Supplementary Material

1 Algorithms of Meta-Critic for DDPG, TD3 and SAC

We incorporate our Meta-Critic to the implementation of vanilla DDPG, TD3 and SAC, following their original implementations. The implementations are summarised by the pseudocode in Algorithms 1-3.

Algorithm 1 DDPG-MC algorithm

- Initialize critic $Q(s, a|\theta)$, actor $\pi(s|\phi)$ and meta-critic network h_ω
- Initialize target network Q' and π' with weights $\theta' \leftarrow \theta$, $\phi' \leftarrow \phi$
- Initialize replay buffer R
- for episode = 1, ..., M do
 - Initialize a random process N for action exploration
 - Receive initial observation state s_1
 - for $t = 1, ..., T$ do
 - Select action $a_t = \pi(s_t|\phi) + N_t$ according to the current policy and exploration noise
 - Execute action a_t, observe reward r_t and new state s_{t+1}
 - Store transition (s_t, a_t, r_t, s_{t+1}) in R
 - Sample a random mini-batch of N transitions (s_i, a_i, r_i, s_{i+1}) from R
 - Set $y_i = r_i + \gamma Q'(s_{i+1}, \pi'(s_{i+1}|\phi')|\theta')$
 - Update critic by minimizing the loss:
 $L = N^{-1} \sum_i (y_i - Q(s_i, a_i|\theta))^2$
 - meta-train:
 - Calculate the old actor weights using the normal actor loss from vanilla critic:
 $\nabla_\phi L_{\text{critic}} = -N^{-1} \sum_i \nabla_a Q(s_i, a_i|\theta)|_{s=s_i, a=\pi(s_i)} \nabla_\phi \pi(s_i|\phi)|_{s=s_i}$
 - $\phi_{old} = \phi - \eta \nabla_\phi L_{\text{critic}}$
 - Calculate the new actor weights using the additional actor loss from meta-critic:
 $\nabla_\phi L_{\text{mcritic}} = \nabla_\phi h_\omega = N^{-1} \sum_i \nabla_\phi f_\omega(\pi(s_i|\phi)|_{s=s_i})$
 - $\phi_{new} = \phi_{old} - \eta \nabla_\phi L_{\text{mcritic}}$
 - meta-test:
 - Sample a random mini-batch of $N s_i^{val}$ from R
 - Calculate the meta-loss using the meta-test sampled transitions:
 $L_{\text{meta}} = \text{tanh}(L_{\text{critic}}(s_i, a_i|\theta)|_{s=s_i^{val}, a=\pi(s_i^{val})} - L_{\text{critic}}(s_i, a_i|\theta)|_{s=s_i^{val}, a=\pi(s_i^{val})})$
 - meta-optimisation: Update the weight of actor and meta-critic network:
 $\phi \leftarrow \phi - \eta(\nabla_\phi L_{\text{critic}} + \nabla_\phi L_{\text{mcritic}})$
 $\omega \leftarrow \omega - \eta \nabla_\omega L_{\text{meta}}$
 - Update the target networks:
 $\theta' \leftarrow \tau \theta + (1 - \tau) \theta'$
 $\phi' \leftarrow \tau \phi + (1 - \tau) \phi'$
 - end for
- end for
Algorithm 2 TD3-MC algorithm

Initialize critics $Q_{\theta_1}, Q_{\theta_2}$, actor π_{ϕ} and meta-critic network h_{ω}
Initialize target networks $\theta'_1 \leftarrow \theta_1, \theta'_2 \leftarrow \theta_2, \phi' \leftarrow \phi$
Initialize replay buffer \mathcal{B}

for $t = 1$ to T
 Select action with exploration noise $a \sim \pi_{\phi}(s) + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma)$ and observe reward r and new state s'
 Store transition tuple (s, a, r, s') in \mathcal{B}
 Sample mini-batch of N transitions (s, a, r, s') from \mathcal{B}
 \[\tilde{a} \leftarrow \pi_{\phi}'(s') + \epsilon, \epsilon \sim \text{clip}(\mathcal{N}(0, \bar{\sigma}), -c, c) \]
 \[y \leftarrow r + \gamma \min_{i=1,2} Q_{\theta_i}(s', \tilde{a}) \]
 Update critics $\theta_i \leftarrow \arg \min_{\theta_i} \sum_{s} (y - Q_{\theta_i}(s, a))^2$
 if $t \mod d = 0$
 meta-train:
 \[\nabla_{\phi} L_{\text{critic}} = -N^{-1} \sum_{s} \nabla_{\phi} Q_{\theta_1}(s, a) |_{a = \pi_{\phi}(s)} \nabla_{\phi} \pi_{\phi}(s) \]
 \[\nabla_{\phi} L_{\text{mcritic}} = \nabla_{\phi} h_{\omega} = N^{-1} \sum_{s} \nabla_{\phi} h_{\omega}(\pi_{\phi}(s)) \]
 Calculate the old actor weights using the normal actor loss: $\phi_{\text{old}} = \phi - \eta \nabla_{\phi} L_{\text{critic}}$
 Calculate the new actor weights using the additional actor loss: $\phi_{\text{new}} = \phi_{\text{old}} - \eta \nabla_{\phi} L_{\text{mcritic}}$
 meta-test:
 Sample mini-batch of $N s^{\text{val}}$ from \mathcal{B}
 Calculate the meta-loss using the meta-test sampled transitions:
 \[L_{\text{clip}} = \text{tanh}(L_{\text{critic}}(s^{\text{val}}, a|\theta_1) |_{a = \pi(s^{\text{val}})} - L_{\text{critic}}(s^{\text{val}}, a|\theta_1) |_{a = \pi(s^{\text{val}})} |_{\phi_{\text{old}}} - L_{\text{critic}}(s^{\text{val}}, a|\theta_1) |_{a = \pi(s^{\text{val}})} |_{\phi_{\text{new}}}) \]
 meta-optimisation:
 Update the actor and meta-critic:
 \[\phi \leftarrow \phi - \eta (\nabla_{\phi} L_{\text{critic}} + \nabla_{\phi} L_{\text{mcritic}}) \]
 \[\omega \leftarrow \omega - \eta \nabla_{\omega} L_{\text{clip}} \]
 Update target networks:
 \[\theta'_1 \leftarrow \tau \theta_1 + (1 - \tau) \theta'_1 \]
 \[\phi' \leftarrow \tau \phi + (1 - \tau) \phi' \]
end if
end for=0
Algorithm 3 SAC-MC algorithm

\[\theta_1, \theta_2, \phi, \omega \]
\[\bar{\theta} \leftarrow \theta_1, \bar{\theta}_2 \leftarrow \theta_2 \]
\[\mathcal{D} \leftarrow \emptyset \]
\[\text{for each iteration do} \]
\[\text{for each environment step do} \]
\[a_t \sim \pi_\phi(a_t|s_t) \]
\[s_{t+1} \sim p(s_{t+1}|s_t, a_t) \]
\[\mathcal{D} \leftarrow \mathcal{D} \cup \{(s_t, a_t, r(s_t, a_t), s_{t+1})\} \]
\[\text{end for} \]
\[\text{for each gradient step do} \]
\[\theta_i \leftarrow \theta_i - \lambda Q(\nabla \theta_i J_Q(\theta_i)) \quad \text{for } i \in \{1, 2\} \]
\[\text{meta-train:} \]
\[\nabla \phi \mathcal{L}_{\text{critic}} = N^{-1} \sum_t \nabla_a [\alpha \log (\pi_\phi(a|s)) - Q_\theta(s, a)]|_{s = s_t, a = \pi(s)} \nabla_\phi \pi_\phi(s)|_{s = s_t} \]
\[\phi_{\text{old}} = \phi - \eta \nabla \phi \mathcal{L}_{\text{critic}} \]
\[\nabla \phi \mathcal{L}_{\text{mcritic}} = \nabla_\phi \mathcal{L}_{\text{mcritic}} = N^{-1} \sum_t \nabla_\phi f_\omega(\bar{\pi}(s))|_{s = s_t} \]
\[\phi_{\text{new}} = \phi_{\text{old}} - \eta \nabla_\phi \mathcal{L}_{\text{mcritic}} \]
\[\text{meta-test:} \]
\[L_{\text{meta clip}} = \tanh (L_{\text{critic}}(s, a|\theta)|_{s = s_t, a = \pi(s|\phi_{\text{new}})} - L_{\text{critic}}(s, a|\theta)|_{s = s_t, a = \pi(s|\phi_{\text{old}})}) \]
\[\text{meta-optimisation:} \]
\[\phi \leftarrow \phi - \eta (\nabla_\phi \mathcal{L}_{\text{critic}} + \nabla_\phi \mathcal{L}_{\text{mcritic}}) \]
\[\omega \leftarrow \omega - \eta \nabla_\omega \mathcal{L}_{\text{meta clip}} \]
\[\alpha \leftarrow \alpha - \lambda \nabla_\alpha J(\alpha) \]
\[\bar{\theta}_i \leftarrow \tau \theta_i + (1 - \tau) \bar{\theta}_i \quad \text{for } i \in \{1, 2\} \]
\[\text{end for} \]
\[\text{end for} \]
2 Average Rewards on Other Tasks and PPO-LIRPG Experiments

This section includes additional results for the Reacher, Inverted Pendulum, and Inverted Double Pendulum environments. These were omitted from the main paper due to being relatively easy for all methods to saturate the maximum reward, as shown in Figures 1-3 and Figure 4.

Figure 1: Learning curve Mean-STD of vanilla DDPG and DDPG-MC for MuJoCo tasks with upper reward bound.

Figure 2: Learning curve Mean-STD of vanilla TD3 and TD3-MC for MuJoCo tasks with upper reward bound.

Figure 3: Learning curve Mean-STD of vanilla SAC and SAC-MC for MuJoCo tasks with upper reward bound.

Figure 4: Box plots of the Max Average Return over 5 trials of all time steps for MuJoCo tasks with upper reward bound.
3 Hyper-parameters for TORCS

In DDPG and TD3 experiments, actor_lr=0.0003, critic_lr=0.001; for DDPG-MC and TD3-MC, omega_lr=0.0001.

In SAC experiments, hyper-parameters for TORCS are the same as for MuJoCo: actor_lr=0.0003, critic_lr=0.0003; for SAC-MC, omega_lr=0.001.

4 Control Experiments on Compute and Parameters

The detailed learning curves of the vanilla baselines, ‘-MC’, ‘+updates’ and ‘+params’ variants under DDPG, TD3 and SAC are shown in Figure 6, 7 and 8 respectively. The effect of compute and parameter increased control baselines varies by environment and base algorithm, sometimes improving performance but often significantly worsening it. Unlike meta-critic, they do not show a consistent improvement on the vanilla methods.

Figure 5: Learning curve Mean-STD of PPO and PPO-LIRPG for continuous control tasks.

Figure 6: Learning curve Mean-STD of DDPG-MC and baseline variants for continuous control tasks.
Figure 7: Learning curve Mean-STD of TD3-MC and baseline variants for continuous control tasks.

Figure 8: Learning curve Mean-STD of SAC-MC and baseline variants for continuous control tasks.