
A Deriving the posterior distributions for the auxiliary variables

In this section, we derive Equation (3) presented in the main text, and show how this general result
can be applied to the case where z and all aks are selected to be Gaussian, and f(a1:K) =

PK
k=1 ak,

and show a simple scheme to implement the proposed auxiliary variable method in practice.

A.1 Deriving the q(a1:k)s - general case

Here we show that the form of the auxiliary posterior q(a1:k) presented in Equation (3) is the only
suitable choice such that the KL divergence remains unchanged. Concretely, fix f and the auxiliary
coding distributions p(ak |a1:k�1) for k 2 {1, . . . ,K}. Now, we want to find q(a1:K) such that the
condition

KL [q(a1:K) || p(a1:K)] = KL [q(z) || p(z)] (4)

is satisfied. Observe that
KL [q(z,a1:K) || p(z,a1:K)] = KL [q(z) || p(z)] + KL [q(a1:K | z) || p(a1:K | z)]

= KL [q(a1:K) || p(a1:K)] + KL [q(z |a1:K) || p(z |a1:K)] ,
(5)

where the two equalities follow from breaking up the joint KL using the chain rule of relative
entropies in two different ways. Notice, that since z = f(a1:K) is a deterministic relationship,
q(z |a1:K) = p(z |a1:K) = � (f(a1:K)� z). Hence, we have KL [q(z |a1:K) || p(z |a1:K)] = 0.
Using this fact to simplify Eq 5, we get

KL [q(z) || p(z)] + KL [q(a1:K | z) || p(a1:K | z)] = KL [q(a1:K) || p(a1:K)] . (6)

We see that our original condition in Eq 4 for the auxiliary targets is satisfied when
KL [q(a1:K | z) || p(a1:K | z)] = 0. Applying the chain rule of relative entropies K times, the
condition can be rewritten as

KL [q(a1:K | z) || p(a1:K | z)] =
KX

k=1

KL [q(ak |a1:k�1, z) || p(ak |a1:k�1, z)] = 0. (7)

Due to the non-negativity of relative entropy, the above is satisfied if and only if
KL [q(ak |a1:k�1, z) || p(ak |a1:k�1, z)] = 0 8 k 2 {1, . . . ,K}. This further implies, that

q(ak |a1:k�1, z) = p(ak |a1:k�1, z) as well as q(a1:k | z) = p(a1:k | z) (8)

for all k 2 {1, . . . ,K}. Now, fix k. Then, we have

q(a1:k) =

Z
q(a1:k | z)q(z)dz

=

Z
p(a1:k | z)q(z)dz

(9)

by Eq 8, as required.

A.2 An iterative scheme

A simple way to directly implement an auxiliary variable coding scheme described in Section 3.1.1 is
to draw samples sequentially from the conditional auxiliary targets q(ak |a1:k�1). Here, we note the
following pair recursive relationships:

q(ak |a1:k�1) =

Z
q(ak |a1:k�1, z)q(z |a1:k�1)dz

=

Z
p(ak |a1:k�1, z)q(z |a1:k�1)dz

q(z |a1:k) =
q(z,ak |a1:k�1)

q(ak |a1:k�1)
=

p(ak |a1:k�1, z)q(z |a1:k�1)

q(ak |a1:k�1)
,

(10)

where the second equality in both identities follows from Eq 8. We can therefore proceed to
sequentially encode the aks using Algorithm 1.

12

Algorithm 1: Simple sequential auxiliary coding scheme. The iREC(·, ·) function performs
index coding as described in Section 3.1.
Data: q(z), p(ak |a1:k�1) 8k 2 {1, . . . ,K}

Result: S = (i1, . . . , iK)
S ()
q0(z) q(z)
for k 1 to K do

q(ak |a1:k�1)
R
p(ak |a1:k�1, z)qk�1(z)dz

ik,ak iREC(q(ak |a1:k�1), p(ak |a1:k�1))
Append ik to S

qk(z)
p(ak | a1:k�1,z)qk�1(z)

q(ak | a1:k�1)

A.3 The independent Gaussian sum case

In this section we derive the form of the auxiliary coding targets q(ak |a1:k�1) and the conditionals
q(z |ak) in the case when ak are all independent and Gaussian distributed, and z = f(a1:K) =PK

k=1 ak. We only derive the result in the univariate case, extending to the diagonal covariance case
is straight forward. However, to keep notation consistent with the rest of the paper, only in this section
we will keep using the boldface symbols to denote the random quantities and their realizations.

First, let p(ak) = N
�
ak |µk,�

2
k

�
. Now, define bk =

Pk
i=1 ai, mk =

PK
i=K�k+1 µi and s

2
k =

PK
i=K�k+1 �

2
k. Then, since z =

PK
k=1 ak, using the formula for the conditional distribution of sums

of Gaussian random variables9, we get

p(ak |a1:k�1, z) = N

ak

����� µk + (z� bk�1 �mk�1)
�
2
k

s
2
k

,
s
2
k+1�

2
k

s
2
k

!
. (11)

Assume that we have already calculated q(z |a1:k�1) = N
�
z | ⌫k�1, ⇢

2
k�1

�
. From here, we notice

that by Eq 10, both quantities of interest are products and integrals of Gaussian densities, and hence
after some algebraic manipulation, we get

q(ak |a1:k�1) = N

ak

����� µk + (⌫k�1 � bk�1 �mk�1)
�
2
k

s
2
k

,
s
2
k+1�

2
k

s
2
k

+ ⇢
2
k�1

�
4
k

s
4
k

!
, (12)

and

q(z |a1:k) = N

z

�����
(ak � µk)⇢2k�1s

2
k + (bk�1 +mk�1)�2

k⇢
2
k�1 + ⌫k�1s

2
k+1s

2
k

�
2
k⇢

2
k�1 + s

2
ks

2
k+1

,
⇢
2
k�1s

2
ks

2
k+1

�
2
k⇢

2
k�1 + s

2
ks

2
k+1

!
.

(13)

Given the above two formulae, both the simple iterative scheme presented in the previous section as
well as the beam search algorithm presented in the main text can be readily implemented.

B Hyperparameter Experiments for Beam Search

Our lossless compression approach has three hyperparameters: ⌦, ✏ and B. We tuned these on a small
validation set of 10 images from ImageNet32 by sweeping them, and measuring the performance.
The codelength can get arbitrarly close to the ELBO, but it requires a significant computational cost.
We try to find a good balance between the codelength and the computational cost.

Figure 4 shows the parameter combinations that we tested. We plot 4 metrics:
9For Gaussian random variables X, Y with means µx, µy and variances �2

x, �2
y and Z = X + Y , p(x|z) is

normally distributed with mean µx + (z � µx � µy)
�2

x
�2

x+�2
y

and variance
�2

x�2
y

�2
x+�2

y

13

• 1st row: Overhead in number of bits required compared to the ELBO. A value of 0.2
corresponds to 20% overhead over the ELBO in codelength.

• 2nd row: Time it takes to run the method in seconds.

• 3rd row: Residual overhead. The overhead in codelength when only looking at the residual.
This helps to estimate the bias in the samples, since if there is no bias, this overhead should
be 0.

• 4th row: For how many out of the 10 validation images did the method crash. Every crash
was cause by memory overflow.

Figure 5 depicts the same data, but plotted in two dimensions: overhead vs time.

C Auxiliary variables

We plotted the 23rd layer of the RVAE in the main paper to demonstrate how the auxiliary variables
are able to break up the latent variables such that their relative entropies are close to ⌦. Here we
include all 24 layers (Figure 6).

D Additional Information on the Setup of Lossy Experiments

We used an appropriately modified version of the architecture proposed by Ballé et al. (2018).
Concretely, we swapped all latent distributions for Gaussians, and made the encoder and decoder
networks two-headed on the appropriate layers to provide both a mean and log-standard deviation
prediction for the latent distributions. For a depiction of our architecture, see Figure 7.

During training, we inferred the parameters of the hyperprior as well (Empirical Bayes). We trained
every model on the CLIC 2018 dataset for 2⇥ 105 iterations with a batch size of 8 image patches. As
done in Ballé et al. (2018), the patches were 256⇥ 256 and were randomly cropped from the training
images. As the dataset is curated for lossy image compression tasks, we performed no further data
preprocessing or augmentation. We found that annealing the KL divergence in the beginning (also
known as warm-up) did not yield a significant performance increase.

E Additional Lossy Compression Results

In this section we present some additional results that clarify the current shortcomings of iREC and
better illustrate its performance on individual images.

First, we present an extended version of Figure 3 from the main text in Figure 8.

14

Figure 4: Hyperparameters for lossless compression. ⌦ is referred as ‘KL_per_partition’, ✏ is referred
as ‘extra_samples’ and B is referred as ‘n_beams’. (On a computer, zoom in to see precise figures)

15

Figure 5: Pareto frontier of the hyperparameters.

(a) Performance on PSNR. (b) Performance on MS-SSIM.

Figure 8: Comparison of REC against classical methods such as JPEG, JPEG 2000 (OpenJPEG),
BPG and competing ML-based methods. MS-SSIM comparisons are in decibels, calculated using the
formula �10 log10(1�MS-SSIM).

16

E.1 Actual vs Ideal Performance Comparison

Since iREC is based on importance sampling, the posterior sample it returns will be slightly biased,
which affects the distortion of the reconstruction. Furthermore, since it might require setting the
oversampling rate ✏ > 0 in some cases, as well as having to communicate some minimal additional
side information, the codelength will also be slightly higher than the theoretical lower bound.

We quantify these discrepancies through visualizing actual and ideal aggregate rate-distortion curves
on the Kodak dataset in Figure 9. Concretely, we calculate the actual performance as in the main
text, i.e. the bits per pixel are simply calculated from the compressed file size, and the distortion
is calculated using the slightly biased sample given by iREC. The ideal bits per pixel is calculated
by dividing the KL [q(z |x) || p(z)] by the number of pixels, and the ideal distortion is calculated
using a sample drawn from q(z |x).

As we can see, the distortion gap increases in low-distortion regimes. This is unsurprising, since
a low-distortion model’s decoder will be more sensitive to biased samples. Interestingly, the ideal
performance of our model matches the performance of the method of Ballé et al. (2018), even though
they used a much more flexible non-parametric hyperprior and their priors and posteriors were picked
to suit image compression. On the other hand, our model only used diagonal Gaussian distributions
everywhere.

(a) Performance on PSNR. (b) Performance on MS-SSIM.

Figure 9: Actual vs Ideal Performance Comparison

E.2 Performance Comparisons on Individual Kodak Images

Aggregate rate-distortion curves can only serve as a way to compare competing methods, and cannot
be used to assess absolute method performance. To address this, we present performance comparisons
on individual Kodak images juxtaposed with the images and their reconstructions.

17

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

2

4

6

8

(a) Layer 1

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

10

20

30

(b) Layer 2

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

10

20

(c) Layer 3

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.00

0.25

0.50

0.75

1.00

(d) Layer 4

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.00

0.25

0.50

0.75

1.00

(e) Layer 5

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

10

20

30

40

(f) Layer 6

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.00

0.25

0.50

0.75

1.00

(g) Layer 7

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.00

0.25

0.50

0.75

1.00

(h) Layer 8

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

2

4

6

(i) Layer 9

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

10

20

30

(j) Layer 10

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

5

10

15

20

(k) Layer 11

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.00

0.25

0.50

0.75

1.00

(l) Layer 12

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.00

0.25

0.50

0.75

1.00

(m) Layer 13

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.00

0.25

0.50

0.75

1.00

(n) Layer 14

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.0

2.5

5.0

7.5

10.0

(o) Layer 15

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.00

0.25

0.50

0.75

1.00

(p) Layer 16

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.00

0.25

0.50

0.75

1.00

(q) Layer 17

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

5

10

(r) Layer 18

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

20

40

60

80

(s) Layer 19

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

10

20

(t) Layer 20

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

2

4

6

8

(u) Layer 21

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.00

0.25

0.50

0.75

1.00

(v) Layer 22

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0

100

200

(w) Layer 23

0 1 2 � 4

KL [q(ak|a1:k�1)||p(ak)]

0.00

0.25

0.50

0.75

1.00

(x) Layer 24

Figure 6: Histograms of the relative entropies of the auxiliary variables in a 24 layer RVAE.

18

Figure 7: PLN network architecture. The blocks signal data transformations, the arrows signal the
flow of information. Block descriptions: Conv2D: 2D convolutions along the spatial dimensions,
where the W ⇥H ⇥ C/S implies a W ⇥H convolution kernel, with C target channels and S gives
the downsampling rate (given a preceding letter “d”) or the upsampling rate (given a preceding letter
“u”). If the slash is missing, it means that there is no up/downsampling. All convolutions operate
in same mode with zero-padding. GDN / IGDN: these are the non-linearities described in Ballé et
al. (2016a). Leaky ReLU: elementwise non-linearity defined as max{x,↵x}, where we set ↵ = 0.2.
Sigmoid: Elementwise non-linearity defined as 1

1+exp{�x} .

19

(a) MS-SSIM rate-distortion curve for Kodak image 1. (b) PSNR rate-distortion curve for Kodak image 1.

(c) Kodak image 1: Original (d) Kodak image 1: Reconstruction using model trained
with � = 0.01

20

(a) MS-SSIM rate-distortion curve for Kodak image 2. (b) PSNR rate-distortion curve for Kodak image 2.

(c) Kodak image 2: Original (d) Kodak image 2: Reconstruction using model trained
with � = 0.01

21

(a) MS-SSIM rate-distortion curve for Kodak image 3. (b) PSNR rate-distortion curve for Kodak image 3.

(c) Kodak image 3: Original (d) Kodak image 3: Reconstruction using model trained
with � = 0.01

22

(a) MS-SSIM rate-distortion curve for Kodak image 4. (b) PSNR rate-distortion curve for Kodak image 4.

(c) Kodak image 4: Original (d) Kodak image 4: Reconstruction using model trained
with � = 0.01

23

(a) MS-SSIM rate-distortion curve for Kodak image 5. (b) PSNR rate-distortion curve for Kodak image 5.

(c) Kodak image 5: Original (d) Kodak image 5: Reconstruction using model trained
with � = 0.01

24

(a) MS-SSIM rate-distortion curve for Kodak image 6. (b) PSNR rate-distortion curve for Kodak image 6.

(c) Kodak image 6: Original (d) Kodak image 6: Reconstruction using model trained
with � = 0.01

25

(a) MS-SSIM rate-distortion curve for Kodak image 7. (b) PSNR rate-distortion curve for Kodak image 7.

(c) Kodak image 7: Original (d) Kodak image 7: Reconstruction using model trained
with � = 0.01

26

(a) MS-SSIM rate-distortion curve for Kodak image 8. (b) PSNR rate-distortion curve for Kodak image 8.

(c) Kodak image 8: Original (d) Kodak image 8: Reconstruction using model trained
with � = 0.01

27

(a) MS-SSIM rate-distortion curve for Kodak image 9. (b) PSNR rate-distortion curve for Kodak image 9.

(c) Kodak image 9: Original (d) Kodak image 9: Reconstruction using model trained
with � = 0.01

28

(a) MS-SSIM rate-distortion curve for Kodak image
10.

(b) PSNR rate-distortion curve for Kodak image 10.

(c) Kodak image 10: Original (d) Kodak image 10: Reconstruction using model
trained with � = 0.01

29

(a) MS-SSIM rate-distortion curve for Kodak image
11.

(b) PSNR rate-distortion curve for Kodak image 11.

(c) Kodak image 11: Original (d) Kodak image 11: Reconstruction using model
trained with � = 0.01

30

(a) MS-SSIM rate-distortion curve for Kodak image
12.

(b) PSNR rate-distortion curve for Kodak image 12.

(c) Kodak image 12: Original (d) Kodak image 12: Reconstruction using model
trained with � = 0.01

31

(a) MS-SSIM rate-distortion curve for Kodak image
13.

(b) PSNR rate-distortion curve for Kodak image 13.

(c) Kodak image 13: Original (d) Kodak image 13: Reconstruction using model
trained with � = 0.01

32

(a) MS-SSIM rate-distortion curve for Kodak image
14.

(b) PSNR rate-distortion curve for Kodak image 14.

(c) Kodak image 14: Original (d) Kodak image 14: Reconstruction using model
trained with � = 0.01

33

(a) MS-SSIM rate-distortion curve for Kodak image
15.

(b) PSNR rate-distortion curve for Kodak image 15.

(c) Kodak image 15: Original (d) Kodak image 15: Reconstruction using model
trained with � = 0.01

34

(a) MS-SSIM rate-distortion curve for Kodak image
16.

(b) PSNR rate-distortion curve for Kodak image 16.

(c) Kodak image 16: Original (d) Kodak image 16: Reconstruction using model
trained with � = 0.01

35

(a) MS-SSIM rate-distortion curve for Kodak image
17.

(b) PSNR rate-distortion curve for Kodak image 17.

(c) Kodak image 17: Original (d) Kodak image 17: Reconstruction using model
trained with � = 0.01

36

(a) MS-SSIM rate-distortion curve for Kodak image
18.

(b) PSNR rate-distortion curve for Kodak image 18.

(c) Kodak image 18: Original (d) Kodak image 18: Reconstruction using model
trained with � = 0.01

37

(a) MS-SSIM rate-distortion curve for Kodak image
19.

(b) PSNR rate-distortion curve for Kodak image 19.

(c) Kodak image 19: Original (d) Kodak image 19: Reconstruction using model
trained with � = 0.01

38

(a) MS-SSIM rate-distortion curve for Kodak image
20.

(b) PSNR rate-distortion curve for Kodak image 20.

(c) Kodak image 20: Original (d) Kodak image 20: Reconstruction using model
trained with � = 0.01

39

(a) MS-SSIM rate-distortion curve for Kodak image
21.

(b) PSNR rate-distortion curve for Kodak image 21.

(c) Kodak image 21: Original (d) Kodak image 21: Reconstruction using model
trained with � = 0.01

40

(a) MS-SSIM rate-distortion curve for Kodak image
22.

(b) PSNR rate-distortion curve for Kodak image 22.

(c) Kodak image 22: Original (d) Kodak image 22: Reconstruction using model
trained with � = 0.01

41

(a) MS-SSIM rate-distortion curve for Kodak image
23.

(b) PSNR rate-distortion curve for Kodak image 23.

(c) Kodak image 23: Original (d) Kodak image 23: Reconstruction using model
trained with � = 0.01

42

(a) MS-SSIM rate-distortion curve for Kodak image
24.

(b) PSNR rate-distortion curve for Kodak image 24.

(c) Kodak image 24: Original (d) Kodak image 24: Reconstruction using model
trained with � = 0.01

43

