
A Hyperparameters

A.1 LGRL Training

The LGRL model was trained with a learning rate of 1, that decayed by 50% every 105 steps on 50
epochs of the Karel training dataset, using minibatch SGD with batch size 128 and gradient clipping
with magnitude 1. It was run in greedy decoding mode to form the LGRL-GD synthesizer, and run
using beam search with 32 beams to form the LGRL synthesizer.

A.2 EGNPS Model

The EGNPS model was trained for 10 epochs on the Karel dataset, with a learning rate of 5× 10−4,
and the batch size is 16. See [3] for more details. During the inference time, it was run in the search
mode with a beam size of 64.

A.3 Debugger Training

The debugger was trained with a learning rate of 1, that decayed by 50% every 105 steps on 50
epochs of the Karel training dataset using random mutations, sampled with probability proportional
to the number of mutations. Minibatch SGD was used with a batch size of 64, and gradient clipping
with magnitude 1. The models were finetuned on examples from the training dataset that were
incorrect, also for 50 epochs, with a learning rate of 10−4.

A.4 TraceEmbed Architecture

The TraceEmbed unit is a residual convolutional network. The input, output, and trace grids are
stacked along the channel axis, thus preserving locality in space while allowing features and which
grid to be fully connected. The network is composed of an initial convolution that takes the 15 × 3
channels of the input grids to 64 channels, then three ResNet blocks, each of which consists two
layers of of batch normalization, ReLU, and convolution followed by a residual connection. All
convolutions are 3× 3 with a padding of 1. The last layer is a fully connected layer that flattens the
entire grid into an embedding of size 256 (the same size as a program token embedding).

B More Descriptions of the Karel Domain

Figure 7 presents the grammar specification of the Karel DSL. Specifically, the DSL describing
its movements inside a grid consisting of cells which are of size 2x2 to 18x18 and containing be-
tween 0 to 10 objects. These movements are described with move, turnLeft, turnRight
and interactions with the markers are pickMarker and putMarker. The language contains
constructs with conditionals such while and for loops with front, left, right, IsClear,
markerspresent, and negations. Each cell of the grid is represented as a 16-dimensional vector
corresponding to the features described in Table 3.

Prog p ::= def run() : s
Stmt s ::= while(b) : s | repeat(r) : s | s1 ; s2 | a

| if(b) : s | ifelse(b) : s1 else : s2
Cond b ::= frontIsClear() | leftIsClear() | rightIsClear

| markersPresent() | noMarkersPresent() | not b
Action a ::= move() | turnRight() | turnLeft()

| pickMarker() | putMarker()
Cste r ::= 0 | 1 | ... | 19

Figure 7: Grammar for the Karel task.

C Full Greedy Algorithm

The full greedy algorithm is in Algorithm 2.

12

Robot facing North
Robot facing East

Robot facing South
Robot facing West

Obstacle
Grid boundary

1 marker
2 markers
3 markers
4 markers
5 markers
6 markers
7 markers
8 markers
9 markers
10 markers

Table 3: Representation of each cell in the Karel state.

Algorithm 2 Greedy search algorithm

1: function GREEDY-SEARCHk((e))
2: c← argmaxp∈M(e) T (p, e)
3: S ← {} ▷ Already expanded programs
4: if T (c, e) = 1 then
5: return c ▷ Success
6: end if
7: for i ∈ {1 . . . k} do
8: c← argmaxp∈D(c,e)\S T (p, e)
9: S ← S ∪ {c}

10: if T (c, e) = 1 then
11: return c ▷ Success
12: end if
13: end for
14: return c ▷ Failure
15: end function

D Mutations

There are six types of mutations that we consider, identical to the ones used in [25]. Three mutations,
insert(n, a), delete(n), replace(n, a), each take a node n and either delete it, replace it
with some action a, or insert the action a next to this node. The mutation wrap(n̄, t, c) wraps
the series of nodes n̄ in a control construct specified by the control type t ∈ Tc, where Tc =
{if, ifelse, while, repeat} and control value c, which is a conditional for if/while and
a number for repeat. The unwrap(n) mutation takes in a node whose root is a construct in Tc and
replaces it with its body. The mutation replaceControl(n, c) takes a node n whose root is a
construct in Tc and replaces the control value or number of repetitions with c, an appropriately typed
control value. Each mutation maintains the syntactic validity of the program.

13

