A EM-algorithm to fit LDFA-H (Section 2)

Initialization Let $\hat{\theta}^{(0)} = \{\hat{\Sigma}_1^{(0)}, \ldots, \hat{\Sigma}_q^{(0)}, \hat{\Phi}_S^{(0)}, \hat{\Phi}_T^{(0)}, \hat{\Phi}_S^{(1,0)}, \hat{\Phi}_T^{(1,0)}, \hat{\beta}_1^{(0)}, \hat{\beta}_2^{(0)}, \hat{\mu}_1^{(0)}, \hat{\mu}_2^{(0)}\}$ be the initial parameter value. Since the MPLE objective function for LDFA-H given in Eq. (7) is not guaranteed convex, an EM-algorithm may find a local minimum according to a choice of the initial value. Hence a good initialization is crucial to a successful estimation. Here we suggest an initialization by a canonical correlation analysis (CCA).

Let $\{X^1[n], X^2[n]\}_{n=1, \ldots, N}$ be N simultaneously recorded pairs of neural time series. We can view them as NT recorded pairs of multivariate random vectors $\{X^1_{n:t}[n], X^2_{n:t}[n]\}_{(n,t)\in[N] \times [T]}$. We obtain $\hat{\beta}_1^{(0)}$ and $\hat{\beta}_2^{(0)}$ by CCA as follows:

$$\hat{\beta}_1^{(0)}, \hat{\beta}_2^{(0)} = \arg\max_{\beta_1 \in \mathbb{R}^p, \beta_2 \in \mathbb{R}^q} \frac{\beta_1^{T} S_{12} \beta_2}{\sqrt{\beta_1^{T} S_{11} \beta_1} \sqrt{\beta_2^{T} S_{22} \beta_2}}$$

(A.1)

where

$$S_{11} = \frac{1}{NT} \sum_{n,t} (X^1_{n:t}[n] - \frac{1}{NT} \sum_{n,t} X^1_{n:t}[n])(X^1_{n:t}[n] - \frac{1}{NT} \sum_{n,t} X^1_{n:t}[n])^{\top}$$

$$S_{22} = \frac{1}{NT} \sum_{n,t} (X^2_{n:t}[n] - \frac{1}{NT} \sum_{n,t} X^2_{n:t}[n])(X^2_{n:t}[n] - \frac{1}{NT} \sum_{n,t} X^2_{n:t}[n])^{\top}$$

$$S_{12} = \frac{1}{NT} \sum_{n,t} (X^1_{n:t}[n] - \frac{1}{NT} \sum_{n,t} X^1_{n:t}[n])(X^2_{n:t}[n] - \frac{1}{NT} \sum_{n,t} X^2_{n:t}[n])^{\top}$$

(A.2)

According to the equivalence between CCA and probabilistic CCA shown by A. Anonymous, it gives an estimate of the first latent factors

$$\hat{Z}_1^{k,(0)}[n] = \hat{\beta}_1^{k,(0)} X^k[n]$$

(A.3)

for $n = 1, \ldots, N$ and $k = 1, 2$. The initial second latent factors $\hat{Z}_2^{k,(0)}$ and the corresponding factor loading $\hat{\beta}_2^{k,(0)}$ is similarly set by the second pair of canonical variables, and so on. Then we assign the empirical covariance matrix of $\{\hat{Z}_f^{1,(0)}[n], \hat{Z}_f^{2,(0)}[n]\}_{n\in[N]}$ to the initial latent covariance matrix $\hat{\Sigma}_f^{(0)}$ for $f = 1, \ldots, q$ and the matrix-variate normal estimate on $\{\hat{Z}^{k,(0)}[n] := X^k[n] - \hat{\beta}^{k,(0)} \hat{Z}^{k,(0)}[n]\}_{n\in[N]}$ to $\hat{\Phi}_T^{(k,0)}$ and $\hat{\Phi}_S^{(k,0)}$ for $k = 1, 2$. Along $\hat{\mu}^{k,(0)} := \frac{1}{N} \sum_{n=1}^N X^k[n]$, the above parameters comprises the initial parameter set $\hat{\theta}^{(0)}$.

However, we cannot run an E-step on the above parameter set because $\hat{\Phi}_T^{(k,0)}$ is not invertible. We instead pick one of its unidentifiable parameter sets $\hat{\theta}^{(0),(a', a^2)}$, defined in Eq. (8), with all $\hat{\Phi}_T^{(k,0)}$'s and $\hat{\Sigma}_f^{(0)}$'s invertible. Specifically, we take

$$\alpha_f^k = \frac{1}{2} \lambda_{\text{min}} \left(\Sigma_f^{-1/2} \begin{bmatrix} \Phi_T^1 & 0 \\ 0 & \Phi_T^2 \end{bmatrix}^{-1} \Sigma_f^{-1/2} \right)$$

(A.4)

for $f = 1, \ldots, q$ and $k = 1, 2$ where $\lambda_{\text{min}}(A)$ is the smallest eigenvalue of symmetric matrix A. Henceforth, we note $\hat{\theta}^{(0),(a', a^2)}$ by $\hat{\theta}^{(0)}$. For $t = 1, 2, \ldots$, we iterate the following E-step and M-step until convergence.

Another promising initialization is by finding time (t, s) on which the canonical correlation between $X_{1,t}^1$ and $X_{2,s}^2$ maximizes. i.e., we initialize $\hat{\beta}_1^{1,(0)}$ and $\hat{\beta}_2^{2,(0)}$ by

$$\hat{\beta}_1^{1,(0)}, \hat{\beta}_1^{2,(0)} = \arg\max_{\beta_1 \in \mathbb{R}^p, \beta_2 \in \mathbb{R}^q} \frac{\beta_1^{T} S_{12}^{(t,s)} \beta_2}{\sqrt{\beta_1^{T} S_{11}^{(t,s)} \beta_1} \sqrt{\beta_2^{T} S_{22}^{(s,s)} \beta_2}}$$

such that $|t - s| < h_{\text{cross}}$. (A.5)
where
\[
S_{t,t}^{11} = \frac{1}{N} \sum_{n,t} (X_{t,t}^1[n] - \frac{1}{N} \sum_n X_{t,t}^1[n]) (X_{t,t}^1[n] - \frac{1}{N} \sum_n X_{t,t}^1[n])^\top
\]
\[
S_{s,s}^{22} = \frac{1}{N} \sum_{n,s} (X_{s,s}^2[n] - \frac{1}{N} \sum_n X_{s,s}^2[n]) (X_{s,s}^2[n] - \frac{1}{N} \sum_n X_{s,s}^2[n])^\top
\]
\[
S_{l,t}^{12} = \frac{1}{N} \sum_{n,t} (X_{t,t}^1[n] - \frac{1}{N} \sum_n X_{t,t}^1[n]) (X_{s,s}^2[n] - \frac{1}{N} \sum_n X_{s,s}^2[n])^\top
\]
for \((t, s) \in [T] \times [T]\). Then the other parameters are initialized as above. We can even take an ensemble approach in which we fit LDFA-H on different initialized values and pick the estimate with the minimum cost function (Eq. (9)).

Now, for \(r = 1, 2, \ldots\), we alternate an E-step and an M-step until the target parameter \(\Pi_f\) convergences.

E-step Given \(\hat{\theta} := \hat{\theta}^{(r-1)}\) from the previous iteration, the conditional distribution of latent factors \(Z^1[n]\) and \(Z^2[n]\) with respect to observed data \(X^1[n]\) and \(X^2[n]\) on trial \(n = 1, \ldots, N\) follows
\[
(Z^1_1[n]; Z^1_2[n]; \ldots; Z^2_q[n]) \mid X^1[n], X^2[n] \sim \text{MVN} \left(m^{(r)}_{Z|X}[n], V^{(r)}_{Z|X}[n] \right),
\]
where
\[
V^{(r)}_{Z|X} = \begin{pmatrix} V^{(r)}_{Z_1, Z_1|X} & \cdots & V^{(r)}_{Z_1, Z_q|X} \\ \vdots & \ddots & \vdots \\ V^{(r)}_{Z_q, Z_1|X} & \cdots & V^{(r)}_{Z_q, Z_q|X} \end{pmatrix}
\]
\[
m^{(r)}_{Z|X}[n] = \left(m^{(r)}_{Z_1'|X}; m^{(r)}_{Z_2'|X}; \ldots; m^{(r)}_{Z_q'|X} \right)
\]
\[
= V^{(r)}_{Z|X} \begin{pmatrix} \hat{\beta}_f^1 \hat{\Gamma}_S^1 X^1[n] \hat{\Gamma}_T^1 f \\ \vdots \\ \hat{\beta}_q \hat{\Gamma}_S^2 X^2[n] \hat{\Gamma}_T^2 f \end{pmatrix}
\]
given
\[
W^{(r)}_{Z_f, Z_g|X}[r] = \begin{pmatrix} \hat{\beta}_f \hat{\Gamma}_S^1 \hat{\beta}_g \hat{\Gamma}_S^1 \hat{\Gamma}_T^1 + \hat{\Pi}_f, & \hat{\Pi}_f \end{pmatrix} = \begin{cases} 1, & f = g \\ 0, & \text{o.w.} \end{cases}
\]
for \(f, g = 1, \ldots, q\).

M-step We find \(\hat{\theta}^{(r)}\) which maximize the conditional expectation of the penalized likelihood under the same constraints in Eq. (9), i.e.
\[
\hat{\theta}^{(r)} = \arg\min \frac{1}{N} \sum_{n=1}^N \mathbb{E}_{Z[n]|X[n], \hat{\theta}^{(r-1)}} \left[\log p(X^1[n], X^2[n], Z^1[n], Z^2[n]; \hat{\theta}^{(r-1)}) \right] \]
\[
+ \sum_{k, l=1}^2 \sum_{j=1}^2 \left\| \Lambda^k_l \circ \Pi^k_l \right\|_1 \quad \text{s.t.} \quad \hat{\Gamma}_T^k \text{ is } (2h_e^k + 1)\text{-diagonal}
\]
where \(p\) is the probability density function of our model in Eqs. (1), (4) and (5) and the expectation \(\mathbb{E}_{Z[n]|X[n], \hat{\theta}^{(r-1)}}\) follows the conditional distribution in Eq. (7). Taking a block coordinate descent approach, we solve the optimization problem by alternating M1 - M4.

M1: With respect to latent precision matrices \(\Omega_f\), Eq. (A.11) reduces to a graphical Lasso problem,
\[
\hat{\Omega}_f^{(r)} = \arg\min_{\Omega_f} \left\{ -\log \det(\Omega_f) + \text{tr} \left(\Omega_f \left(V^{(r)}_{Z_f|X} + \mathbb{E}[m^{(r)}_{Z_f|X} m^{(r)}_{Z_f|X}^\top] \right) \right) + \sum_{k, l=1}^2 \left\| \Lambda^k_l \circ \Pi^k_l \right\|_1 \right\}
\]
for each $f = 1, \ldots, q$ where $\hat{E}[m^{(r)}_{Z_{ij}^k} m^{(r)\top}_{Z_{js}^k}] = \frac{1}{N} \sum_{n=1}^{N} m^{(r)}_{Z_{ij}^k[n]} m^{(r)\top}_{Z_{js}^k[n]}$. The graphical Lasso problem is solved by the P-GLASSO algorithm by Mazumder et al. (2010).

M2: With respect to Γ^k, Eq. (A.11) reduces to an estimation of matrix-variate normal model (Zhou 2014). The estimation problem can be formulated as

$$\hat{\Gamma}^{k(r)}_S = \frac{1}{T} \left(\hat{E} \left[m^{(r)}_{e^k|x} m^{(r)\top}_{e^k|x} \right] + \sum_{f,g=1}^{q} \text{tr} \left(V^{(r)}_{z_f^k z_g^k|x} \beta_k^{(r)} \beta_k^{(r)}\top \right) \right) \quad \text{(A.13)}$$

and

$$\hat{\Gamma}^{k(r)}_T = \arg \min_{\Gamma_T} \left\{ -\log \det(\Gamma_T^k) + \frac{1}{p_k} \text{tr} \left(\Gamma_T^k \left(\sum_{f,g=1}^{q} (\beta_f^k \Gamma_S^k \beta_g^k) V^{(r)}_{z_f^k z_g^k|x} + \hat{E} \left[m^{(r)\top}_{e^k|x} \Gamma_S^k m^{(r)}_{e^k|x} \right] \right) \right) \right\} \quad \text{s.t. } \Gamma_T^k \text{ is } (2h_k^k + 1)\text{-diagonal} \quad \text{(A.14)}$$

for each $k = 1,2$ where $m^{(r)}_{e^k|x} = X^k - \beta^k m^{(r)}_{2^k|x} - \mu^k$ and $\hat{E}[A]$ is the empirical mean of a random matrix A. The estimation of $\hat{\Gamma}^k_T$ under the bandedness constraint is tractable with modified Cholesky factor decomposition approach with bandwidth h^k using the procedure by Bickel and Levina (2008).

M3: With respect to β^k, Eq. (A.11) reduces to a quadratic program

$$\hat{\beta}^{k(r)} = \arg \max_{\beta_k} \left\{ \sum_{t,s} \Gamma^k_{T,(t,s)} \text{tr} \left(\beta^k \Gamma_S^k \beta_k \left(V^{(r)}_{z_t^k z_s^k|x} + \hat{E} \left[m^{(r)}_{Z^k_{ts}|x} m^{(r)}_{Z^k_{ts}|x} \right] \right) \right) \right\}$$

$$- 2 \sum_{t,s} \Gamma^k_{T,(t,s)} \text{tr} \left(\Gamma_S^k \beta_k \hat{E} \left[m^{(r)}_{Z^k_{ts}|x} m^{(r)}_{Z^k_{ts}|x} \right] \right) \quad \text{(A.15)}$$

where $\Gamma^k_{T,(t,s)}$ is the (t, s) entry in Γ^k_T and $\hat{E}(A, B)$ is the empirical covariance matrix between random vectors A and B. The analytic form of the solution is given by

$$\beta^k = \left(\sum_{t,s} \Gamma^k_{T,(t,s)} \left(V^{(r)}_{z_t^k z_s^k|x} + \hat{E} \left[m^{(r)}_{Z^k_{ts}|x} m^{(r)}_{Z^k_{ts}|x} \right] \right) \right)^{-1} \left(\sum_{t,s} \Gamma^k_{T,(t,s)} \hat{E} \left[m^{(r)}_{Z^k_{ts}|x} m^{(r)}_{Z^k_{ts}|x} \right] \right)$$

$$\text{(A.16)}$$

M4: With respect to μ^k, it is straight-forward that Eq. (A.11) yields

$$\hat{\mu}^{k(r)} = \hat{E} \left[X^k - \sum_{f=1}^{q} \beta_f^k m^{(r)}_{Z_f^k|x} \right] .$$

B Simulation details (Section 3)

We simulated realistic data with known cross-region connectivity as follows. Simulating $q = 1$ pair of latent time-series Z^k from Equation (2), we introduced an exact ground-truth for the inverse cross-correlation matrix Π^{12} by setting:

$$\Pi_1 = \begin{bmatrix} (P^{11}_{1,0})^{-1} & 0 \\ 0 & (P^{22}_{1,0})^{-1} \end{bmatrix} + \begin{bmatrix} D^{11} & \Pi^{12} \end{bmatrix} \begin{bmatrix} \Pi^{12\top} & D^{22} \end{bmatrix} \quad \text{(B.1)}$$

where D^{1} and D^{2} are diagonal matrices with elements $D^{1}_{(t,t)} = \sum_s \Pi^{12}_{1,ts}$ and $D^{2}_{(s,s)} = \sum_t \Pi^{12}_{ts,1}$, which ensures that the matrix on the right hand side is positive definite. The matrix on the left hand side contains the auto-precision matrices of the two latent time series, with elements simulated from the squared exponential function:

$$P^{kk}_{1,0} = \exp \left(-e^k (t - s)^2 \right)_{t,s} + \lambda I_T, \quad \text{(B.2)}$$

with $c^1 = 0.105$ and $c^2 = 0.142$, chosen to match the observed LFPs auto-correlations in the experimental dataset (Section 3.2). We added the regularizer λI_T, $\lambda = 1$, to render P^{kk} invertible.
Figure C.1: Squared Frobenius norms of covariance matrix estimates, $\hat{\Sigma}_f$, for all factors $f = 1, \ldots, 10$. Notice that the amplitudes of the top four factors dominate the others.

We designed the true inverse cross-correlation matrix Π_{12} to induce lead-lag relationship between Z_1 and Z_2 in two epochs as depicted in the right-most panel of Fig. 2a. Specifically, the elements of Π_{12} were set:

$$\Pi_{12}(t,s) = \begin{cases} -r, & \text{where } Z_1^1, t \text{ and } Z_2^1, s \text{ partially correlate,} \\ 0, & \text{elsewhere} \end{cases}$$

(B.3)

where the association intensity $r = 0.6$ was chosen to match our cross-correlation estimate in the experimental data (Section 3.2). Finally, we rescaled $P_1 = \Pi_1^{-1}$ to have diagonal elements equal to one. The corresponding factor loading vector β_k^1 was randomly generated from standard multivariate normal distribution and then scaled to have $\|\beta_k^1\|_2 = 1$.

We generated the noise ϵ^k from the $N = 1000$ trials of the experimental data analyzed in Section 3.2. First, we permuted the trials in one region to remove cross-region correlations. Let $\{Y_1[n], Y_2[n]\}_{n=1,\ldots,N}$ be the permuted dataset. Then we contaminated the dataset with white noise to modulate the strength of noise correlation relative to cross-region correlations, i.e.

$$\epsilon^k_{i,t} = Y^k_{i,t} - \mu^k_{i,t} + \eta^k_{i,t} \text{ iid } \text{MVN}(0, \lambda_{\epsilon} \text{Cov}[Y^k_{i,t}]), \text{ and } \mu^k_{i,t} = \hat{E}[Y^k_{i,t}]$$

(B.4)

where $\hat{E}[Y^k_{i,t}]$ and $\hat{\text{Cov}}[Y^k_{i,t}]$ wer the empirical mean and covariance matrix of $Y^k_{i,t}$, respectively, for $k = 1, 2, t = 1, \ldots, T$. The noise auto-correlation level was modulated by $\lambda_{\epsilon} \in \{2.78, 1.78, 0.44, 0.11\}$. We also obtained Σ_1 by scaling P_1 so that $\Sigma_{kk} = \beta_k^1 S_k^k \beta_k^1$. Putting all the pieces together, we generated observed time series by Eq. (1).

C Experimental data analysis details (Section 3.2)

The strength of each factor, which is characterized by Σ_f, is shown in Fig. C.1. We also examined an alternative definition of information flow, using non-stationary regression in the spirit of Granger causality. For the latent factor f in V4 at time t, we use partial R^2, effectively comparing the full regression model using the full history of latent variables in both area, $Z_{1,1:t-1}^f$, with the reduced model using history of latent variables in V4 only, $Z_{1,1:t-1}^f$.

$$Z_{1,1:t}^f \sim Z_{1,1:t-1}^f + Z_{2,1:t-1}^f$$

with the reduced model using history of latent variables in V4 only,

$$Z_{1,1:t}^f \sim Z_{1,1:t-1}^f$$

The partial R^2 for $Z_{1,1:t}^f$ on $Z_{2,1:t-1}^f$ given $Z_{1,1:t-1}^f$ summarizes the contribution of PFC history to V4, after taking account of the autocorrelation in V4, and thus can be viewed as information flow from V4 to PFC at time t. Dynamic information flow from V4 to PFC is defined similarly. The results shown in Fig. C.2 are consistent with those in Fig. 5d.
Figure C.2: **Information flow by partial R^2 for the top three factors.** In this figure, we characterize dynamic information flow in terms of partial R^2. We show dynamic information flow from $V4 \rightarrow PFC$ (blue) and $PFC \rightarrow V4$ (orange). The results in the first panel are consistent with those in the first panel of Fig. 5d.