
Supplementary Materials for Succinct and Robust
Multi-Agent Communication With Temporal

Message Control

1 SMAC Settings and Hyperparameters Descriptions

In this section, we describe the detailed experiment settings of SMAC.

1.1 StarCraft micromanagement challenges

We first present the evaluation of TMC on solving the StarCraft Multi-Agent Challenge (SMAC) [7],
a popular benchmark which has recently been utilized by MARL community [6, 10, 4, 5, 3]. SMAC
focuses on decentralized micromanagement version of Starcraft that involves two armies, one
controlled by the user, and the other controlled by the built-in StarCraft II AI. The two armies are
placed on the same map and trying to defeat each other. The agent types can be different between the
two armies, and the agent types can also be different within the same army. Specifically, we consider
the combat scenario, in which the goal of the user is to control the allied units to destroy all enemy
units, while minimizing the total damage taken by each individual unit.

We consider six challenging sets of cooperative StarCraft II maps of SMAC, based on their difficulties,
they are categorized into three classes: easy, hard and superhard. Specifically, we consider the
following five unsymmetrical scenarios, where the agent group and enemy group each consist of 3
Stalkers and 4 Zealots (3s vs 4z), 2 Colossus and 64 Zerglings (2c vs 64zg), 3 Stalkers and 5 Zealots
(3s vs 5z), 6 Hydralisks and 8 Zealots (6h vs 8z), 6 Zealots and 24 Zerglings (6z vs 24zg). Finally,
we consider a symmetrical scenario where both agent group and enemy group consist of 3 Stalkers
and 5 Zealots (3s5z). Among these six scenarios, 3s5z and 3s vs 4z are categorized as easy, 3s vs 4z
and 2c vs 64zg are categorized as hard, 6h vs 8z and 6z vs 24zg are categorized as superhard.

During execution, each agent are allowed to perform the following set of actions: move[direction],
attack[enemy id], stop and no-op. There are four options for the ’move’ operation: south, north, east
or west. The number of possible actions for an agent ranges from 10 (3s vs 4z) to 70 (2c vs 64zg).
In addition, each agent has its own shooting range and sight range, each agent can only attack the
enemies within its shooting range, and can only receive information from the partners or enemies
within the sight range. Furthermore, the shooting range is smaller than the sight range so the agent
can not attack the opponents without observing them.

Finally, only live agents within the sight range can be observed by the other agents/enemies. At each
timestep, the joint reward received by the allied units depends on the total damage on the health levels
of the enemy units. In addition, the agents are rewarded 100 extra points after killing each enemy
unit, and 200 extra points for killing all the enemies. The allied agents wins only if they kill all the
enemies within the time limit. The time limit for different battles are: 150 for 3s5z, 2c vs 64zg,
3s vs 4z, and 3s vs 5z, and 200 for 6h vs 8z and 6z vs 24zg.

The observation at each agent contains the following information of all the units within its sight
range: relative x,y coordinates, relative distance and agent type. For the mixing network of QMIX,
the global state vector st contains the following information:

1. The x,y coordinates of all the units relative to the center of the map at t.
2. The actions taken by all the units at t− 1.

0

10

20

30

40

50

W
in

ni
ng

 r
at

e
(%

)

0.1 1 2 3 4 5 s

0

0.2

0.4

0.6

0.8

1

1.2

C
om

m
un

ic
at

io
n

ov
er

he
ad

Comm. overhead
No loss

Light loss
Medium loss

Heavy loss

(a) Changing λs on 6h vs 8z

0

10

20

30

40

50

W
in

nn
in

g
ra

te
 (

%
)

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

C
om

m
un

ic
at

io
n

ov
er

he
ad

s

Comm. overhead
No loss

Light loss
Medium loss

Heavy loss

(b) Changing λs on 6z vs 64zg

Figure 1: (a) and (b) show the impact of adjusting λs on communication overhead and the winning
rates under different networking conditions on 6h vs 8z and 6z vs 24zg. All the communication
overheads are normalized. For 6h vs 8z, λr and σ are fixed at 0.4 and 0.1. For 6z vs 24zg, λr and σ
are fixed at 0.5 and 0.1.

3. Shield levels, health levels and cooldown levels of all the units at t.

Each allied or enemy agent has a sight range of 9 and shooting range of 6 for all types of agents in all
the six scenarios. For additional information, please refer to [7].

1.2 Hyperparameter for Training

For the network of agent n, at timestep t, raw observation otn is first passed through a single-layer MLP,
which produces an intermediate result with dimension of 64. The GRU then takes this intermediate
result, as well as the hidden states ht−1

n from the previous timestep t− 1, and produces htn and ctn.
Both htn and ctn has a dimension of 64. ctn is then sent to another a FC layer, which generates the
local Q-function Qn(o

t
n, h

t
n, .). c

t
n is also delivered to the GRU of the message encoder, which takes

ctn as well as the hidden states ut−1
n and generates a intermediate results with a dimension of 14, then

it is passed to a single-layer MLP, which produces the output message.

The discount factor γ is set to 0.99. During training, the ε in the action sampling decreases linearly
from 1.0 to 0.05 over the first 200000 timesteps and stays at 0.05 for the rest of the training process.
The replay buffer stores the most recent 5000 episode. A test run is performed every 200 training
episodes to update the replay buffer. The training batch size is set to 32 and the test batch size is set
to 8. Finally, a RMSprop optimizer with a learning rate η = 5× 10−4 and α = 0.99 is utilized for
the training process.

For the hyperparameters used by TMC (i.e., regularization constants λs, λr, threshold on Euclidean
distance σ), we first search for a coarse parameter range based on random trial, experience and
message statistics. We then perform a grid search within a smaller hyperparameter space. Best
selections are shown in Figure 4 of the paper. For the other hyperparameters, we adopt the default
settings of QMIX. For the training, we use a machine with 8 Nvidia 1080Ti GPUs, Intel(R) Xeon(R)
CPU E5-2667 v4 at 3.20GHz, 32 cores. The training process takes from 12 to 30 hours.

1.3 TMC Performance with Different Hyperparameter

We test the impact of the weight λs (defined in equation 3) on the TMC performance in terms of
communication overhead and winning rate under different networking environments. We show the
results on 6h vs 8z and 6z vs 24zg, two most difficult scenarios in the SMAC evaluation, and similar
results are noticed for the other easy scenarios. We use different λs for the training, and record the
communication overhead and corresponding winning rates under different networking conditions.
All the other hyperparameters are kept the same as before. For 6h vs 8z, as depicted in Figure 1(a),
the communication overhead decreases as λs increases, this is because an increasing λs will reduce
the l2 distance between the consecutive messages, making more message transmission to be erased
according to communication protocol. In addition, λs = 3.0 gives the highest winning rate under all
the network conditions. Figure 1(b) also presents a similar trend, where λs = 2.0 produces the best
overall winning rate on 6z vs 64zg.

2

25

30

35

40

45

W
in

ni
ng

 r
at

e
(%

)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

C
om

m
un

ic
at

io
n

ov
er

he
ad

(a) Changing σ on 6h vs 8z

38

40

42

44

46

48

50

W
in

ni
ng

 r
at

e
(%

)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

C
om

m
un

ic
at

io
n

ov
er

he
ad

(b) Changing σ on 6z vs 64zg

Figure 2: (a) and (b) show the impact of adjusting the threshold σ on communication overhead
and the winning rates under different networking conditions on 6h vs 8z and 6z vs 24zg. All the
communication overheads are normalized by the communication overhead when σ = 0. For 6h vs 8z,
λs and λr are fixed at 3.0 and 0.4. For 6z vs 24zg, λs and λr are fixed at 2.0 and 0.5.

Next, we investigate the effect of the threshold σ of Algorithm 1 in the paper by applying different σ
during the training and fixing all the other hyperparameters. Figure 2 shows the results for 6h vs 8z
and 6z vs 24zg. The communication overhead decreases as σ grows for both scenarios, this is because
a greater σ will reduce the amount of transmitted messages from the sender agent, as indicated in the
communication protocol. For 6h vs 8z, although σ = 0.05 produces a slightly higher winning rate
than σ = 0.1, its communication overhead is 2× higher.

2 Trace Collection and Loss Modeling

In this section, we describe our trace collection procedure. Our experiment setup involves an IEEE
802.11ac Access Point (AP) and a pair of Raspberry Pi 3 models [1] which are used as intermediate
router, sender and receiver, respectively. Each Raspberry Pi device contains a Quad Core 1.2GHz
Broadcom BCM2837 64bit CPU, 1GB RAM, and 5GHz IEEE 802.11.b/g/n/ac wireless LAN. We
consider the indoor environment (indoor hallway) where obstacles are placed randomly between the
sender and receiver. This closely simulates the real environment because the agents usually work
under an environment with obstacles. Moreover, even if the environment is spacious and flat, the
wireless signal may also be blocked by the other agents in the team.

During experiment, the sender, AP and the receiver are placed in a line, where the AP is located at the
midpoint of the sender and receiver. The AP is measured to have a average bandwidth of 8.1Mbps. To
simulate the real network environment, we introduce artificial background traffic at AP to consume
the bandwidth between the sender and receiver. Therefore we can mock different network conditions
by adjusting the amount of background traffic. We then make the sender to transmit 100000 packets
to the receiver, each packet has a payload size of 50 bytes. Furthermore, each packet is labelled with
a sequence number, so that the receiver can identify the missing packets easily. The experiment is
carried out under three different network conditions with light, medium and heavy background traffic.
100 traces are collected under each network condition.

Suggested by [2], we compute the 95th percentiles of the loss run-length across all the traces under
each of the three network conditions, and use them as the number of states of the Markov model. We
then fit the traces of three network conditions to the Markov model, which produces three Markov
models, denoted as Mlight, Mmedium and Mheavy, respectively. We then apply these models to
simulate the loss between the agents. Average loss rate produced by the three models are 1.5%, 8.2%,
15.6%, respectively, which are reasonable for wireless loss [8, 9]. Assume each packet carries one
message, during execution, the Markov model will generate a binary stream, where ’1’ represents the
message is lost and vice versa.

3 PDFs on l2 Distance

Figure 3 depicts the pdf curves for the all the scenarios, all the plots indicate a similar tendency as
Figure 6 in the paper.

3

0 0.1 0.2 0.3 0.4 0.5

l2 distance

0

0.05

0.1

0.15

pd
f

 = 0.04

without smoothing
with smoothing
with smoothing inside ws

(a) pdf on 3s5z

0 0.1 0.2 0.3 0.4 0.5

l2 distance

0

0.05

0.1

0.15

pd
f

 = 0.03

without smoothing
with smoothing
with smoothing inside ws

(b) pdf on 3s vs 4z

0 0.2 0.4 0.6 0.8 1

l2 distance

0

0.05

0.1

pd
f

 = 0.25

without smoothing
with smoothing
with smoothing inside w

s

(c) pdf on 2c vs 64zg (d) pdf on 3s vs 5z

0 0.2 0.4 0.6 0.8 1
l2 distance

0

0.05

0.1

0.15

pd
f

 = 0.1

without smoothing
with smoothing
with smoothing inside ws

(e) pdf on 6h vs 8z

0 0.1 0.2 0.3 0.4 0.5

l2 distance

0

0.05

0.1

0.15

pd
f

 = 0.1

without smoothing
with smoothing
with smoothing inside ws

(f) pdf on 6z vs 24zg

Figure 3: pdf of l2 distance between the missing messages and the last delivered message.

References
[1] Raspberry pi website:. https://www.raspberrypi.org.

[2] M. Ellis, D. P. Pezaros, T. Kypraios, and C. Perkins. A two-level markov model for packet loss
in udp/ip-based real-time video applications targeting residential users. Computer Networks,
70:384–399, 2014.

[3] J. N. Foerster, C. A. S. de Witt, G. Farquhar, P. H. Torr, W. Boehmer, and S. Whiteson. Multi-
agent common knowledge reinforcement learning. arXiv preprint arXiv:1810.11702, 2018.

[4] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual multi-agent
policy gradients. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[5] P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and J. Wang. Multiagent bidirectionally-
coordinated nets: Emergence of human-level coordination in learning to play starcraft combat
games. arXiv preprint arXiv:1703.10069, 2017.

[6] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. Foerster, and S. Whiteson. Qmix:
Monotonic value function factorisation for deep multi-agent reinforcement learning. arXiv
preprint arXiv:1803.11485, 2018.

[7] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung,
P. H. S. Torr, J. Foerster, and S. Whiteson. The StarCraft Multi-Agent Challenge. CoRR,
abs/1902.04043, 2019.

[8] A. Sheth, S. Nedevschi, R. Patra, S. Surana, E. Brewer, and L. Subramanian. Packet loss
characterization in wifi-based long distance networks. In IEEE INFOCOM 2007-26th IEEE
International Conference on Computer Communications, pages 312–320. IEEE, 2007.

[9] G. Xylomenos and G. C. Polyzos. Tcp and udp performance over a wireless lan. In IEEE
INFOCOM’99. Conference on Computer Communications. Proceedings. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. The Future is Now
(Cat. No. 99CH36320), volume 2, pages 439–446. IEEE, 1999.

4

https://www.raspberrypi.org

[10] S. Q. Zhang, Q. Zhang, and J. Lin. Efficient communication in multi-agent reinforcement
learning via variance based control. arXiv preprint arXiv:1909.02682, 2019.

5

	SMAC Settings and Hyperparameters Descriptions
	StarCraft micromanagement challenges
	Hyperparameter for Training
	TMC Performance with Different Hyperparameter

	Trace Collection and Loss Modeling
	PDFs on l2 Distance

