
We thank the reviewers for their time and their feedback. The reviewers highlight the interest of our method and1

find both the model and the experiments interesting and different from the literature. Criticism is focused on one key2

question: how is this model different from a GP, in particular in the case of a local model. In the following we address3

this question, clarify the structure of our model further, and answer individual points the reviewers raised.4

(R1, R2, R3, R4 - Representation & Advantages to GPs) We propose a model which follows the flow: latent variables5

per unit->GP->weights and a local version of this which also includes a context variable as input to the GP. In the6

appendix, we explain that this model can be run per layer in two variants: either as a GP generating all weights in the7

network; per layer, with a per-layer kernel with individual kernel parameters and inducing points; or in a stacked fashion,8

where each layer’s weights depend on the outputs of the layer below. In our global model, the parametrization of kw9

uses “inducing weights”, the local model adds “inducing inputs” and makes the model distance-dependent. Depending10

on whether the model is used per layer, and whether the context variable is the input x or the previous layer-activations,11

the model will have quite different applications and (dis)-advantages. When comparing to a GP, the closest variant may12

be when utilizing the local model conditioned on input x at all layers. Consider this thought-example to prove they differ13

even in that case: our model can -for an identical kernel choice as a GP- learn dramatically different functions than a GP14

since it can simply ‘switch off’ kaux (i.e. with a large lengthscale which sets all entries in kaux to 1) and revert to the15

global model kw which only utilizes the inducing weights but ignores the influence of the input. A GP can only express16

functions induced by the input-kernel, whereas our model can revert to a parametrization that ignores the influence of17

the input on the weights. This becomes more evident when considering per-layer or stacked parametrizations that blend18

with the kw kernel. We will add an example of this to the appendix. As such, the influence of kaux is an additional19

modeling tool to help induce biases into the prior and allow inheritance of beneficial properties of GPs when useful.20

(R1, R2, R3, R4 - Experiments) We note that Deep Kernel Learning is a GP with a learned kernel that we compare to21

favorably. As per suggestions, we are adding comparisons to sparse GPs with RBF kernels to the supplement and will22

update Fig.16 (including notMNIST and fashionMNIST) to show the benefits of our model.23

(R1, R2, R3 - Scalability, Practicality) When used per layer, the complexity is O(|W | ∗M2 +M3) where |W | =24

number of weights in a layer, M = number of inducing weights so it will be O(|W |M2) in practice. Empirically we25

found that we only require a small M, especially in a per-layer parametrization. The model thus induces an overhead26

compared to a regular mean field BNN, but maintains scalability in terms of size of the model.27

(R1, R3, R4 - Global Model & Modeling Benefits) Another point of interest is what structure the latent-node28

parametrization of the global model induces and why this parametrization makes sense. Consider a per-layer kernel29

model, given samples z, the model is equivalent to a Matrix-Variate Normal weight model with components for weight30

columns and rows, parametrized by inducing weights. This has been shown to be useful in BNNs. Our global model31

adds two variations: (1) marginally over z, we have a mixture of matrix-variate Normal weight models as each ‘unit’32

can change and (2) we share components between adjacent layers by sharing the unit-samples z. This can be seen as33

tying together the matrix variate distributions at each layer. Our construction can be used on any network structure,34

utilize convolution or sparse graph NNs with no notion of layers, we leave elaborate such constructions to future work.35

(R2) Thanks for the helpful suggestions and comments. We will compare to ensembles in the next version.36

(R3) weight correlations: conditionally on latent samples z, weights are independent when using a diagonal approxi-37

mation. However, when z are marginalized out, correlations between all weights connected to a unit are still retained.38

We demonstrated this in Fig 11, App. G. block diagonal: Thanks for the suggestion. This is similar to the Partially39

Independent Training Conditional method in the GP literature. Our per-layer parametrizations are also moving in that40

direction and we intend to explore this suggestion further. Budget vs model size: our treatment of NNs is not focused41

so much on computational budget, as it is on capturing inductive biases and uncertainty which is about sample efficiency42

and robustness. Fig.15 DKL is actually not the best method, Fig 15 shows our model to perform best.43

(R4) GP-ness: We note that the GP predictions are different to that of the proposed method, e.g. for the dataset in Fig 4,44

the high-confidence regions for GPs are smaller. We also do not believe the GP-ness would hurt transfer learning in our45

formulation, but this goes beyond the scope and space we have in this paper. Evaluation: We provided some regression46

results on UCI in the appendix I.3, and we will add additional experiments on UCI and MNIST for some variants of47

our model and CIFAR-10 (last layer). We focus on the OOD setting since this is an advantage of our model and we48

compare against strong GP-baselines such as DKL. We’d love to see the community utilize some of the ideas regarding49

distance dependent weights demonstrated here in large scale applications down the line. Minor: f is an entire function.50

We take the function space view, which is now widely adopted in the sparse GP literature, w = f(z) + ε. Line 110: we51

used this kernel. For tasks with high dimensional inputs, an input warping can be used. Periodic Kernel: Thanks! It52

demonstrates that we can impose a controllable and non-trivial prior on weights, and periodicities in the past have been53

difficult to “cook into” NNs, see “Expressive priors in Bayesian neural networks” by Pearce et al. CKL: CKL is an54

exciting avenue to pursue in combination with our model to facilitate utilizing such rich priors for weight-based models.55


