
`≥3

c`(v
T
j vk)

`

 (7)

Since the matrix with (j, k) entry vTj vk is positive semidefinite for any vectors v1, . . . , vn, and since
elementwise raising a positive semidefinite matrix to a positive integer power yields another positive
semidefinite matrix, Equation 7 can be reexpressed as

∑
`≥3
∑n
j,k=1M(j,k)N

(`)
(j,k) for some negative

semidefinite matrices N (`), which is thus clearly less than or equal to 0, as desired.

Combining the lower bounds and upper bounds of this section immediately yields Proposition 1.

B Proof of Theorem 3

For ease of exposition, we restate the Theorem 3:
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Theorem. Algorithm 1, given a description of the joint distribution of sample and target sets
(A1, b1), . . . , (Am, bm), runs in polynomial time, and returns coefficients for a semilinear estimator
whose expected squared error is within a π

2 factor of that of the best semilinear estimator. The value
of the objective function achieved by V̂ is m times the Proposition 1 SDP bound on the mean squared
error of the best semilinear estimator.

Proof. Proposition 1 describes a convex optimization problem to approximate to within a factor of π2
the performance of an estimator specified by vectors a1, . . . , am ∈ Rn. We thus consider optimizing
Equation 2 over this choice (omitting the 1

m factor for convenience):

min
ai:{j:ai(j)6=0}⊆Ai

max
V psd, V(j,j)≤1

m∑
i=1

n∑
j,k=1

(ai − bi)(j)(ai − bi)(k)V(j,k) (8)

By Proposition 1, this minimum (if we can efficiently find it), will be within a factor of π
2 of the

performance of the best semilinear estimator, and the vectors a1, . . . , am that achieve this minimum
will describe an estimator with this performance.

We proceed by invoking von Neumann’s minimax theorem.

Fact 2. Given a function f(x, y) that is convex as a function of its first argument and concave as a
function of its second argument, and given convex domains X,Y , at least one of which is bounded,
then

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y)

The condition that “at least one of X,Y is bounded" is a relaxation of the original minimax theorem,
shown sufficient by Sion [22].

We observe now that all the conditions of the minimax theorem are satisfied by the expression in
Equation 8. As a function of ai, the expression being optimized is the quadratic form with coefficients
specified by the positive semidefinite matrix V ; thus the expression is a convex function of ai, and
since such functions are summed over all i ∈ {1, . . . ,m}, the expression is a convex function of all
the vectors a1 . . . , am. Since the expression is linear in V , it is thus also concave as a function of V .
Finally, the domains of the vectors a1 . . . , am, along with the matrix V are both convex, and, since a
positive semidefinite matrix must have each entry bounded by the size of the largest diagonal entry,
the condition that V has diagonal entries bounded by 1 induces the same bound on the size of all
entries of V .

Thus we invoke the minimax theorem to conclude that the value of Equation 8 is unchanged if we
reverse the order of the min and the max:

max
V psd, V(j,j)≤1

min
ai:{j:ai(j)6=0}⊆Ai

m∑
i=1

n∑
j,k=1

(ai − bi)(j)(ai − bi)(k)V(j,k) (9)

Crucially, now, the inner minimization is simply a sum of positive semidefinite quadratic forms in each
of the vectors a1, . . . , am. Reexpressing the inner sum in vector notation as (ai − bi)TV (ai − bi),
the gradient of this quadratic form with respect to ai equals 2V (ai − bi). Thus, subject to the
constraint that ai can only be nonzero on coordinates in Ai, if there exists a vector ai such that
V (ai − bi) = 0 on coordinates Ai, then this ai attains the minimum; and otherwise the minimum is
−∞. The solution for ai, restricted to the coordinatesAi is thus V −1(Ai,Ai)

V(Ai)bi (or, when V(Ai,Ai) is
singular, V +

(Ai,Ai)
V(Ai)bi is the least-squares solution). Plugging this ai into the quadratic form yields

bTi (V − V T(Ai)
V −1(Ai,Ai)

V(Ai))bi for the inner minimization of the ith term of the objective function.
Finally, because of the setup of the minimax theorem, this expression must be a concave function of
V , letting us conclude that Algorithm 1 can in fact conduct the optimization in polynomial time, as
desired.

(As a side note, directly proving the above objective function is concave is a bit strange; it is a
consequence of the fact that for positive definite V , and vectors x, the expression xTM−1x is convex
as a function of both arguments, implying it is convex even when both arguments are affine functions
of the optimization variables.)
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C Proof of Theorem 1: A Sample-Efficient Algorithm for Near-Optimal
Semilinear Estimators

While Algorithm 1 takes as input the entire description (A1, B1), . . . , (Am, Bm) of the joint sam-
ple/target distribution, such a description might be (1) unavailable in practice and/or (2) have support
m that is exponentially large. To address both cases, in this section we design an algorithm that
achieves essentially the performance guarantees of Algorithm 1 (as given by Theorem 3), though
relying only on sampling access to P . Algorithm 2 will run in time polynomial in n and independent
of the (possibly exponential) distribution description length m.

Algorithm 2 Sampling algorithm to approximate the best semilinear estimator
Input: Accuracy parameter ε > 0; t random samples from the joint distribution of sample and target
sets, (As1 , bs1), . . . , (Ast , bst), where each Ai ⊂ {1, . . . , n} is the set of sample set indices in the ith
case and each bi is a vector with uniform values over the target set in the ith case as in Definition 4;
and the actual instance to predict, specified by (A, b) and the values xA.

For an n× n matrix V and a set Ai ∈ {1, . . . , n}, let VAi
denote V restricted to the rows in Ai, and

let VAi,Ai
denote V restricted to both rows and columns in Ai.

1. Compute the concave maximization

Ṽ = argmax
V�ε, Vj,j≤1

t∑
i=1

bTsi(V − V
T
(Asi

)V
−1
(Asi

,Asi
)V(Asi

))bsi (10)

2. Output the estimate xAṼ −1(A,A)Ṽ(A)b.

As compared with Algorithm 1, Algorithm 2 restricts the domain of optimization to matrices V that
have eigenvalues at least ε, instead of at least 0 (which is a convex restriction). Crucially, instead
of summing over all m possible sample/target set possibilities, the optimization is over a small
subset of size t, obtained by sampling. Finally, the output of this algorithm is phrased as a single
estimate for the data in question (described to the algorithm via the triple A, b, xA, as opposed to
Algorithm 1, which returned the entire list of m semilinear estimator coefficients). The following
theorem, characterizing the performance of the above algorithm, immediately implies Theorem 1.

Theorem 4. The mean squared error of the estimate output by Algorithm 2, over the randomness of
the queried sample and target sets (A, b), is within a multiplicative π

2 factor and an additive 6ε factor
of the performance of the optimum semilinear estimator, with probability 1− e−t·ε5/poly(n) over the
sampled inputs (As1 , bs1), . . . , (Ast , bst). The probability of failure can thus be made exponentially
small in n by using t = poly(n)/ε5 samples, for a sufficiently large polynomial in n.

We first prove three structural lemmas that characterize the optimization objective, and then put the
pieces together making use of concentration bounds, applied over an ε-net of matrices in the domain
of the optimization.

Lemma 1. For any valid V , the ith term in the sum of Equation 3—or equivalently Equation 9 or
Equation 10—is between 0 and 1.

Proof. From the derivation of Equation 3 in the proof of Theorem 3, the inner summation is equal to
the inner minimization in Equation 9, which we analyze instead. Since the quadratic form specified
by V in Equation 9 is positive semidefinite, it thus always evaluates to a nonnegative number proving
the first part of the claim.

Consider the inner minimum when all coefficients ai are identically 0. Since each bi is a nonnegative
vector of sum 1, and thus since all entries of V have magnitude at most 1 (because of the diagonal
constraint, and the positive semidefinite constraint), we have

∑n
j,k=1 bi(j)bi(k)Vj,k ≤ 1, as desired.
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Lemma 2. The optimum objective value of the max in Equation 3 decreases by at most εm if the
domain of the maximization is further restricted so that V , instead of being positive semidefinite,
must now have all eigenvalues at least ε.

Proof. From the derivation of Equation 3 in the proof of Theorem 3, the inner summation is equal to
the inner minimization in Equation 9, which we analyze instead.

Letting V be the optimal matrix in Equation 9 we instead consider the matrix Vε = εIn + (1− ε)V
where In is the n× n identity matrix. Since the objective is linear in V , when evaluated at Vε it will
have value ε times the objective value for In—which is nonnegative by Lemma 1—plus (1− ε) times
its optimal objective value at V—which is at most 1 by Lemma 1. Thus Vε has objective value within
ε of the optimum, as desired.

Lemma 3. For a fixed symmetric matrix V whose eigenvalues are all at least ε, the expression
inside the sum of Equation 3, for any i, varies with respect to changing a coordinate of V by at most∣∣∣ d
dVj,k

bTi (V − V T(Ai)
V −1(Ai,Ai)

V(Ai))bi

∣∣∣ ≤ 1
ε2 poly(n).

Proof. Since V has eigenvalues at least ε, so does any (principal) submatrix V(Ai,Ai). Thus the
inverse V −1(Ai,Ai)

has eigenvalues at most 1
ε , and thus the L2 norm of any column of V −1(Ai,Ai)

is at
most 1

ε . Since d
dVj,k

V −1(Ai,Ai)
equals negative the inner product of the columns (or rows) j and k of

V −1(Ai,Ai)
, this derivative is thus at most 1

ε2 . Applying the product rule can increase this by only a
poly(n) factor.

We assemble these pieces to prove the performance of Algorithm 2.

Proof of Theorem 4. For any fixed V in Equation 3, the average of the m terms in the sum may
be estimated as the empirical average of the t terms we can compute from our randomly sampled
inputs (As1 , bs1), . . . , (Ast , bst). Since, by Lemma 1, each term is between 0 and 1, the standard
Chernoff/Hoeffding bounds imply that the empirical mean of t random terms will be within ε of the
true mean except with probability e−2ε

2t.

Let ε′ = ε3/poly(n) be a radius such that, by Lemma 3, any two matrices satisfying the constraints of
the argmax of Equation 10 that are within distance ε′ of each other must yield values for each term in
the sum, that are within ε of each other. Consider applying the concentration bounds of the previous
paragraph to each V in an ε′-net of matrices satisfying the conditions of Equation 10—namely,
positive definite with eigenvalues at least ε, and all diagonal entries at most 1. Recall that an ε′-net
will have each matrix within distance ε′ of one of the matrices in the net, and that the net will consist
of epoly(n)/ε

′
matrices. As we consider bounds up to poly(n) factors, the choice of norm for the

matrices does not matter, but for concreteness, consider the ε′-net to be defined in the Frobenius norm.
By the union bound, the Chernoff/Hoeffding bound of the previous paragraph applies for every V
in the ε′-net except with probability e−2ε

2t+poly(n)/ε′ , which is thus negligible when the number of
samples is t = poly(n)/ε′ε2 = poly(n)/ε5.

We thus show that the performance of the estimator described by the sampled Ṽ is close to the
performance of the optimal semilinear estimator V̂ with eigenvalues at least ε. Let Ṽ ′, V̂ ′ respectively
represent the nearest elements of the ε′-net to Ṽ , V̂ respectively. For ease of notation, we let f̂(V )

and f̃(V ) respectively describe the functions of V described by the average term in the sums of
Equations 3 and 10 respectively. Thus we have

f̂(Ṽ ) ≥ f̂(Ṽ ′)− ε ≥ f̃(Ṽ ′)− 2ε ≥ f̃(Ṽ )− 3ε ≥ f̃(V̂ ′)− 3ε ≥ f̂(V̂ ′)− 4ε ≥ f̂(V̂ )− 5ε,

where the inequalities hold respectively because of (1) the ε′-nearness of Ṽ , Ṽ ′ combined with the
derivative guarantee of Lemma 3 as applied to f̂ ; (2) the Chernoff/Hoeffding bound at the point Ṽ ′

of the ε′-net; (3) the ε′-nearness of Ṽ , Ṽ ′ combined with the derivative guarantee of Lemma 3 as
applied to f̃ ; (4) the fact that Ṽ attains the maximum of f̃ ; (5) the Chernoff/Hoeffding bound at the
point Ṽ ′ of the ε′-net; and (6) the ε′-nearness of V̂ , V̂ ′ combined with the derivative guarantee of
Lemma 3 as applied to f̂ .
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Thus, the algorithm described by Ṽ has true performance within 5ε of the optimal under the eigenvalue
constraint, achieved by V̂ . By Lemma 2, V̂ itself is within ε of the true optimal performance of
Equation 3, which in turn is within a factor of π2 of that of the best semilinear estimator, as desired.

D Suboptimality of Semilinear Schemes (Fact 1)

Via a computer-aided brute-force search over small examples, we found a distribution, P , for which
the best semilinear algorithm had larger worst-case expected error than the best arbitrary scheme:

Example 4. Let n = 4. Consider the distribution over sampling from the population {1, 2, 3, 4} that
assigns a 0.3 probability to the following pairs of sample/target sets ({1, 3}, {2, 4}), ({2, 4}, {1, 3}),
({3, 4}, {1, 2}) and a 0.05 probability to ({1, 3, 4}, {2}) and ({2, 3, 4}, {1}). The optimal semilinear
scheme achieves worst-case expected squared error 0.6652, compared to 0.6627 for the optimal
unconstrained scheme. Hence even for sample/target set distributions over n = 4 datapoints,
semilinear schemes are not always worst-case optimal.

E Proof of Theorem 2: Linear Regression Setting

We prove Theorem 2 here, which for clarity we restate and reintroduce slightly more formally.

We consider the following natural extension of our results to the setting of d-dimensional linear
regression. Our regression results follow from a transparent application of the main results, Theorem 1
or Theorem 3, demonstrating the flexibility and scope of our approach. We emphasize that many
variants of this model are interesting, and that a more specialized analysis may yield stronger bounds
than what we show here.

Definition 9. Given a sample set A and a target set B, where for each i ∈ A we are given
a pair (xi, yi) with the independent variable xi ∈ [−1, 1]d and the dependent variable yi ∈
[−1, 1], the goal is to recover a coefficient vector β that minimizes the mean squared error on
the target set, Ei∼B [(x>i β − yi)

2], when additionally given access to the joint distribution P
from which (A,B) are drawn. The least-squares coefficients are defined, as is standard, as
β = (Ei∼B [xix

>
i ])
−1Ei∼B [xiyi]. As we do not have access to the target set data (xi, yi) for

i ∈ B, we instead must estimate it: depending on whether distribution P is given explicitly, or via
sample access, use Theorems 1 or 3 respectively to estimate (in terms of P and the sample data
(xi, yi) for i ∈ A) each of the d2 entries in the matrix Q = Ei∈B [xix

>
i ] and the d entries in the

vector u = Ei∈B [xiyi], all of which are in [−1, 1]. Our estimated coefficients are then β̂ = Q̂−1û.

Theorem. Given a regression problem as in Definition 9, where the distribution P is specified either
via sampling access or explicitly, and let αP be the mean squared error guaranteed by Theorem 1 or
3 respectively, for estimating the mean of a scalar (which depends only on P ). Then, letting σd be
the smallest singular value of the (uncentered covariance) matrix Q, for any δ > 0, the algorithm of
Definition 9 will return an estimate β̂ of the least-squares regression coefficients β such that with

probability at least 1− δ we have ||β − β̂|| ≤ 3

√
αP d3/δ

σ2
d

, provided this expression is at most 0.08;
in the case that the independent variables xi are known for the target set (and only the yi’s are

unknown) then except with δ probability, we have ||β − β̂|| ≤
√
αP d/δ

σd
.

Proof. Recall we are in the following regression setting: data consists of pairs (xi, yi) where
xi ∈ [−1, 1]d and yi ∈ [−1, 1]; indices i ∈ [n] are drawn for the input sample A and target set B
from a joint distribution, (A,B) ∼ P . The goal, given the training data and a description of P (or
sample access to P ), is to compute linear coefficients β ∈ Rd, such that the mean squared error over
target indices i ∈ B is as small as possible, namely, to minimize Ei∼B [(x>i β− yi)2]. Our results will
be parameterized in terms of αP , the mean squared estimation accuracy that Theorem 1 or Theorem 3
affords us on distribution P (in the scalar mean estimation setting).

As is standard in least squares regression, note that the expression we are minimizing, Ei∼B [(x>i β −
yi)

2], is positive semidefinite as a function of β, and thus is minimized when its gradient with
respect to β equals 0. Hence we solve Ei∼B [xi(x>i β − yi)] = 0, or equivalently, Ei∼B [xix>i ]β =

Ei∼B [xiyi], which has solution β = (Ei∼B [xix>i ])−1 Ei∼B [xiyi]. Now, for any i, each of the d2
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entries of the matrix xix>i is in [−1, 1], and thus its average value over i in the target set B can
be estimated to within mean squared error αP based on its values for i in the sample set A, from
Theorem 1 or 3; the same holds for each of the d entries in the vector xiyi.

Let Q = Ei∼B [xix>i ], and let Q + F (referred to as Q̂ in definition 9) be the random variable
representing the estimate of Q given by Theorem 1 or 3, where the square of each entry of F has
expectation at most αP ; hence by Markov’s inequality, for any δ > 0, with probability at least 1− δ
the matrix F has Frobenius norm at most

√
αP d2/δ. Correspondingly, let u = Ei∼B [xiyi], and let

u+ g be the random variable representing the estimate of u returned by our algorithm, where, except
with probability δ, the vector g has length at most

√
αP d/δ. Taking the union bound, we have that

except with probability 2δ, the bounds on both F and g hold, and we analyze this case below.

As described above, the optimal linear coefficients are given by β = Q−1u, and meanwhile our
estimate is β̂ = (Q+ F )−1(u+ g). We bound the discrepancy ||β − β̂|| via the triangle inequality,
first bounding the change induced by adding g, and then bounding the change from adding F :

||β−β̂|| = ||Q−1u−(Q+F )−1(u+g)|| ≤ ||Q−1u−Q−1(u+g)||+||Q−1(u+g)−(Q+F )−1(u+g)||

The first term on the right hand side equals ||Q−1g||, which we bound as the product of the length
of g and the largest singular value of Q−1, which is the inverse of the smallest singular value of Q,
which we have denoted σd. Thus we have ||Q−1g|| ≤ 1

σd

√
αP d/δ.

Bounding the second term is slightly more involved. The goal is to bound ||[Q−1−(Q+F )−1](u+g)||.
We first bound the largest singular value of the matrixQ−1− (Q+F )−1. For any λ ∈ [0, 1], consider
interpolating between Q and Q + F to get Q + λF . Let sλ be the smallest singular value of this
matrix, and let vλ be the corresponding singular vector, with ||v|| = 1. Since Q has smallest singular
value σd, we have ||Qv|| ≥ σd; since F has Frobenius norm at most

√
αP d2/δ and the Frobenius

norm bounds the largest singular value, we have ||Fv|| ≤
√
αP d2/δ, and by the triangle inequality,

the difference of these two expressions is a lower bound on s: s = ||(Q+ F )v|| ≥ σd −
√
αP d2/δ.

Consider the matrix (Q+ λF )−1 as we linearly move λ from 0 to 1. The derivative with respect to λ
of this matrix inverse is −(Q−1 + λF )F (Q+ λF )−1, which thus has largest singular value at most
the product of our bounds on the singular values for the 3 terms:√

αP d2/δ

(σd −
√
αP d2/δ)2

(11)

Since ||u + g|| ≤
√
d +

√
αP d/δ from summing bounds on ||u|| and ||g||, we multiply this by

Equation 11—bounding the amount the matrix (Q + λF )−1 changes as we interpolate from Q to
Q+ F—to get our total bound for the second triangle inequality term. Adding this to the bound on
the first term, we have

||β − β̂|| = ||(Q+F )−1(u+ g)−Q−1u|| ≤ 1

σd

√
αP d/δ+ (

√
d+

√
αP d/δ)

√
αP d2/δ

(σd −
√
αP d2/δ)2

(12)

To simplify this bound, consider the case that
√
αP d3/δ

σ2
d

≤ c.

Since matrix Q has entries in [−1, 1], its singular values are at most
√
d, and thus

√
d

σd
≥ 1, yielding√

αP d2/δ

σd
≤ c, and implying that if we replace the denominator (σd−

√
αP d2/δ)

2 in Equation 12 by
simply σ2

d then the expression will decrease by at most a factor of (1− c)2. Similarly, in Equation 12
the parenthetical term (

√
d+

√
αP d/δ) has second part bounded by

√
αP d/δ ≤ c σd√

d
≤ c and thus

replacing (
√
d+

√
αP d/δ) by simply

√
d will decrease the term by at most a factor of 1

1+c . Thus

the right hand side of Equation 12 is the sum of two terms,
√
αP d/δ

σd
, and a term

√
αP d3/δ

σ2
d

times a

factor between 1 and 1+c
(1−c)2 ; the first term is clearly at most the second term since σd ≤

√
d ≤ d2, so

thus we have ||β − β̂|| ≤ (1 + 1+c
(1−c)2 )

√
αP d3/δ

σ2
d

. Substituting 2δ → δ so that the overall probability
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of failure becomes δ, the proportionality constant becomes
√
2(1 + 1+c

(1−c)2 ), which for c ≤ 0.0378

yields a constant of 3, as desired. Thus, in the context of the theorem, substituting in 1
2δ for δ, when

3

√
αP d3/(δ/2)

σ2
d

≤ 0.08, we will have c ≤ 0.08
√
2

3 < 0.378 as desired.

In the simpler case where the independent variables xi are known, and hence Q does not need to
be estimated, our probability of failure is δ instead of 2δ, and only the first term from Equation 12
appears, immediately yielding the other part of the theorem.
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