
A Further Analysis

In this section we broaden understanding of the DirPG update by developing an alternate interpretation
of DirPG as the gradient of some other function, which we discovered by reverse-engineering the
update. This provides insight into the precise effect of ε, provides an interpretation of DirPG as
having a built-in control variate, and allows relating the algorithm to other areas of reinforcement
learning.

A.1 Reverse Engineering an Objective Function

The final objective that we arrived at via reverse engineering is

l(θ, ε) = ES∼P

[
1

ε
log
(
Ea∼Πθ(·|S) [exp(εR(a,S))]

)]
. (16)

Here we show that differentiating it indeed leads to the DirPG update. To derive the DirPG update,
first divide by 1:

l(θ, ε) =
1

ε
ES∼P

[
log

∑
a exp {log Πθ (a | S) + εR(a,S)}∑

a exp {log Πθ (a | S)}

]
, (17)

and then differentiate to get

∇θl(θ, ε) =
1

ε
ES∼P

[
Ea∼PR(·|S) [∇θ log Πθ (a | S)]

]
− 1

ε
ES∼PEa∼Πθ(·|S) [∇θ log Πθ (a | S)] .

(18)

where PR(a | S) ∝ Πθ (a | S) exp(εR(a,S)). Now we can reparameterize the expectations in (18)
using Gumbel-max and express the samples in terms of (13):

=
1

ε
ES∼P [EΓ [∇θ log Πθ (a∗(ε) | S)]]− 1

ε
ES∼P [EΓ [∇θ log Πθ (a∗(0) | S)]] . (19)

Having expressed both expectations in terms of Gumbel noise Γ with the same distribution, we can
use common random numbers to recover the direct policy gradient:

=
1

ε
ES∼P,Γ [∇θ log Πθ (a∗(ε) | S)−∇θ log Πθ (a∗(0) | S)] . (20)

The final result is the DirPG gradient, and note that there are no approximate equalities here: (16) is
in some sense the underlying objective that DirPG optimizes when ε is treated as a hyperparameter.

A.2 Control Variate Interpretation.

The Ea∼Πθ(·|S) [∇θ log Πθ (a | S)] term of (18) is the expected value of a score function and thus
is identically equal to 0. There would be no benefit of including the term in (19). The benefit
of including it only becomes apparent in (20), where we can interpret it as a control variate. The
optimization problems that define adir and aopt differ only in value of ε, so for small ε we expect
the solutions to have similar features and correlated score functions. When this is the case, control
variates reduce the variance of the overall gradient estimate. To our knowledge, direct optimization
has not previously be understood in these terms.

Further experiment on effect of control variate on variance. We measured the variance of
DirPG updates with and without the control variate term of Eq. 19 during training on MiniGrid.
See Fig. 4. The control variate reduces variance, particularly later in training, when aopt is better
correlated with the reward function.

A.3 Risk Sensitivity

A.3.1 Relation to Risk-Sensitive Control

The objective (16) is closely related to a classical objective in risk-sensitive control [33, 14, 9],
logE [exp(εR(a,S))] /ε. For ε > 0, optimal policies under the classical objective prefer high risk

12

Figure 4: Total empirical variance of the DirPG update as a function of the number of training
episodes on MiniGrid.

Figure 5: Quadrature evaluation of (16) for the Gaussian choice problem for varying ε.

strategies as long as high rewards have some positive probability. For ε < 0, optimal policies prefer
low risk strategies that avoid placing probability on low rewards. (16) has an important difference.
Following [9, 22], we take a Taylor expansion of exp(t) and log(1 + t) at t = 0 to get

l(θ, ε) = ES∼P,a∼Πθ(·|S)[R(a,S)] +
ε

2
ES∼P [vara∼Πθ(·|S)(R(a,S))] +O(ε2), (21)

where we use the notation vara∼Πθ(·|S)(R(a,S)) to mean the conditional variance of R(a,S) given
S. Note that expected conditional variance is not equal to the joint variance, which makes this
objective different from the typical risk-sensitive analysis. If the second term were simply the
variance under the joint, then the agent is sensitive to variance in return regardless of whether it was
due to stochasticity in the environment or in the policy. In (21), we see that the agent only seeks out
or suppresses “controllable risk,” which is variance in return created due to stochasticity in its policy.

Further experiment on “controllable risk.” To further illustrate this, we used numerical integra-
tion to compute (16) for a simplified “Gaussian choice” setting where an agent chooses to take a
reward sampled from N (0, 1) with probability p and 0 reward with probability 1− p. Fig. 5 shows
that the risk-seeking objective favors “controllable risk” created due to stochasticity in the agent’s
policy but not variance created due to stochasticity in the environment.

B Approximate Optimization of adir

Proof of Correctness of Gumbel-approx-max in Deterministic Multi-armed Bandits Suppose
we have N arms, each with a fixed but unknown reward R(i) and that arms are ordered according to
their reward so R(i) > R(j) iff i > j, and ε > 0. Let the following:

• πθ (i) ∝ exp θi be the probability of arm i under a softmax policy parameterized by θ,

• Gθ(i) ∼ Gumbel(θi)

13

• Dθ(i, ε) = Gθ(i) + εR(i) be the direct objective
• iopt = argmaxiDθ(i, 0)

• idir = argmaxiDθ(i, ε)

Finally, let iapprox be the value of idirect arising from running Algorithm 1 using Gθ(i) as priority.
That is, we iterate over i in descending order of Gθ(i) until we find an i such that Dθ(i, ε) >
Dθ(iopt, ε) or we have enumerated all i, in which case we set iapprox = iopt.

We prove that learning using iapprox in place of idir still leads to learning the optimal policy.
Lemma 1. idirect ≥ iapprox ≥ iopt.

Proof. To prove iapprox ≥ iopt, observe that by definition we have Dθ(iapprox, ε) ≥ Dθ(iopt, ε) and
Gθ(iopt) ≥ Gθ(iapprox) This implies

Gθ(iapprox) + εR(iapprox) ≥ Gθ(iopt) + εR(iopt) (22)
εR(iapprox)− εR(iopt) ≥ Gθ(iopt)−Gθ(iapprox) ≥ 0. (23)

Thus R(iapprox) ≥ R(iopt) and iapprox ≥ iopt.
To prove idir ≥ iapprox observe that we must have Gθ(iapprox) ≥ Gθ(idir), because otherwise
we would have encountered idir before iapprox when iterating i’s, and because Dθ(idir, ε) ≥
Dθ(iapprox, ε) by definition, we would have chosen idir as iapprox when we encountered it.

So we have Gθ(iapprox)−Gθ(idir) ≥ 0, which implies

Gθ(idir) + εR(idir) ≥ Gθ(iapprox) + εR(iapprox) (24)
εR(idir)− εR(iapprox) ≥ Gθ(iapprox)−Gθ(idir) ≥ 0 (25)

(26)

Thus R(idir) ≥ R(iapprox) and idir ≥ iapprox.

Lemma 2. We’re at a stationary point iff idirect = iopt (or iapprox = iopt) almost surely.

Proof. In one direct, if idirect = iopt almost surely, then DirPG updates on 0 almost surely. In the
other direction, suppose for the sake of contradiction that there is some realization of Gθ where
idirect is not equal to iopt. By Lemma 1, idirect > iopt. Then the gradient vector will have a positive
entry for θidirect and a negative entry for θiopt . In order to be at a stationary point, other realizations
of Gθ need to cancel these contributions. Because of Lemma 1, however, it is only possible to
simultaneously decrement the gradient vector at i and increment it at j if j > i. The only way to
decrement the previously incremented entry for idirect would be to increment an even larger entry,
and the only way to increment the previously decremented entry for iopt would be to decrement an
even smaller entry. Thus, there is no way to cancel gradients if any entry is nonzero, and thus the
only way to get a zero gradient is if idirect = iopt for all realizations of Gθ. In Lemma 1 we have
idirect ≥ iapprox ≥ iopt, so the same argument holds for iapprox.

Proposition 1. The stationary points assuming exact optimization of idirect are the same as the
stationary points assuming approximate optimization to get iapprox.

Proof. By Lemma 2, all stationary points assuming exact optimization have idirect = iopt for all
realizations of Gθ. By Lemma 1, in each of these realizations we have idirect ≥ iapprox ≥ iopt.
Thus, for all realizations we have iapprox = iopt and thus we are at a stationary point assuming
approximate search. In the other direction, Lemma 2 implies that all stationary points assuming
approximate optimization have iapprox = iopt almost surely. The only way for this to happen is that
in trying to find iapprox we exhaustively iterated over all arms and found no improvement. Thus,
idirect could not have been an improvement and idirect = iopt almost surely.

C Further Details on A? sampling trajectories

Here we provide a more detailed version of Sec. 5, which allows us to more precisely state the
limitations of the original A? sampling algorithm for RL, and how our algorithm fixes the problems.

14

Gumbel Processes. To evaluateDθ(a, ε), which defines aopt and adir, we need to sample aGθ(a)
value for each complete trajectory encountered during the search. It is not possible to generate Gθ(a)
for each a before starting the search, because there may be exponentially (or even infinitely) many
possible trajectories. Another option would be to expand the search tree independently of Gθ values
and then sample Gθ(a) via (9) for each singleton region encountered during the search. This would
produce Gθ values with the right distribution, but it is also a non-starter because we are precisely
interested in biasing the search towards trajectories with large Gθ values.

The solution to this problem comes from Maddison et al. Instead of only assigning Gθ values to
trajectories, we also assign them to regions. To assign random variables to overlapping regions in a
consistent way, Maddison et al. introduce the Gumbel Process. A Gumbel process is defined in terms
of a sample space Ω and measure µ. In our case, Ω = AT is the set of all length T trajectories and µ
assigns probabilities to any subsetR ⊆ AT as µ(R | S) =

∑
a∈RΠθ (a | S). A Gumbel Process is

then defined as the set {G(R) | R ⊆ Ω} where the following properties hold:

1. G(R) ∼ Gumbel(logµ(R)),
2. R1 ∩R2 = ∅ =⇒ G(R1) ⊥ G(R2),
3. G(R1 ∪R2) = max(G(R1), G(R2)).

That is, (1) theG values are marginally distributed as Gumbels with location given by the log measure
of the region, (2) the random variables for disjoint regions are independent, and (3) the random
variable in the union of two regions is equal to the max of the random variables in the two regions. A
fourth property is implied by the first three, which we state in our context:

4. X(R) = argmaxa∈RG(a) ∼ 1{a ∈ R}Πθ (a | S).

That is, the argmax trajectory X(R) in a region is distributed according to Πθ (· | S) that is masked
out to only give support toR. Finally, an important property that comes from Gumbel distributions
is that G(R) and X(R) are independent random variables [24]. This means that we are free to
interleave the sampling of X and G as we please, and it will be leveraged in the algorithms in the
following sections.

Top-Down Sampling. Conceptually, if we had sampled Gθ(a) for all a, then the rest of the Gum-
bel process would be determined by Gθ(R) = maxa∈RGθ(a). However, Maddison et al. show
that assuming µ is computable for all regions, a Gumbel Process can be constructed lazily in a
“top-down” fashion, first sampling G(Ω), and then recursively subdividing regions R0 and sam-
pling G’s for the child regions conditional upon the value of G(R0). Specifically, they divide R0

into three disjoint regions: R1,R2, and {X(R0)} such that R0 = R1 ∪ R2 ∪ {X(R0)}. They
show that for i ∈ {1, 2} the conditional distribution of G(Ri) given previous splits in the tree is
TruncGumbel(logµ(Ri), G(R0)) and G({X(R0)}) = G(R0).

Under our choice of regions, µ(R | S) =
∑

a∈RΠθ (a | S) can indeed be computed efficiently as

Πθ (R(ã,B;S) | S) =

(
t−1∏
t′=0

πθ

(
at′ | s(a0,...,at′−1)

))∑
a∈B

πθ (a | sã) . (27)

B is the set of actions that can be taken after the prefix ã.

If all prefixes eventually terminate with probability 1, then it is possible to apply one step of
Top-Down Sampling to sample trajectories. To split a region R0 = R(ã,B), we would sample
X(R0) ∼ 1{a ∈ R0}πθ (a | sã). This is straightforward because it is essentially conditioning on a
prefix in an autoregressive model. Specifically, start with ã, sample at ∼ 1{at ∈ B}πθ (at | sã), and
then sample a completion according to

T∏
t′=t+1

πθ

(
at′ | s(a0,...,at′−1)

)
(28)

However, recursing would be problematic because we do not have a way of splittingR0\{X(R0)}
into two regions that can compactly be represented as a prefix plus legal set of next actions. To

15

address a similar issue, Kim et al. propose a modified split criteria that divides a regionR0 into two
regions. Roughly the idea is to group togetherR1 ∪ {X(R0)} from above into one region, andR2

as the other region.

Applying the idea to our setting (which is slightly different because we support |A| > 2), to
split a region R0 = R(ã,B), we assume inductively that we have already sampled G(R0) and
X(R0). Let prefix ã have t states and X(R0) = (a0, . . . , at−1). Note that X(R0) ∈ R0 by
definition, so ã is a prefix of X(R0) and at ∈ B. We can then define R1 = R(ã ⊕ at,A) and
R2 = R(ã,B\{at}). We then need G and X for the new regions. First, X(R0) ∈ R1, so it must be
the case that it continues to be the argmax when considering a smaller region. Thus R1 “inherits”
the parent’s max and argmax: G(R1) = G(R0) and X(R1) = X(R0). Creating a child region
that does not contain the parent argmax follows the same logic as in standard Top-Down sampling:
G(R2) ∼ TruncGumbel(logµ(R2), G(R0)), and we can sampleX(R2) ∼ 1{a ∈ R2}πθ (a | sã)
as described in the previous subsection.

Top-Down Sampling Trajectories. Adapting the search space structure from Kim et al. makes
it practical to implement Top-Down sampling for trajectories. However, the algorithm is wasteful
in its interactions with the environment, particularly if trajectories can be long, because X(R) is
instantiated fully for each region that is put on the queue. This would also prevent applying the
algorithm at all if trajectories are of infinite length. We develop a further modification that addresses
these issues.

Our idea is to use a similar search space as Kim et al. but to lazily sample X(R). The key observation
is that the full value of X(R) is never used when splitting regions. Paired with the fact that maxes
and argmaxes are independent, this means that we are free to only maintain prefixes of X(R) and
sample extensions when they are needed. Using the same notation as above, we just need samples
of the next action at to define the split. In fact, we can do away with explicitly maintaining X’s in
the algorithm altogether. They can be recovered when we encounter a singleton region as the only
trajectory in the region. The resulting algorithm is our Modified Top-Down algorithm and appears in
Algorithm 2.

D Additional Experimental Details

D.1 Combinatorial Bandits

DirPG interacts with an environment to construct spanning trees as a sequence of binary decisions
about whether to include each edge. The environment provides a set of legal actions at each step. If
adding an edge would create a cycle, the only legal action is to not add the edge. If there are k steps
left and only n − k − 1 edges so far, the only legal action is to add the edge. If there is only one
legal action, we take it with probability 1. While this reduces the chance of the agent generating an
invalid tree, it is possible to generate an invalid spanning tree, in which case we continue searching
over trajectories in descending order of Gθ(a) until finding a valid tree. The first valid tree found is
returned as the agent’s predicted tree. The baseline methods always generate valid spanning trees.
Thus, this ensures that the algorithms are not being evaluated in terms of how quickly they learn to
generate valid spanning trees. They are all evaluated in terms of how quickly they learn to generate
spanning trees with high reward.

As baselines, we use a privileged "semi-bandit" version of UCB that observes per-edge rewards and
a version that assumes the per-tree rewards are attributed evenly to the edges, i.e., re = rT

n−1 . Both
baselines choose a tree at time t by computing a maximum spanning tree given upper confidence
bound edge costs ue = µ̂e + 1.5 log t

ce
where µ̂e is the average per-edge reward for edge e and ce is the

number of times edge e has been chosen.

D.2 DeepSea

The policy model is a linear layer which gets as input one-hot vector of size 5x5 and outputs log
probability for each action [FC(number of states, number of actions)]. We used Adam optimizer with
a learning rate of 0.001

16

D.3 Minigrid

The observations are provided as a tensor of shape 7x7x3. Each of the 7× 7 tiles is encoded using 3
integer values: one describing the type of object contained in the cell, one describing its color, and a
flag indicating whether doors are open or closed. In addition, the agent’s orientation is also provided
as one-hot vector of size 4.

The policy model consists of 3 convolutional layers and one linear layer on top of them.
Conv1(3, 32) → ReLU → Conv2(32, 48) → ReLU → Conv3(48, 64). The linear layer gets
as input a concatenation of orientation vector and the output of the convolutional layers, namely
FC(64 + 4, 7). The output of the linear layer is the log-probabilities of possible action. We used
Adam optimizer with a learning rate of 0.001. We used the same architecture for our algorithm and
the baselines.

We trained the model for 9M iterations, with a maximum of 3000 iterations per episode. In our
algorithm we used the interactions budget for searching for direct candidates. In REINFORCE
and cross-entropy method algorithms we used the interactions budget to sample 30 independent
trajectories (100 steps trajectories) while we used the simulator to reset the environment. For
REINFORCE we averaged the gradients of the 30 trajectories before updating the policy model. For
the cross-entropy method we averaged∇θ log Πθ (a | S) over the best 2 out of 30 trajectories. The
results shown in Fig. 3 are an average of 5 trials with different random seeds.

We consider two versions of REINFORCE algorithm. The first is the standard trajectory-
level ∇Ea,s,r∼pθ

[∑T−1
t=0 rt

]
=
∑T−1
t=0 ∇θ log πθ (at | st)

∑T−1
i=0 ri. However, the variance

of the trajectory-level is high. The other version is an action-level which consider only the
future rewards and serves as a variance reduction technique ∇Ea,s,r∼pθ

[∑T−1
t=0 rt − b

]
=∑T−1

t=0 ∇θ log πθ (at | st)
∑T−1
i=t ri − b where the baseline b is the average of the rewards over

all time steps.

17

