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Appendix A Properties of (L0, L1)-smooth functions1

In this section, we prove some important properties of (L0, L1)-smooth functions. These properties2

will be frequently used in subsequent sections.3

We first present a basic lemma without proof.4

Lemma A.1 (Grönwall’s inequality) [Gronwall, 1919] Let I = [a, b] denote an interval of the real5

line with a < b. Let f, g, h be continuous real-valued functions defined on I . Assume g is non-6

decreasing, h is non-negative, and the negative part of g is integrable on every closed and bounded7

subinterval of I .If8

f(t) ≤ g(t) +

∫ t

a

h(s)f(s)ds, ∀t ∈ I, (1)

then9

f(t) ≤ g(t) exp

(∫ t

a

h(s)ds

)
, ∀t ∈ I. (2)

The following result, Lemma A.2 , is a generalization of Lemma 9 in Zhang et al. [2020].10

Lemma A.2 Let F be (L0, L1)-smooth, and c > 0 be a constant. Given x, for any x+ such that11

‖x+ − x‖ ≤ c/L1, we have ‖∇f (x+)‖ ≤ ec
(

cL0

L1
+ ‖∇F (x)‖

)
.12

Proof: Let γ(t) be defined as γ(t) = t(x+ − x) + x, t ∈ [0, 1], then we have

∇F (γ(t)) =

∫ t

0

∇2F (γ(τ))
(
x+ − x

)
dτ +∇F (γ(0))

We then bound the norm of ∇F (γ(t)):13

‖∇F (γ(t))‖ ≤
∫ t

0

‖∇2F (γ(τ))
(
x+ − x

)
‖dτ + ‖∇F (γ(0))‖ (3)

≤
∥∥x+ − x

∥∥∫ t

0

∥∥∇2F (γ(τ))
∥∥dτ + ‖∇F (x)‖ (4)

≤ c

L1

∫ t

0

(L0 + L1‖∇F (γ(τ))‖) dτ + ‖∇F (x)‖ (5)

The first inequality uses the triangular inequality of 2-norm; The second inequality uses the property14

of spectral norm; The third inequality uses the definition of (L0, L1)-smoothness. By applying the15

Grönwalls inequality we get16

‖∇F (γ(t))‖ ≤
(
L0

L1
ct+ ‖∇F (x)‖

)
exp(ct) (6)
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The Lemma follows by setting t = 1. □17

Now we are able to prove a descent inequality, which is similar to the descent inequality for L-18

smooth functions. In fact, if a function F is L-smooth, it is well-known that for any x, y, we have19

20

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ L

2
‖y − x‖2

21

Lemma A.3 (Descent Inequality) Let F be (L0, L1)-smooth, and c > 0 be a constant. For any xk22

and xk+1, as long as ‖xk − xk+1‖ ≤ c/L1, we have23

F (xk+1) ≤ F (xk) + 〈∇F (xk) , xk+1 − xk〉+
AL0 +BL1 ‖∇F (xk)‖

2
‖xk+1 − xk‖2 (7)

where A = 1 + ec − ec−1
c , B = ec−1

c .24

Proof: Let γ(t) be defined as γ(t) = t(xk+1 − xk) + xk, t ∈ [0, 1]. The following derivation25

uses Taylor’s theorem (in (8)), then uses triangular inequality, Cauchy-Schwarz inequality and the26

property of spectral norm (in (9)):27

F (xk+1) ≤ F (xk) + 〈∇F (xk) , xk+1 − xk〉+
∫ 1

0

(xk+1 − xk)
T∇2F (γ(t))(xk+1 − γ(t))dt

(8)

≤ F (xk) + 〈∇F (xk) , xk+1 − xk〉+
∫ 1

0

‖(xk+1 − xk)‖‖∇2F (γ(t))‖‖xk+1 − γ(t)‖dt

(9)

= F (xk) + 〈∇F (xk) , xk+1 − xk〉+
‖xk+1 − xk‖2

2

∫ 1

0

∥∥∇2F (γ(t))
∥∥ dt (10)

Then we use (L0, L1)-smoothness and (6) to bound
∥∥∇2F (γ(t))

∥∥:28 ∥∥∇2F (γ(t))
∥∥ ≤ L0 + L1 ‖∇F (γ(t))‖

≤ L0 + L1

(
L0

L1
ct+ ‖∇F (xk)‖

)
exp(ct)

(11)

Taking integration we get29 ∫ 1

0

∥∥∇2F (γ(t))
∥∥dt ≤ L0

(
1 + ec − ec − 1

c

)
+

ec − 1

c
L1‖∇F (xk)‖ (12)

Substituting (12) into (10) concludes the proof. □30

Corollary A.4 Let F be (L0, L1)-smooth, and c > 0 be a constant. For any xk and xk+1, as long31

as ‖xk − xk+1‖ ≤ c/L1, we have32

‖∇F (xk+1)−∇F (xk)‖ ≤ (AL0 +BL1 ‖∇F (xk)‖) ‖xk+1 − xk‖ (13)

where A = 1 + ec − ec−1
c , B = ec−1

c .33

Proof:

‖∇F (xk)−∇F (xk − 1)‖ =
∥∥∥∥∫ 1

0

∇2F (txk−1 + (1− t)xk)(xk − xk−1)dt

∥∥∥∥
≤
∫ 1

0

‖∇2F (txk−1 + (1− txk)‖‖xk − xk−1‖dt
(14)

Using (12) leads to the results. □34

Finally we prove a result which provides a way to upper-bound the gradient norm. A similar result35

for L-smooth functions is the following: if F is L-smooth, then for any x, we have36

‖∇F (x)‖2 ≤ 2L

(
F (x)− inf

y∈Rd
F (y)

)
37
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Lemma A.5 (Bounding the gradient norm) Let F (x) be an (L0, L1)-smooth function, and F ∗ be38

the optimal value. Then for any x0, we have39

min

(
‖∇F (x0)‖

L1
,
‖∇F (x0)‖2

L0

)
≤ 8(F (x0)− F ∗) (15)

Proof: Define the constant c = L1∥∇F (x0)∥
AL0+BL1∥∇F (x0)∥ and A = 1 + ec − ec−1

c , B = ec−1
c . It is easy40

to see that such 0 ≤ c < 1 exists. Let λ = 1
AL0+BL1∥∇F (x0)∥ and x = x0 − λ∇F (x0). Then41

‖x− x0‖ ≤ c/L1. By the descent inequality we have42

F ∗ ≤ F (x) ≤ F (x0)− λ‖∇F (x0)‖2 +
AL0 +BL1‖∇F (x0)‖

2
λ2‖∇F (x0)‖2

= F (x0)−
1

2
λ‖∇F (x0)‖2

(16)

If ‖∇F (x)‖ ≥ AL0

BL1
, then43

F (x0)− F ∗ ≥ ‖∇F (x0)‖

2
(

AL0

∥∇F (x0)∥ +BL1

) ≥ ‖∇F (x0)‖
4BL1

≥ ‖∇F (x0)‖
8L1

(17)

If ‖∇F (x)‖ < AL0

BL1
, then44

F (x0)− F ∗ ≥ 1

2
λ‖∇F (x0)‖2 ≥

‖∇F (x0)‖2

4AL0
≥ ‖∇F (x0)‖2

8L0

(18)

□45

A.1 Relaxation of (L0, L1)-smoothness (Remark 2.3)46

The original definition of (L0, L1)-smoothness requires the function to be twice-differentiable. Un-47

der this definition, (L0, L1)-smoothness is actually not weaker than L-smoothness, which only re-48

quires the function to be continuous differentiable. In this section we prove that the alternative49

definition provided in Remark 2.3 is sufficient for all the results in this paper.50

Now, suppose that there exists K0,K1 > 0 such that for all x, y ∈ Rd, if ‖x− y‖ ≤ 1
K1

, then51

‖∇F (x)−∇F (y)‖ ≤ (K0 +K1‖∇F (y)‖)‖x− y‖ (19)

We check that Lemma A.2 and A.3 still holds under the new assumption (with L0, L1 replaced by52

K0,K1, up to numerical constants) We immediately obtain from (19) above that53

‖∇F (x)‖ ≤ 2‖∇F (y)‖+ K0

K1
(20)

which is of the same form as Lemma A.2. Next, we have54

F (y)− F (x)− 〈y − x,∇F (x)〉

=

∫ 1

0

〈∇F (θy + (1− θ)x)−∇F (x), x− y〉 dθ

≤
∫ 1

0

(
K0θ‖x− y‖2 +K1θ‖x− y‖2‖∇F (x)‖

)
dθ

≤ K0 +K1‖∇F (x)‖
2

‖x− y‖2

(21)

which is of the same form as Lemma A.3.55

Since all the other results are established on the basis of these two lemmas, we can see that the56

conclusion still holds under (19).57
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Appendix B Proof of Theorems58

We first prove the deterministic case (Theorem 3.1), then generalize the result to stochastic case59

(Theorem 3.2). In deterministic case we can use fewer notations, which will make the proof more60

readable and elegant. The proof in stochastic case will rely on all the techniques used in the deter-61

ministic case, as well as some new methods.62

B.1 Proof of Theorem 3.163

To simplify the notation, we write the update formula as64

m+ = βm+ (1− β)∇F (x)

x+ = x−
(
νmin

(
η,

γ

‖m+‖

)
m+ + (1− ν)min

(
η,

γ

‖∇F (x)‖

)
∇F (x)

)
(22)

when analyzing a single iteration. The error between m+ and ∇F (x) is denoted as δ = m+ −65

∇F (x). Suppose γ ≤ c/L1 for some constant c, and we denote A = 1+ ec − ec−1
c and B = ec−1

c ,66

just the same as in the descent inequality (Lemma A.3).67

Lemma B.1 Let µ ≥ 0 be a real constant. For any vector u and v,68

−〈u, v〉
‖v‖

≤ −µ‖u‖ − (1− µ)‖v‖+ (1 + µ)‖v − u‖ (23)

Proof:
−〈u, v〉
‖v‖

= −‖v‖+ 〈v − u, v〉
‖v‖

≤ −‖v‖+ ‖v − u‖
≤ −‖v‖+ ‖v − u‖+ µ(‖v − u‖+ ‖v‖ − ‖u‖)
= −µ‖u‖ − (1− µ)‖v‖+ (1 + µ)‖v − u‖

□69

To prove the theorem, we will construct an energy function and explore the decreasing property of70

this function. We define the energy function G(x,m) to be71

G(x,m) = F (x) +
νβ

2(1− β)
min

(
η‖m‖2, γ‖m‖

)
(24)

and analyze G(x+,m+)−G(x,m). We first bound min
(
η‖m+‖2, γ‖m+‖

)
−min

(
η‖m‖2, γ‖m‖

)
.72

Lemma B.2 For any momentum vectors m and m+ = βm+(1−β)∇F (x), let δ = m+−∇F (x),73

then74

min
(
η‖m+‖2, γ‖m+‖

)
−min

(
η‖m‖2, γ‖m‖

)
≤ 2(1− β)

β
γ‖δ‖ (25)

Proof: Consider the following three cases:75

• ‖m‖ ≥ γ/η. In this case76

min
(
η‖m+‖2, γ‖m+‖

)
−min

(
η‖m‖2, γ‖m‖

)
≤ γ‖m+‖ − γ‖m‖
≤ γ‖m+ −m‖

=
1− β

β
γ‖δ‖

• ‖m‖ < γ/η and ‖m+‖ < γ/η. In this case77

min
(
η‖m+‖2, γ‖m+‖

)
−min

(
η‖m‖2, γ‖m‖

)
= η‖m+‖2 − η‖m‖2

= η(‖m+‖ − ‖m‖)(‖m+‖+ ‖m‖)

≤ 2(1− β)

β
γ‖δ‖
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• ‖m‖ < γ/η and ‖m+‖ > γ/η. In this case78

min
(
η‖m+‖2, γ‖m+‖

)
−min

(
η‖m‖2, γ‖m‖

)
= γ‖m+‖ − η‖m‖2

≤ γ‖m+‖ −
[
2γ‖m‖ − γ2

η

]
≤ γ‖m+‖ − 2γ‖m‖+ γ‖m+‖

= 2γ(‖m+‖ − ‖m‖) ≤ 2(1− β)

β
γ‖δ‖

Thus in all cases min
(
η‖m+‖2, γ‖m+‖

)
− min

(
η‖m‖2, γ‖m‖

)
can be upper bounded by79

2(1−β)
β γ‖δ‖. □80

Lemma B.3 Suppose max(‖∇F (x)‖, ‖m+‖, ‖m‖) ≥ γ/η. Then81

G(x+,m+)−G(x,m) ≤ −2

5
γ‖∇F (x)‖ − 3

5

γ2

η
+

12

5β
γ‖δ‖+ AL0 +BL1‖∇F (x)‖

2
γ2 (26)

Proof: We first write G(x+,m+)−G(x,m) as82

G(x+,m+)−G(x,m)

=
(
F (x+)− F (x)

)
+

νβ

2(1− β)

[
min

(
η‖m+‖2, γ‖m+‖

)
−min

(
η‖m‖2, γ‖m‖

)] (27)

Based on Lemma B.2, we only need to bound F (x+)−F (x). We will use the (L0, L1)-smoothness83

assumption.84

F (x+)− F (x)

≤
〈
x+ − x,∇F (x)

〉
+

AL0 +BL1‖∇F (x)‖
2

‖x+ − x‖2

= −
[
νmin

(
η,

γ

‖m+‖

)〈
m+,∇F (x)

〉
+ (1− ν)min

(
η,

γ

‖∇F (x)‖

)
〈∇F (x),∇F (x)〉

]
+

AL0 +BL1‖∇F (x)‖
2

γ2

≤ ν

[
−2

5
γ‖∇F (x)‖ − 3

5

γ2

η
+

(
12

5β
− 1

)
γ‖δ‖

]
+ (1− ν)

(
−2

5
γ‖∇F (x)‖ − 3

5

γ2

η
+

8

5β
γ‖δ‖

)
+

AL0 +BL1‖∇F (x)‖
2

γ2

(28)
Where the first inequality uses the descent inequality (Lemma A.3), the second equation follows85

from the update rule, and the last inequality is obtained by the following two inequalities:86

−min

(
η,

γ

‖m+‖

)〈
m+,∇F (x)

〉
≤ −2

5
γ‖∇F (x)‖ − 3

5

γ2

η
+

(
12

5β
− 1

)
γ‖δ‖ (29)

−min

(
η,

γ

‖∇F (x)‖

)
‖∇F (x)‖2 ≤ −2

5
γ‖∇F (x)‖ − 3

5

γ2

η
+

8

5β
γ‖δ‖ (30)

First we prove that (29) holds by considering the following three cases:87

• ‖m+‖ ≥ γ/η. In this case the algorithm performs a normalized update. Then (29) follows88

by directly using Lemma B.1 with µ = 2/5:89

−min

(
η,

γ

‖m+‖

)〈
m+,∇F (x)

〉
= −

〈
∇F (x),

γm+

‖m+‖

〉
≤ −2

5
γ‖∇F (x)‖ − 3

5
γ‖m+‖+ 7

5
γ‖δ‖
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• ‖m+‖ < γ/η and ‖∇F (x)‖ ≥ γ/η. In this case the algorithm performs an unnormalized90

update. We now prove −η 〈∇F (x),m+〉 ≤ − 2
5γ‖∇F (x)‖ − 3γ2

5η + 7
5γ‖∇F (x)−m+‖.91

η
〈
∇F (x),m+

〉
− 2

5
γ‖∇F (x)‖ − 3γ2

5η
+

7

5
γ‖∇F (x)−m+‖

≥ η
〈
∇F (x),m+

〉
− 2

5
γ‖∇F (x)‖ − 3γ2

5η
+

7

5
γ

(
‖∇F (x)‖ − 〈∇F (x),m+〉

‖∇F (x)‖

)
= ‖∇F (x)‖

(
γ + η

〈∇F (x),m+〉
‖∇F (x)‖

)
− 7

5
γ
〈∇F (x),m+〉
‖∇F (x)‖

− 3γ2

5η

≥ γ2

η
+ γ
〈∇F (x),m+〉
‖∇F (x)‖

− 7

5
γ
〈∇F (x),m+〉
‖∇F (x)‖

− 3γ2

5η

≥ 2γ2

5η
− 2

5
γ‖m+‖ ≥ 0

• ‖m+‖ < γ/η and ‖∇F (x)‖ < γ/η. This is the most complicated case. Due to the condi-92

tion in Lemma B.3, ‖m‖ ≥ γ/η. In this case, the algorithm also performs an unnormalized93

update. We first bound η 〈∇F (x),m〉 using the same calculation as in the second case:94

−η 〈∇F (x),m〉 ≤ −2

5
γ‖m‖ − 3γ2

5η
+

7

5
γ‖∇F (x)−m‖

≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

7

5β
γ‖δ‖

where we use the fact that ‖∇F (x)−m‖ = ‖δ‖/β. We then bound η‖∇F (x)‖2 as follows:95

−η‖∇F (x)‖2 ≤ −2γ‖∇F (x)‖+ γ2

η

= −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

8

5

(
γ2

η
− γ‖∇F (x)‖

)
≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

8

5
γ (‖m‖ − ‖∇F (x)‖)

≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

8

5β
‖δ‖

Combining the two inequalities, we obtain96

−
〈
∇F (x), ηm+

〉
= −η 〈∇F (x), βm+ (1− β)∇F (x)〉

≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

(
7

5β
β +

8

5β
(1− β)

)
‖δ‖

≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

(
12

5β
− 1

)
‖δ‖

Thus in all cases (29) holds. We now turn to (30) which is proven in a similar fashion. Specifically,97

consider the following three cases:98

• ‖∇F (x)‖ ≥ γ/η. In this case

−min

(
η,

γ

‖∇F (x)‖

)
‖∇F (x)‖2 = −γ‖∇F (x)‖2 ≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η

6



• ‖∇F (x)‖ < γ/η and ‖m+‖ ≥ γ/η. In this case bound η‖∇F (x)‖2 the same as in the99

third case of (29):100

−min

(
η,

γ

‖∇F (x)‖

)
‖∇F (x)‖2 = −η‖∇F (x)‖2

≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

8

5

(
γ2

η
− γ‖∇F (x)‖

)
≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

8

5
γ
(
‖m+‖ − ‖∇F (x)‖

)
≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

8

5
γ‖δ‖

• ‖∇F (x)‖ < γ/η and ‖m+‖ < γ/η. In this case ‖m‖ ≥ γ/η. Using the same calculation101

above,102

−min

(
η,

γ

‖∇F (x)‖

)
‖∇F (x)‖2 ≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

8

5β
γ‖δ‖

Thus (30) holds. Merging all the cases above, we finally obtain103

G(x+,m+)−G(x,m) ≤
[
−2

5
γ‖∇F (x)‖ − 3

5

γ2

η
+

12

5β
γ‖δ‖

]
+

AL0 +BL1‖∇F (x)‖
2

γ2

(31)
□104

Now we consider all the steps t which satisfy the condition in Lemma B.3, denoted as S = {t ∈105

[0, T −1] : max(‖F (xt)‖, ‖mt+1‖, ‖mt‖) ≥ γ/η}. Similarly, use S = [0, T −1]\S . Let TS = |S|,106

then T − TS = |S|.107

Corollary B.4 Let set S and TS be defined above. Then108

∑
t∈S

G(xt+1,mt+1)−G(xt,mt)

≤ 12γ

5β(1− β)
‖δ0‖+

(
12

5(1− β)
AL0 +

12γ

5η(1− β)
BL1 +

1

2
AL0

)
γ2TS+

γ
∑
t∈S

[
−1

5
(2‖∇F (xt)‖+ 3

γ

η
) +

γ

2
BL1‖∇F (xt)‖+

12γ

5(1− β)
BL1‖∇F (xt)‖

] (32)

Proof: Using Lemma B.3,109

∑
t∈S

G(xt+1,mt+1)−G(xt,mt)

≤ −
∑
t∈S

[
γ

5
(2‖∇F (xt)‖+ 3

γ

η
)− γ2

2
BL1‖∇F (xt)‖ −

12

5β
γ‖δt‖

]
+

γ2

2
AL0TS

(33)

We now focus on the summation of the term ‖δt‖. Define S(a, b) = ∇F (a) − ∇F (b). When110

‖a − b‖ ≤ γ, ‖S(a, b)‖ ≤ γ (AL0 +BL1‖∇F (b)‖) (see Lemma A.4). Thus we can expand111
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δt = mt+1 −∇F (xt) using the recursive relation δt = βδt−1 + βS(xt−1, xt) as follows112 ∑
t∈S
‖δt‖ =

∑
t∈S

∥∥∥∥∥βtδ0 + β

t−1∑
τ=0

βτS (xt−τ−1, xt−τ )

∥∥∥∥∥
≤
∑
t∈S

βt‖δ0‖+ β
∑
t∈S

t−1∑
τ=0

βτγ(AL0 +BL1‖∇F (xt−τ )‖)

≤ 1

1− β
‖δ0‖+

β

1− β
(AL0γTS)+

BL1γ
∑
t∈S

 ∑
τ∈[1,t]\S

βt−τ+1‖∇F (xτ )‖+
∑

τ∈[1,t]∩S

βt−τ+1‖∇F (xτ )‖


≤ β

1− β

(
‖δ0‖
β

+AL0γTS +BL1
γ2

η
TS +BL1γ

∑
t∈S
‖∇F (xt)‖

)
where the last inequality uses the fact that ‖∇F (xτ )‖ ≤ γ/η for all τ ∈ [1, t]\S.113

After substituting the above results into (33) we obtain114 ∑
t∈S

G(xt+1,mt+1)−G(xt,mt)

≤ 12γ

5β(1− β)
‖δ0‖+

(
12

5(1− β)
AL0 +

12γ

5η(1− β)
BL1 +

1

2
AL0

)
γ2TS+

γ
∑
t∈S

[
−1

5
(2‖∇F (xt)‖+ 3

γ

η
) +

γ

2
BL1‖∇F (xt)‖+

12γ

5(1− β)
BL1‖∇F (xt)‖

] (34)

□115

Now we turn to the case in which max(‖∇F (x)‖, ‖m+‖, ‖m‖) ≤ γ/η.116

Lemma B.5 Suppose max(‖∇F (x)‖, ‖m+‖, ‖m‖) ≤ γ/η. Then117

G(x+,m+)−G(x,m) ≤ −η

2

(
c1‖∇F (x)‖2 + 2c2 〈∇F (x),m〉+ c3‖m‖2

)
(35)

where c1 = ν(1− β)(2− β)− Lη(1− βν)2 + 2(1− ν), c2 = νβ(1− β)− Lηβν(1− βν), c3 =118

νβ(1 + β)− Lη(βν)2, and L = AL0 +BL1γ/η.119

Proof: In the case of ‖m‖ ≤ γ/η, we have η‖m‖2 ≤ γ‖m‖, thus120

G(x+,m+)−G(x,m) = (F (x+)− F (x)) +
νβη

2(1− β)
(‖m+‖2 − ‖m‖2) (36)

We then bound F (x+) − F (x) and ‖m+‖2 − ‖m‖2. Note that ‖m+‖ ≤ γ/η implies that the121

algorithm performs an update without normalization. Define L := AL0 + BL1γ/η, then again by122

descent inequality,123

F (x+)− F (x) ≤
〈
x+ − x,∇F (x)

〉
+

AL0 +BL1‖∇F (x)‖
2

‖x+ − x‖2

= −
[
νη
〈
m+,∇F (x)

〉
+ (1− ν)η‖∇F (x)‖2

]
+

AL0 +BL1‖∇F (x)‖
2

η2‖(1− βν)∇(x) + βνm‖2

≤ −
[
νη
〈
m+,∇F (x)

〉
+ (1− ν)η‖∇F (x)‖2

]
+

L

2
η2‖(1− βν)∇F (x) + βνm‖2

Rearranging

≤ −
[
ν(1− β)η + (1− ν)η − L

2
η2(1− βν)2

]
‖∇F (x)‖2

−
[
νβη − Lη2(βν)(1− βν)

]
〈∇F (x),m〉+ L

2
η2β2ν2‖m‖2

(37)
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Since124 ∥∥m+
∥∥2 − ‖m‖2 = (1− β)2‖∇F (x)‖2 − (1 + β)(1− β)‖m‖2 + 2β(1− β)〈∇F (x),m〉 (38)

by definition of the energy function, we have

G(x+,m+)−G(x,m) ≤ −η

2

(
c1‖∇F (x)‖2 + 2c2 〈∇F (x),m〉+ c3‖m‖2

)
where c1 = ν(1− β)(2− β)− Lη(1− βν)2 + 2(1− ν), c2 = νβ(1− β)− Lηβν(1− βν), c3 =125

νβ(1 + β)− Lη(βν)2. □126

Lemma B.6 Let c1, c2, c3 and L be defined in Lemma B.5. If Lη ≤ 1, then the matrix

H =

(
[c1 − (1− νβ)]Id c2Id

c2Id (c3 − νβ)Id

)
is symmetric and positive semi-definite, where Id is the d× d identity matrix.127

Proof: In fact we only need to consider the case when d = 1, because the eigenvalues of H2d×2d

can only be those that appears in H2×2 (d = 1). Denote two eigenvalues be λ1, λ2 when d = 1. A
direct calculation shows that

λ1λ2 = detH = [c1 − (1− νβ)](c3 − νβ)− c22 = ν(1− ν)β2(1− Lη)

λ1 + λ2 = c1 + c3 − 1 = (1− νβ)2(1− Lη) + (νβ)2(1− Lη) + 2β2ν(1− ν)

If Lη ≤ 1, then λ1λ2 ≥ 0 and λ1 + λ2 ≥ 0, which is equivalent to the semi-definiteness of H . □128

Corollary B.7 Suppose max(‖∇F (x)‖, ‖m‖, ‖m+‖) ≤ γ/η. If Lη ≤ 1, Then129

G(x+,m+)−G(x,m) ≤ −η

2
(1− νβ)‖∇F (x)‖2 − η

2
νβ‖m‖2 (39)

Proof: Let H be defined in Lemma B.6. The result of Lemma B.5 can be written in a matrix form:130

131

G(x+,m+)−G(x,m) ≤ −η

2
(1−νβ)‖∇F (x)‖2−η

2
νβ‖m‖2−η

2

(
∇F (x)T ,mT

)
H
(
∇F (x)T ,mT

)T
(40)

Using the fact that H is positive semi-definite, we obtain the desired result. □132

Note that the amount of descent in Corollary B.7 is small in terms of ‖∇F (x)‖ if β and ν are close133

to 1. We now try to convert the term ‖m‖ into ‖∇F (x)‖, which is stated in the following lemma.134

Lemma B.8 Suppose AL0η ≤ c1(1− β) and BL1γ ≤ c3(1− β) for some constant c1 and c3. Let135

m0 = ∇F (x0) for simplicity. Let set S and S be defined above. Then136 ∑
t∈S

‖mt‖ ≥
1

1 + c1

∑
t∈S

((1− c1(1− νβ)− c3)‖∇F (xt)‖)

− 1

1− β

∑
t∈S

(AL0 +BL1‖∇F (xt)‖)γ
(41)

Proof: For any t ≥ 1, we have137

‖mt −∇F (xt)‖ ≤ ‖mt −∇F (xt−1)‖+ ‖∇F (xt−1)−∇F (xt)‖
≤ β‖mt−1 −∇F (xt−1)‖+ (AL0 +BL1‖∇F (xt−1)‖)×(
νmin

(
η,

γ

‖mt‖

)
‖mt‖+ (1− ν)min

(
η,

γ

‖∇F (xt−1)‖

)
‖∇F (xt−1)‖

)
(42)

where the last inequality follows by Corollary A.4. Applying (42) recursively, we obtain138

‖mt −∇F (xt)‖ ≤
t∑

τ=1

βt−τ (AL0 +BL1‖∇F (xτ−1)‖)×(
νmin

(
η,

γ

‖mτ‖

)
‖mτ‖+ (1− ν)min

(
η,

γ

‖∇F (xτ−1)‖

)
‖∇F (xτ−1)‖

)
(43)
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Therefore,139

T−1∑
t=0

‖mt −∇F (xt)‖

≤ 1

1− β

T−1∑
t=0

(AL0 +BL1‖∇F (xt)‖)
(
νmin

(
η,

γ

‖mt+1‖

)
‖mt+1‖+ (1− ν)min

(
η,

γ

‖∇F (xt)‖

)
‖∇F (xt)‖

)

≤ 1

1− β

T−1∑
t=0

BL1γ‖∇F (xt)‖+
∑
t∈S

AL0γ +
∑
t∈S

AL0η ((1− ν)‖∇F (xt)‖+ ν‖mt+1‖)


(44)

Therefore we obtain140

T−1∑
t=0

‖mt −∇F (xt)‖

≤ 1

1− β

∑
t∈S

(AL0 +BL1‖∇F (xt)‖)γ +
∑
t∈S

[AL0νη‖mt+1‖+ (BL1γ +AL0(1− ν)η)‖∇F (xt)‖]


≤ 1

1− β

(∑
t∈S

(AL0 +BL1‖∇F (xt)‖)γ

)
+

1

1− β

∑
t∈S

AL0νηβ‖mt‖+ (AL0η(1− νβ) +BL1γ)‖∇F (xt)‖


≤ 1

1− β

(∑
t∈S

(AL0 +BL1‖∇F (xt)‖)γ

)
+

∑
t∈S

(c1(1− νβ) + c3)‖∇F (xt)‖+ c1νβ‖mt‖


(45)

Using ‖mt‖ ≥ ‖∇F (xt)‖ − ‖mt −∇F (xt)‖ and some straightforward calculation, we obtain141

(1 + c1)
∑
t∈S

‖mt‖ ≥

∑
t∈S

(1− c1(1− νβ)− c3)‖∇F (xt)‖


− 1

1− β

(∑
t∈S

(AL0 +BL1‖∇F (xt)‖)γ

) (46)

□142

Now we are ready to prove the main theorem.143

Theorem B.9 Let F ∗ be the optimal value, and ∆ = F (x0) − F ∗. Assume m0 = ∇F (x0) for
simplicity. If γ ≤ 1−β

10BL1
and η ≤ 1−β

10AL0
, where constants A = 1 + e1/10 − 10(e1/10 − 1) < 1.06,

B = 10(e1/10 − 1) < 1.06, and ε < γ
5η , then

1

T

T∑
t=1

‖∇F (xt)‖ ≤ 2ε

as long as144

T ≥ 3

ε2η
∆ (47)

Proof: By calculating Lη = AL0η +BL1γ ≤ (1− β)/5 < 1, we can use Corollary B.7. Taking145

summation of the inequality (39) over steps t ∈ S = [0, T − 1]\S, we obtain146 ∑
t∈S

G(xt+1,mt+1)−G(xt,mt) ≤ −
η

2

∑
t∈S

(
(1− νβ)‖∇F (xt)‖2 + νβ‖mt‖2

)
(48)
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Combining (48) and (32) in Corollary B.4 we obtain147

G(xT ,mT )−G(x0,m0) =

T−1∑
t=0

G(xt+1,mt+1)−G(xt,mt)

≤ −η

2

∑
t∈S

(
(1− νβ)‖∇F (xt)‖2 + νβ‖mt‖2

)
+

12γ

5β(1− β)
‖δ0‖+

(
12

5(1− β)
AL0 +

12γ

5η(1− β)
BL1 +

1

2
AL0

)
γ2TS+

γ
∑
t∈S

[
−1

5
(2‖∇F (xt)‖+ 3

γ

η
) +

(
1

2
+

12

5(1− β)

)
BL1γ‖∇F (xt)‖

]
(49)

By the assumption148

γ ≤ 1− β

10BL1
, η ≤ 1− β

10AL0
(50)

we have AL0η ≤ (1− β)/10 and BL1γ ≤ (1− β)/10. Using Lemma B.14 we have149 ∑
t∈S

‖mt‖ ≥
8

11

∑
t∈S

‖∇F (xt)‖ −
1

1− β

(∑
t∈S

(AL0 +BL1‖∇F (xt)‖)γ

)
(51)

Therefore by standard inequality x2 ≥ 2εx− ε2 and (49) we obtain150

G(x0,m0)−G(xT ,mT )

≥ η

2

∑
t∈S

(
(1− νβ)‖∇F (xt)‖2 + 2νβε‖mt‖ − νβε2

)
+

(
3

5

γ2

η
−
(

12

5(1− β)
AL0 +

12γ

5η(1− β)
BL1 +

1

2
AL0

)
γ2

)
TS

+ γ

(
2

5
−
(
1

2
+

12

5(1− β)

)
BL1γ

)∑
t∈S
‖∇F (xt)‖

≥
∑
t∈S

U(xt) +
∑
t∈S

V (xt)

(52)

Where151

U(x) :=

(
3

5

γ2

η
−
(

12

5(1− β)
AL0 +

12γ

5η(1− β)
BL1 +

1

2
AL0

)
γ2 − νβ

1− β
AL0εγη

)
+ γ

(
2

5
−
(
1

2
+

12

5(1− β)

)
BL1γ −

νβ

1− β
εηBL1

)
‖∇F (x)‖

V (x) :=
η

2
(1− νβ)‖∇F (x)‖2 + 8

11
νβεη‖∇F (x)‖ − 1

2
νβε2η

(53)

We now simplify U(x). Let ε ≤ γ
5η . By (50) we have152

2

5
−
(
1

2
+

12

5(1− β)

)
BL1γ −

νβ

1− β
εηBL1 ≥

2

5
− 12

50
− 1

20
≥ 1

10

3

5
− 12γ

5(1− β)
BL1 ≥

3

10

(54)

Therefore153

U(x) ≥ 3

10

γ2

η
−
(

12

5(1− β)
+

1

2

)
AL0γ

2 − νβ

1− β
AL0εγη +

1

10
γ‖∇F (x)‖

≥
(

3

5(1− β)
− 1

2

)
AL0γ

2 − νβ

1− β
AL0εγη +

1

10
γ‖∇F (x)‖

≥ 1

10(1− β)
AL0γ

2 +
1

10
γ‖∇F (x)‖

(55)
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We can also bound V (x) as follows:154

V (x) ≥ (1− νβ)εη‖∇F (x)‖ − η

2
(1− νβ)ε2 +

8

11
νβεη‖∇F (x)‖ − 1

2
νβε2η

≥ 1

2
εη‖∇F (x)‖ − 1

2
ε2η

(56)

Since ε <
γ

5η
, we have U(x) ≥ V (x). Therefore by (52) and Lemma A.5 we have155

T

T−1∑
t=0

1

2
εη (‖∇F (x)‖ − ε) ≤ ∆+

β

2(1− β)
min{η‖∇F (x0)‖2, γ‖∇F (x0)‖}

≤ ∆+
4β

1− β
∆max{L0η, L1γ}

≤ 7

5
∆

(57)

Thus156

1

T

T−1∑
t=0

‖∇F (xt)‖ ≤ 2ε (58)

as long as157

T >
3

ε2η
∆ (59)

□158

B.2 Proof of Theorem 3.2159

We now prove the stochastic case. As before, to simplify the notation we write the update formula160

as161

m+ = βm+ (1− β)∇f(x, ξ)

x+ = x−
(
νmin

(
η,

γ

‖m+‖

)
m+ + (1− ν)min

(
η,

γ

‖∇f(x, ξ)‖

)
∇f(x, ξ)

)
(60)

when analyzing a single iteration. The error between m+ and ∇F (x) is denoted as δ = m+ −162

∇F (x). We define the true momentum m̃ as follows:163

m̃+ = βm̃+ (1− β)∇F (x) (61)

where m̃0 = m0. Similarly, the error between m̃+ and ∇F (x) is denoted as δ̃ = m̃+ −∇F (x).164

In stochastic case, we define the energy function to be165

G(x, m̃) = F (x) +
νβ

2(1− β)
min

(
η‖m̃‖2, γ‖m̃‖

)
(62)

The only change is that we use the true momentum m̃ instead of stochastic momentum m. Note that166

Lemma B.1 and Lemma B.2 can still be used in stochastic case. The momentum m and error δ in167

Lemma B.2 will be changed to m̃ and δ̃ respectively.168

Suppose γ ≤ c/L1 for some constant c, and we denote A = 1 + ec − ec−1
c and B = ec−1

c , just the169

same as in the descent inequality (Lemma A.3). When γ ≤ 1−β
50L1

ε ≤ 1
500L1

(in Theorem 3.2), we170

can take c = 1/500 and A = B = 1.002.171

Lemma B.10 The difference between m and m̃ satisfies:172

‖m+ − m̃+‖ ≤ σ (63)

Furthermore, in expectation173

E‖m+ − m̃+‖2 ≤ 1− β

1 + β
σ (64)
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Proof: By expanding mt+1 and m̃t+1, we get174

‖mt+1 − m̃t+1‖ = (1− β)

∥∥∥∥∥
t∑

τ=0

βt−τ (∇f(xτ , ξτ )−∇F (xτ ))

∥∥∥∥∥
≤ (1− β)

t∑
τ=0

βt−τ‖∇f(xτ , ξτ )−∇F (xτ )‖

≤ (1− β)

t∑
τ=0

βt−τσ ≤ σ

(65)

Furthermore, using the noise assumption, for different time steps t, t′, we have

E[〈∇f(xt, ξt)−∇F (xt),∇f(xt′ , ξt′)−∇F (xt′)〉] = 0

Therefore175

E[‖mt+1 − m̃t+1‖2] = E

[
t∑

τ=0

(1− β)2β2(t−τ)‖∇f(xτ , ξτ )−∇F (xτ )‖2
]
≤ 1− β

1 + β
σ2 (66)

□176

Lemma B.11 Suppose max(5‖∇F (x)‖/4, ‖m+‖, ‖m̃‖) ≥ γ/η. Then177

G(x+, m̃+)−G(x, m̃)

≤ −4

5
× 2γ

5
‖∇F (x)‖ − 16

25
× 3γ2

5η
+

γ2

2
(AL0 +BL1‖∇F (x)‖) + 12

5β
γ‖δ̃‖

− νη
〈
∇F (x),m+ − m̃+

〉
− (1− ν)η 〈∇F (x),∇f(x, ξ)−∇F (x)〉+

(
η‖∇F (x)‖+ 7

5
γ

)
σ

(67)

Proof: Based on Lemma B.2, we only need to bound F (x+)−F (x). We use the (L0, L1)-smooth178

condition:179

F (x+)− F (x) ≤
〈
∇F (x), x+ − x

〉
+

γ2

2
(AL0 +BL1‖∇F (x)‖) (68)

Now we bound 〈∇F (x), x+ − x〉. The calculation is similar to the deterministic setting. We first180

bound −min
(
η, γ

∥m+∥

)
〈m+,∇F (x)〉. Consider the following three cases, all of which are analo-181

gous to the proof of Lemma B.3:182

• ‖m+‖ ≥ γ/η. The algorithm performs a normalized update. We have183

− γ

‖m+‖
〈
m+,∇F (x)

〉
≤ −2

5
γ‖∇F (x)‖ − 3

5
γ‖m+‖+ 7

5
γ‖δ‖

• ‖m+‖ < γ/η and ‖∇F (x)‖ ≥ 4γ/5η. The algorithm performs an unnormalized update.184

We have185

−η
〈
∇F (x),m+

〉
≤ −4

5
× 2

5
γ‖∇F (x)‖ − 16

25
× 3γ2

5η
+

4

5
× 7

5
γ‖δ‖

• ‖m+‖ < γ/η and ‖∇F (x)‖ < 4γ/5η. In this case ‖m̃‖ ≥ γ/η. The algorithm performs186

an unnormalized update. We have187

−η
〈
∇F (x), m̃+

〉
≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

(
12

5β
− 1

)
γ‖δ̃‖

Therefore in all the cases, we have188

−min

(
η,

γ

‖m+‖

)〈
m+,∇F (x)

〉
≤− 4

5
× 2

5
γ‖∇F (x)‖ − 16

25
× 3γ2

5η
+

(
12

5β
− 1

)
γ‖δ̃‖

− η
〈
∇F (x),m+ − m̃+

〉
+

(
η‖∇F (x)‖+ 7

5
γ

)
σ

(69)
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where (69) uses the following two inequalities which can be obtained by Lemma B.10:189

‖δ‖ ≤ ‖δ̃‖+ σ (70)

−
〈
∇F (x),m+ − m̃+

〉
≤ ‖∇F (x)‖σ (71)

We next bound −min
(
η, γ

∥∇f(x,ξ)∥

)
〈∇f(x, ξ),∇F (x)〉. Consider the following cases, all of190

which are analogous to the proof of Lemma B.3:191

• ‖∇f(x, ξ)‖ ≥ γ/η. In this case we can use Lemma B.1 with µ = 2/5:192

−min

(
η,

γ

‖∇f(x, ξ)‖

)
〈∇f(x, ξ),∇F (x)〉

= −γ 〈∇f(x, ξ),∇F (x)〉
‖∇f(x, ξ)‖

≤ γ

(
−2

5
‖∇F (x)‖ − 3

5
‖∇f(x, ξ)‖+ 7

5
‖∇F (x)−∇f(x, ξ)‖

)
≤ γ

(
−2

5
‖∇F (x)‖ − 3γ

5η
+

7

5
σ

)
(72)

• ‖∇f(x, ξ)‖ < γ/η. In this case193

−min

(
η,

γ

‖∇f(x, ξ)‖

)
〈∇f(x, ξ),∇F (x)〉

= −η 〈∇f(x, ξ),∇F (x)〉
= −η‖∇F (x)‖2 − η 〈∇f(x, ξ)−∇F (x),∇F (x)〉

(73)

We now bound −η‖∇F (x)‖2. If ‖∇F (x)‖ ≥ 4γ
5η , then −η‖∇F (x)‖2 ≤ − 4

5γ‖∇F (x)‖.194

If ‖∇F (x)‖ < 4γ
5η and ‖m+‖ ≥ 4γ

5η , then using the same calculation as in the deterministic195

case,196

−η‖∇F (x)‖2 ≤ −2

5
× 4

5
γ‖∇F (x)‖ − 16

25
× 3γ2

5η
+

4

5
× 8

5
γ
(
‖m+‖ − ‖∇F (x)‖

)
≤ −4

5
× 2

5
γ‖∇F (x)‖ − 16

25
× 3γ2

5η
+

7

5
γ
(
‖δ̃‖+ σ

)
If ‖∇F (x)‖ < 4γ

5η and ‖m+‖ < 4γ
5η , then ‖m̃‖ ≥ γ/η. Using the same calculation we have197

−η‖∇F (x)‖2 ≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

8

5
γ (‖m̃‖ − ‖∇F (x)‖)

≤ −2

5
γ‖∇F (x)‖ − 3γ2

5η
+

8

5β
γ‖δ̃‖

Therefore in all the cases we have198

−min

(
η,

γ

‖∇f(x, ξ)‖

)
〈∇f(x, ξ),∇F (x)〉 ≤ − 4

5
× 2

5
γ‖∇F (x)‖ − 16

25
× 3γ2

5η
+

8

5β
γ‖δ̃‖

− η 〈∇F (x),∇f(x, ξ)−∇F (x)〉+
(
η‖∇F (x)‖+ 7

5
γ

)
σ

(74)
we finally obtain199

G(x+, m̃+)−G(x, m̃)

≤ −4

5
× 2γ

5
‖∇F (x)‖ − 16

25
× 3γ2

5η
+

γ2

2
(AL0 +BL1‖∇F (x)‖) + 12

5β
γ‖δ̃‖

− νη
〈
∇F (x),m+ − m̃+

〉
− (1− ν)η 〈∇F (x),∇f(x, ξ)−∇F (x)〉+

(
η‖∇F (x)‖+ 7

5
γ

)
σ

(75)
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□200

Let S = {t ∈ [0, T − 1] : max(5‖F (xt)‖/4, ‖mt+1‖, ‖m̃t‖) ≥ γ/η} and S = [0, T − 1]\S. Let201

TS = |S|, then T − TS = |S|. Parallel to Corollary B.4, we directly have the following corollary.202

Corollary B.12 Let set S and TS be defined above. Then203 ∑
t∈S

G(xt+1,mt+1)−G(xt,mt)

≤ 12γ

5β(1− β)
‖δ̃0‖+

(
12

5(1− β)
AL0 +

12γ

5η(1− β)
BL1 +

1

2
AL0

)
γ2TS

− η
∑
t∈S

(ν 〈∇F (xt),mt+1 − m̃t+1〉+ (1− ν) 〈∇F (xt),∇f(xt, ξt)−∇F (xt)〉)+

γ
∑
t∈S

[
−
((

4

5
× 2

5
− η

γ
σ

)
‖∇F (xt)‖+

(
16

25
× 3γ

5η
− 7

5
σ

))
+

γ

2
BL1‖∇F (xt)‖+

12γ

5(1− β)
BL1‖∇F (xt)‖

]
(76)

Next we turn to the case in which max(5‖∇F (x)‖/4, ‖m+‖, ‖m̃‖) ≤ γ/η.204

Lemma B.13 Assume max(5‖∇F (x)‖/4, ‖m+‖, ‖m̃‖) ≤ γ/η, and γ/η = 5σ. If AL0η ≤ 1, then205

206

G(x+, m̃+)−G(x, m̃)

≤ −η

2
(1− νβ)‖∇F (x)‖2 − η

2
νβ‖m̃‖2 + γ2

2
BL1‖∇F (x)‖

− νη
〈
∇F (x),m+ − m̃+

〉
− (1− ν)η 〈∇F (x),∇f(x, ξ)−∇F (x)〉

+ η2AL0σ‖νm̃+ + (1− ν)∇F (x)‖+ 1

2
η2AL0‖ν(m+ − m̃+) + (1− ν)(∇f(x, ξ)−∇F (x))‖2

(77)
where c1 = ν(1−β)(2−β)−AL0η(1−βν)2+2(1−ν), c2 = νβ(1−β)−AL0ηβν(1−βν), c3 =207

νβ(1+ β)−AL0η(βν)
2. c1 = (1− β)[2− β−AL0η(1− β)], c2 = β[1− β−AL0η(1− β)] and208

c3 = β(1 + β −AL0ηβ).209

Proof: Because ‖∇f(x, ξ)‖ ≤ 4γ/5η + σ = γ/η and ‖m+‖ ≤ γ/η, the algorithm performs an210

unnormalized update. The proof is similar to the one in Lemma B.5 except for bounding the term211

F (x+)− F (x).212

F (x+)− F (x)

≤ −
〈
∇F (x), νηm+ + (1− ν)η∇f(x, ξ)

〉
+

η2

2
(AL0 +BL1‖∇F (x)‖)‖νm+ + (1− ν)∇f(x, ξ)‖2

≤ −νη
〈
∇F (x), m̃+

〉
− νη

〈
∇F (x),m+ − m̃+

〉
− (1− ν)η 〈∇F (x),∇F (x)〉 − (1− ν)η 〈∇F (x),∇f(x, ξ)−∇F (x)〉

+
η2

2
AL0

(
‖νm̃+ + (1− ν)∇F (x)‖2 + ‖ν(m+ − m̃+) + (1− ν)(∇f(x, ξ)−∇F (x))‖2

)
+ η2AL0σ‖νm̃+ + (1− ν)∇F (x)‖+ η2

2
BL1‖∇F (x)‖γ

2

η2

(78)
For bounding term −νη 〈∇F (x), m̃+〉 − (1 − ν)η 〈∇F (x),∇F (x)〉 + η2

2 AL0‖νm̃+ + (1 −213

ν)∇F (x)‖2 that is not related to noise, the subsequent steps are the same as in Lemma B.5, B.6214

and Corollary B.7 (except for L in these Lemmas being replaced by AL0). Other terms in (78) just215

appears in (77). Proof is completed. □216

Note that the descent inequality in Lemma B.13 is small in terms of ‖∇F (x)‖ if ν and β are close217

to 1. We now try to convert the term ‖m̃‖ into ‖∇F (x)‖, which is stated in the following lemma.218
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Lemma B.14 Suppose AL0η ≤ c1(1−β) and BL1γ ≤ c3(1−β) for some constant c1 and c3. Let219

m̃0 = ∇F (x0) for simplicity. Let set S and S be defined in Corollary B.12. Then220

E
∑
t∈S

‖m̃t‖ ≥
1

1 + c1
E

∑
t∈S

(1− c1(1− νβ)− c3)‖∇F (xt)‖ − c1σ


− 1

1− β
E

(∑
t∈S

(AL0 +BL1‖∇F (xt)‖)γ

) (79)

Proof: The proof of Lemma B.14 is similar to the proof of Lemma B.8. We first write (44) again221

as follows:222

T−1∑
t=0

‖mt −∇F (xt)‖

≤ 1

1− β

T−1∑
t=0

(AL0 +BL1‖∇F (xt)‖)×(
νmin

(
η,

γ

‖mt+1‖

)
‖mt+1‖+ (1− ν)min

(
η,

γ

‖∇f(xt, ξt)‖

)
‖∇f(xt, ξt)‖

)

≤ 1

1− β

T−1∑
t=0

BL1γ‖∇F (xt)‖+
∑
t∈S

AL0γ +
∑
t∈S

AL0η ((1− ν)‖∇f(xt, ξt)‖+ ν‖mt+1‖)


(80)

Therefore,223

T−1∑
t=0

‖mt −∇F (xt)‖

≤ 1

1− β

∑
t∈S

(AL0 +BL1‖∇F (xt)‖)γ

+
1

1− β

∑
t∈S

[AL0νη‖m̃t+1‖+ (BL1γ +AL0(1− ν)η)‖∇F (xt)‖+AL0ησ]

≤ 1

1− β

∑
t∈S

(AL0 +BL1‖∇F (xt)‖)γ+

1

1− β

∑
t∈S

(AL0νηβ‖m̃t‖+ (AL0η(1− νβ) +BL1γ)‖∇F (xt)‖+AL0ησ)

≤ 1

1− β

∑
t∈S

(AL0 +BL1‖∇F (xt)‖)γ +
∑
t∈S

((c1(1− νβ) + c3)‖∇F (xt)‖+ c1νβ‖mt‖+ c1σ)

(81)
Using ‖m̃t‖ ≥ ‖∇F (xt)‖ − ‖m̃t −∇F (xt)‖ and some straightforward calculation, we obtain224

(1 + c1)
∑
t∈S

‖m̃t‖ ≥
∑
t∈S

((1− c1(1− νβ)− c3)‖∇F (xt)‖ − c1σ)

− 1

1− β
E

(∑
t∈S

(AL0 +BL1‖∇F (xt)‖)γ

) (82)

□225

We now merge the two cases corresponding to Corollary B.12 and Lemma B.13. The proof of the226

following theorem involves many techniques which are different from the deterministic case and is227

far more challenging.228

16



Theorem B.15 Let F ∗ be the optimal value, and ∆ = F (x0) − F ∗. Assume m0 = ∇F (x0) for229

simplicity. Fix ε ≤ 0.1 be a small constant.If γ ≤ ε
σ min

(
ε

AL0
, 1−β
AL0

, 1−β
50BL1

)
and γ/η = 5σ where230

constants A = 1.01, B = 1.01, then231

1

T

T∑
t=1

E‖∇F (xt)‖ ≤ 2ε (83)

as long as232

T ≥ 3

ε2η
∆ (84)

Proof: Based on the previous results, we take summation over t and obtain233

T−1∑
t=0

(G(xt+1, m̃t+1)−G(xt, m̃t))

≤ 12γ

5β(1− β)
‖δ̃0‖+

(
12

5(1− β)
AL0 +

12γ

5η(1− β)
BL1 +

1

2
AL0

)
γ2TS

− η

T−1∑
t=0

(ν 〈∇F (xt),mt+1 − m̃t+1〉+ (1− ν) 〈∇F (xt),∇f(xt, ξt)−∇F (xt)〉))+

γ
∑
t∈S

[
−
((

4

5
× 2

5
− η

γ
σ

)
‖∇F (xt)‖+

(
16

25
× 3γ

5η
− 7

5
σ

))
+

γ

2
BL1‖∇F (xt)‖+

12γ

5(1− β)
BL1‖∇F (xt)‖

]
+
∑
t∈S

−η

2

(
(1− νβ)‖∇F (xt)‖2 + νβ‖m̃t‖2

)
++

γ2

2
BL1‖∇F (x)‖

+
∑
t∈S

AL0η
2σ‖(1− ν)∇F (xt) + νm̃t+1‖+

AL0

2
η2‖(1− ν)(∇f(xt, ξt)−∇F (xt)) + ν(mt+1 − m̃t+1)‖2

(85)
We now simplify (85) by taking expectation. We first have234

E[〈∇F (xt),∇f(xt, ξt)−∇F (xt)〉] = 0 (86)

due to the noise assumption. For the term E‖(1− ν)(∇f(xt, ξt)−∇F (xt)) + ν(mt+1 − m̃t+1)‖2,235

similarly using the noise assumption and Lemma B.10, we can obtain236

E‖(1− ν)(∇f(xt, ξt)−∇F (xt)) + ν(mt+1 − m̃t+1)‖2 ≤
(
(1− βν)2 +

1− β

1 + β
β2ν2

)
σ2 (87)

We now tackle the most challenging part: the expectation of 〈∇F (xt),mt+1 − m̃t+1〉 for some t.237

− E 〈∇F (xt),mt+1 − m̃t+1〉
= −E [〈∇F (xt), β(mt − m̃t) + (1− β)(∇f(xt, ξt)−∇F (xt))〉]
= −βE 〈∇F (xt),mt − m̃t〉
= βE [−〈∇F (xt−1),mt − m̃t〉+ 〈∇F (xt−1)−∇F (xt),mt − m̃t〉]

(88)

Applying the above equation recursively, we obtain238

−E 〈∇F (xt),mt+1 − m̃t+1〉 ≤ E
t−1∑
τ=0

βt−τ 〈∇F (xτ )−∇F (xτ+1),mτ+1 − m̃τ+1〉 (89)

Therefore239

−E
T−1∑
t=0

〈∇F (xt),mt+1 − m̃t+1〉 ≤
β

1− β

T−1∑
t=0

max (E 〈∇F (xt)−∇F (xt+1),mt+1 − m̃t+1〉 , 0)

(90)
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We now bound E[〈∇F (xt)−∇F (xt+1),mt+1 − m̃t+1〉].240

E 〈∇F (xt)−∇F (xt+1),mt+1 − m̃t+1〉

= E
∫ 1

0

(xt − xt+1)
T∇2F (µxt + (1− µ)xt+1)(mt+1 − m̃t+1)dµ

= E
[
min

(
η,

γ

‖mt+1‖

)∫ 1

0

νmT
t+1∇2F (µxt + (1− µ)xt+1)(mt+1 − m̃t+1)dµ

]
+ E

[
min

(
η,

γ

‖∇f(xt, ξt)‖

)∫ 1

0

(1− ν)∇f(xt, ξt)
T∇2F (µxt + (1− µ)xt+1)(mt+1 − m̃t+1)dµ

]
≤ E

[
min

(
η,

γ

‖mt+1‖

)∫ 1

0

νm̃T
t+1∇2F (µxt + (1− µ)xt+1)(mt+1 − m̃t+1)dµ

]
+ E

[
min

(
η,

γ

‖∇f(xt, ξt)‖

)∫ 1

0

(1− ν)∇F (xt)
T∇2F (µxt + (1− µ)xt+1)(mt+1 − m̃t+1)dµ

]
+ ηE[(AL0 +BL1‖∇F (xt)‖)]σ2(1− β)

(
ν

1 + β
+ 1− ν

)
≤ E

[
min

(
η,

γ

‖mt+1‖

)
ν(AL0 +BL1‖∇F (xt)‖)‖m̃t+1‖σ

]
+ E

[
min

(
η,

γ

‖∇f(xt, ξt)‖

)
(1− ν)(AL0 +BL1‖∇F (xt)‖‖∇F (xt)‖σ

]
+ ηE[(AL0 +BL1‖∇F (xt)‖)]σ2(1− β)

(
ν

1 + β
+ 1− ν

)
≤ E [η(ν‖m̃t+1‖+ (1− ν)‖∇F (xt)‖)AL0σ]

+ E
[(

νmin

(
η,

γ

‖mt+1‖

)
‖m̃t+1‖+ (1− ν)min

(
η,

γ

‖∇f(xt, ξt)‖

)
‖∇F (xt)‖

)
BL1‖∇F (xt)‖σ

]
+ ηE[(AL0 +BL1‖∇F (xt)‖)]σ2(1− β)

(
ν

1 + β
+ 1− ν

)
≤ ηE [(ν‖m̃t+1‖+ (1− ν)‖∇F (xt)‖)AL0σ] + ηAL0σ

2(1− β)

(
ν

1 + β
+ 1− ν

)
+

6

5
γE [BL1‖∇F (xt)‖σ] +

1

5
γE [BL1‖∇F (xt)‖σ]

(91)
where the first inequality uses the proof of Corollary A.4 and Lemma B.10, and the last inequality241

uses γ/η = 5σ. By taking summation of the above inequality we obtain242

−
T−1∑
t=0

E 〈∇F (xt),mt+1 − m̃t+1〉 ≤
β

1− β

T−1∑
t=0

(
ηAL0 +

7

5
γBL1

)
σ‖∇F (xt)‖

+ ηAL0σ
2β

(
ν

1 + β
+ 1− ν

)
T +

νβ2

(1− β)2
ηAL0σ‖∇F (x0)‖

(92)
where we uses the following inequality to convert ‖m̃t+1‖ to ‖∇F (xt)‖.243

T−1∑
t=0

‖m̃t+1‖ ≤
β

1− β
‖∇F (x0)‖+ (1− β)

T−1∑
t=0

t∑
τ=0

βt−τ‖∇F (xτ )‖

≤ β

1− β
‖∇F (x0)‖+

T−1∑
t=0

‖∇F (xt)‖

(93)
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Combining (85), (86), (87), (92), using inequality (93) to get rid of the term ‖m̃t‖ and applying244

Lemma B.10, we obtain245

E
T−1∑
t=0

(G(xt+1, m̃t+1)−G(xt, m̃t))

≤ 12γ

5β(1− β)
‖δ̃0‖+

νβ

(1− β)2
AL0η

2σ‖∇F (x0)‖+
(

12

5(1− β)
AL0 +

12γ

5η(1− β)
BL1 +

1

2
AL0

)
γ2TS+

γE
∑
t∈S

[
−
((

4

5
× 2

5
− η

γ
σ

)
‖∇F (xt)‖+

(
16

25
× 3γ

5η
− 7

5
σ

))
+

γ

2
BL1‖∇F (xt)‖+

12γ

5(1− β)
BL1‖∇F (xt)‖

]
+ E

∑
t∈S

(
−η

2
(1− νβ)‖∇F (xt)‖2 −

η

2
νβ‖mt‖2 +

γ2

2
BL1‖∇F (x)‖

)

+ E
T−1∑
t=0

η2AL0σ

(
‖∇F (xt)‖+

(
(1− νβ)2

2
+

1− β

2(1 + β)
ν2β2

)
σ

)

+
νβησ

1− β
E

(
T−1∑
t=0

(AL0η‖∇F (xt)‖+
7

5
BL1γ‖∇F (xt)‖

)
+AL0η

2σ2νβ

(
ν

1 + β
+ 1− ν

)
T

= P0 + E

P1TS + P2(T − TS) +
∑
t∈S

P3‖∇F (xt)‖+
∑
t∈S

P4‖∇F (xt)‖


− E

∑
t∈S

η

2

(
(1− β)‖∇F (xt)‖2 + β‖m̃t‖2

)
(94)

where246

P0 =
12γ

5β(1− β)
‖δ̃0‖+

νβ

(1− β)2
AL0η

2σ‖∇F (x0)‖ =
νβ

(1− β)2
AL0η

2σ‖∇F (x0)‖

P1 = −16

25
× 3γ2

5η
+

(
12γ2

5(1− β)
+

γ2

2

)
AL0 +

12γ3

5η(1− β)
BL1 +

7

5
γσ + P2

P2 = AL0η
2σ2

(
(1− νβ)2

2
+

1− β

2(1 + β)
ν2β2

)
+AL0η

2σ2νβ

(
ν

1 + β
+ 1− ν

)
=

1

2
η2AL0σ

2

P3 = −4

5
× 2

5
γ + ησ +

(
γ2

2
+

12γ2

5(1− β)
+

νβησ

1− β
× 7

5
γ

)
BL1 + η2AL0σ +

νβσ

1− β
AL0η

2

P4 = η2AL0σ +
νβσ

1− β

(
AL0η +

7

5
BL1γ

)
η +

γ2

2
BL1

Let γ ≤ ε
2σ min

(
ε

AL0
, 1−β
AL0

, 1−β
25BL1

)
, and fix the ratio γ/η = 5σ. Then for small enough ε < 0.1247

and large enough noise σ > 1,248

P1 ≤
(
−16

25
× 3σ +

3ε

2σ
+

12ε

50
+

7

5
σ +

ε2

100σ

)
γ ≤ − 3

10
σγ

P3 ≤
(
−4

5
× 2

5
+

1

5
+

(
1− β

2
+

12

5
+

7

5
× β

5

)
ε

50σ
+

ε2

50σ2
+

ε

50σ2

)
γ ≤ − 1

10
γ

(95)

We can also bound P4 as follows:249

P4 ≤
1

1− β
AL0ση

2 +

(
β

1− β
× 7

5
+

5

2

)
BL1σγη

≤ 1

10
εη +

(
β

1− β
× 7

5
+

5

2

)
ε

50
(1− β)η

≤ 1

10
εη +

1

20
εη =

3

20
εη

(96)
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Applying the above estimates and rearranging (94), we have250

G(x0)− F ∗ + P0

≥ E

∑
t∈S

(
3

10
σγ +

1

10
γ‖∇F (xt)‖

)
+
∑
t∈S

(
η

2

(
(1− νβ)‖∇F (xt)‖2 + νβ‖mt‖2

)
− AL0

2
σ2η2 − 3

20
εη‖∇F (xt)‖

)
≥ E

∑
t∈S

(
3

10
σγ +

1

10
γ‖∇F (xt)‖

)
+
∑
t∈S

(
η

2

(
(1− νβ)‖∇F (xt)‖2

)
− AL0

2
σ2η2 − 3

20
εη‖∇F (xt)‖

)
+

1

2
ηνβE

∑
t∈S

(
2ε‖m̃t‖ − ε2

)
(97)

Due to Lemma B.14 (AL0ησ ≤ ε
10 (1− β), BL1γ ≤ ε

50 (1− β)), we clearly have251

E
∑
t∈S

‖m̃t‖

≥
(
1− ε

10

)
E

∑
t∈S

((
1− ε

5

)
‖∇F (xt)‖ −

ε

10

)− E

[∑
τ∈S

(
γ

1− β
(AL0 +BL1‖∇F (xτ )‖)

)]

≥
(
1− 3

10
ε

)
E

∑
t∈S

(‖∇F (xt)‖)

− ε

10
(T − TS)− E

[∑
τ∈S

(
γ

1− β
(AL0 +BL1‖∇F (xτ )‖)

)]
(98)

Define252

U(x) :=

(
1

10
γ − νβ

1− β
BL1εγη

)
‖∇F (x)‖+

(
3

10
σγ − νβ

1− β
AL0εγη

)
V (x) :=

1

2
η(1− νβ)‖∇F (x)‖2 +

(
19

20
νβηε− 3

20
εη

)
‖∇F (x)‖ −

(
1

2
AL0σ

2η2 +
1

2
νβε2η +

1

10
νβε2η

)
(99)

Plugging (98) into (97), we obtain253

G(x0)− F ∗ + P0 ≥ E

∑
t∈S

U(xt) +
∑
t∈S

V (xt)


= E

[
T∑

t=1

(
It∈SU(xt) + It∈SV (xt)

)]
≥ E

[
T−1∑
t=0

min{U(xt), V (xt)}

] (100)

Since254

U(x) ≥
(

1

10
− νβε2

50σ2

)
γ‖∇F (x)‖+

(
3

10
σγ − 1

10σ2
νβε2γ

)
≥ 1

20
γ‖∇F (x)‖+ 1

5
σγ

(101)

255

V (x) ≥ 1

2
η(1− νβ)‖∇F (x)‖2 +

(
19

20
νβηε− 3

20
εη

)
‖∇F (x)‖ −

(
1

20
+

3

5
νβ

)
ε2η

≥ 1

2
η(1− νβ)

(
2ε‖∇F (x)‖ − ε2

)
+

(
19

20
νβηε− 3

20
εη

)
‖∇F (x)‖ −

(
1

20
+

3

5
νβ

)
ε2η

≥ 4

5
εη‖∇F (x)‖ − 4

5
ε2η

(102)
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It clearly follows that min{U(x), V (x)} ≥ 4
5εη‖∇F (x)‖ − 4

5ε
2η. Therefore256

G(x0)− F ∗ + P0 ≥
4

5
εηE

T−1∑
t=0

(‖∇F (x)‖ − ε) (103)

Therefore, as long as T >
5

4ε2η
(G(x0)− F ∗ + P0), we have

1

T
E
[∑T

t=1 ‖∇F (xt)‖
]
< 2ε.257

We finally show G(x0)− F ∗ + P0 = O(F (x0)− F ∗). Using Lemma A.5,258

1

1− β
min

(
γ‖m0‖, η‖m0‖2

)
≤ 1

50
min

(
‖∇F (x0)‖

L1
,
‖∇F (x0)‖2

L0

)
≤ 8

50
(F (x0)−F ∗) (104)

For the term P0, if ‖∇F (x0)‖ = Ω(L0/L1), we can similarly use Lemma A.5 to obtain P0 =259

O(F (x0) − F ∗). If ‖∇F (x0)‖ = O(L0/L1), using L0‖∇F (x0)‖ ≤ L1‖∇F (x0)‖2 and Lemma260

A.5 leads to the result. □261

Appendix C Discussion of the normalized momentum algorithm262

In this section we analyze in detail the theoretical aspects of the normalized momentum algorithm,263

as well as some practical issues. Recall that this algorithm can be seen as a special case of our264

clipping framework. For convenience we re-write it in Algorithm 2.265

Algorithm 2: The Stochastic Normalized Momentum Algorithm(SNM)
Input :Initial point x0, initial momentum m0, the learning rate η, momentum factor β and the

total number of iterations T
1 for i← 1 to T do
2 mt ← βmt−1 + (1− β)∇f(xt−1, ξt−1);

3 xt ← xt−1 − η
mt

‖mt‖
;

We remark that SNM is different from the clipping methods in traditional sense, in that it makes a266

normalized update each iteration. This algorithm has been analyzed in Cutkosky and Mehta [2020]267

for L-smooth functions. In that setting they were able to prove that SNM achieves a complexity of268

O(∆Lσ2ε−4).269

For (L0, L1)-smooth functions, we show that: (a). With carefully chosen momentum parameter270

β and step size η, SNM can achieve a complexity of O(∆L0σ
2ε−4), which is the same as the271

complexity we obtain in Theorem 3.2. (b). There are some practical issues that make SNM less272

favorable than traditional clipping methods (such as the other three special cases of our framework273

discussed in Section 3 of the main paper).274

The following results provides convergence guarantee for Algorithm 2.275

Lemma C.1 Consider the algorithm that starts at x0 and make updates xt+1 = xt−ηmt+1. Define
δt := mt+1 −∇F (xt) be the estimation error. Assume η ≤ c/L1 for some c > 0 and let constants
A = 1 + ec − ec−1

c , B = ec−1
c . Then

F (xt+1)− F (xt) ≤ −
(
η − 1

2
BL1η

2

)
‖∇F (xt)‖+

1

2
AL0η

2 + 2η‖δt‖

And thus, by a telescope sum we have(
1− 1

2
BL1η

) T−1∑
t=0

‖∇F (xt)‖ ≤
F (x0)− F (xT )

η
+

1

2
AL0Tη + 2

T−1∑
t=0

‖δ‖
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Proof: Since ‖xt+1 − xt‖ = ηt, by Lemma A.3 we have276

F (xt+1)− F (xt) ≤ −
η

‖mt+1‖
〈∇F (xt),mt+1〉+

1

2
η2 (AL0 +BL1‖∇F (xt)‖)

≤ η (−‖∇F (xt)‖+ 2‖δt‖) +
1

2
η2 (AL0 +BL1‖∇F (xt)‖)

≤ −
(
η − 1

2
BL1η

2

)
‖∇F (xt)‖+

1

2
AL0η

2 + 2η‖δt‖

where in the second inequality we use Lemma B.1. □277

Theorem C.2 Suppose that Assumptions 1,2 and 4 holds, and ∆ = F (x0) − F ∗ where F ∗ =
infx∈Rd F (x). Let m0 = ∇F (x0) in Algorithm 2 for simplicity, and denote α = 1−β. If we choose

η = Θ
(
min(L−1

1 , L−1
0 ε)α

)
and α = Θ

(
σ−2ε2

)
, then as long as ε = O

(
min

{
L0

L1
, σ
})

, we have

1

T

T−1∑
t=0

E [‖∇F (xt)‖] ≤ ε

holds in T = O(∆L0σ
2ε−4) iterations.278

Proof: Define the estimation errors δt := mt+1 −∇F (xt). Denote S(a, b) := ∇F (a)−∇F (b),279

then for a, b such that ‖a− b‖ = η ≤ c/L1, we can upper bound S(a, b) using Corollary A.4:280

‖S(a, b)‖ ≤ η (AL0 +BL1‖∇F (b)‖) (105)

We can use S(a, b) to get a recursive relationship:281

δt+1 = βmt+1 + (1− β)∇f(xt+1, ξt+1)−∇F (xt+1)

= βS (xt, xt+1) + βδt + (1− β)(∇f(xt+1, ξt+1)−∇F (xt+1))
(106)

Denote δ′t = ∇f(xt, ξt)−∇F (xt), then

δt = β

t−1∑
τ=0

βτS (xt−τ−1, xt−τ ) + (1− β)

t−1∑
τ=0

βτδ′t−τ + (1− β)βtδ′0

Using triangle inequality and plugging in the estimate (105) , we have282

‖δt‖ ≤ (1− β)

∥∥∥∥∥
t∑

τ=0

βτδ′t−τ

∥∥∥∥∥+ βη

t−1∑
τ=0

βτ (AL0 +BL1‖∇F (xt−τ−1)‖) (107)

Taking a telescope summation of 107 and using Assumption 2.4 we obtain283

E

[
T−1∑
t=0

‖δt‖

]
≤ T (1− β)

√√√√+∞∑
τ=0

β2τσ2 +
AL0ηT

1− β
+

BL1η

1− β

T−1∑
t=0

E [‖∇F (xt)‖]

≤
√
αTσ +

ATL0η

α
+

BL1η

α

T−1∑
t=0

E [‖∇F (xt)‖]

(108)

Now we use Lemma C.1:(
1−

(
1

2
+

2

α

)
BL1η

)
E

T−1∑
t=0

‖∇F (xt)‖ ≤
∆

η
+

1

2
AL0Tη + 2

(√
αTσ +

AL0ηT

α

)
If we choose η = Θ

(
min(L−1

1 , L−1
0 ε)α

)
and α = Θ

(
σ−2ε2

)
, then(

1−
(
1

2
+

2

α

)
BL1η

)
= Θ(1)

In this case

1

T
E

T−1∑
t=0

‖∇F (xt)‖ = O
(

∆

ηT
+

1

2
AL0η +

√
ασ +

AL0η

α

)
= O

(
∆

ηT
+ ε

)
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Therefore for T = Θ
(

∆
ηε

)
, we have 1

T E
∑T−1

t=0 ‖∇F (xt)‖ = O(ε). If ε = O(L0/L1), then ∆
ηε284

reduces to ∆L0σ
2ε−4. □285

We have shown the theoretical superiority of Algorithm 2. Specifically, it enjoys the same complex-286

ity as Theorem 3.2. However we notice some potential drawbacks of Algorithm 2:287

• Firstly, the step size of Algorithm 2 is at the order of O
(
ε3
)
, while the step size we chose288

in Theorem 3.2 is O
(
ε2
)
. Previous works have noticed that a smaller step size makes it289

easier to be trapped in a sharp local minima , which may result in worse generalization290

[Kleinberg et al., 2018].291

• Secondly, although the complexity of Algorithm 2 is the same as Theorem 3.2 for small ε, it292

requires a more restrictive upper bound of ε to ensure the ε−4 term dominates. For instance293

with a poor initialization, ∆ may very large. This suggests that in practice, where we do294

not get into a very small neighbourhood of stationary point, the performance of Algorithm295

2 may be worse.296

Appendix D Details of Lower Bounds in Section 3.3297

In this section we discuss the lower bound for SGD in Drori and Shamir [2019] in detail. The298

following result is taken from this paper:299

Theorem D.1 [Theorem 2 in Drori and Shamir [2019]] Consider a first-order method that given300

a function F : Rd → R and an initial point x0 ∈ Rd generates a sequence of points {xi} satisfying301

xt+1 = xt + ηx0,...,xt
· (∇F (xt) + ξt) , t ∈ [T − 1]

where ξi are some random noise vectors, and returns a point xout ∈ Rd as a non-negative linear302

combination of the iterates:303

xout =

T∑
t=0

ζ(t)x0,...,xT
xt

We further assume that the step sizes ηx0,...,xt
and aggregation coefficients ζ

(t)
x0,...,xT are deter-304

ministic functions of the norms and inner products between the vectors x0, . . . , xt,∇F (x0)+305

ξ0, . . . ,∇F (xt) + ξt. Then for any L,∆, σ > 0 and T ∈ N there exists a function F : Rd 7→ R306

with L−Lipschitz gradient, a point x0 ∈ Rd and independent random variables ξt with E [ξt] = 0307

and E
[
‖ξt‖2

]
= σ2 such that ∀t ∈ [T ]308

F (x0)− F (xt)
a.s.
≤ ∆

∇F (xt)
a.s.
= γ

and in addition309

F (x0)− F (xout )
a.s.
≤ ∆+

σ

2L

√
L∆

T
310

∇F (xout )
a.s.
= γ

where γ ∈ Rd is a vector such that311

‖γ‖2 =
σ

2

√
L∆

T

Now we discuss why this shows the optimality of clipped SGD under Assumptions 2.1, 2.2 and 2.4.312

Firstly, Theorem D.1 assumes an upper bound ∆ on F (x0) − F (xt) rather than the one assumed313

in Assumption 2.1 (F (x0) − F ∗ ≤ ∆). However, in fact we only need to assume that F (x0) −314

F (xT ) ≤ ∆ to prove Theorem 3.2 for clipped SGD. The reason is as follows. In fact, since β =315

0 for clipped SGD , the momentum term in the energy function disappears, as well as the term316
νβ

(1−β)2AL0η
2σ‖∇F (x0)‖ in (94). So we no longer need to use Lemma A.5 to bound the term317

‖∇F (x0)‖. The rest of the proof only needs F (x0) − F (xT ) ≤ ∆ (which is used in the telescope318

sum in (94)).319
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Secondly, although Theorem D.1 only assume that the variance of stochastic gradient is bounded, in320

their construction the noise is actually defined as321

P (ξt = ±σet+1) =
1

2
, t ∈ [T − 1] (109)

Therefore the norm of the noise is bounded by σ, and the example used to prove Theorem D.1 still322

works under Assumption 2.4.323

Now suppose we need an output such that ‖∇f(xout)‖ = ‖γ‖ ≤ ε, then it follows from Theorem324

D.1 that T = Ω
(
L∆σ2ε−4

)
. Therefore we have shown the optimality of clipped SGD in this class325

of algorithms, as stated in Section 3.3.326

Appendix E Justifications on the Mixed Clipping327

We will show in this section that combining gradient and momentum can be better than using only328

one of them. We consider a basic optimization problem: minx∈R F (x) = minx∈R Eξ[f(x, ξ)]329

where f(x, ξ) = 1
2 (x + ξ)2, and the noise ξ ∈ R follows the uniform distribution U [−

√
3,
√
3] so330

that E[ξ2] = 1. To simplify the analysis, we set γ in Algorithm 1 to be sufficiently large such that331

clipping will never be triggered, since the function F (x) = 1
2x

2 is (1,0)-smooth.332

In the above optimization problem, the general update formula can be written as:333

mt+1 = βmt + (1− β)(xt + ξt)

xt+1 = xt − νηmt+1 − (1− ν)η(xt + ξt)
(110)

We have the following proposition:334

Proposition E.1 Let x0,m0 ∈ R be arbitrary real numbers. Let ξis be i.i.d. random noises such335

that E[ξ2i ] = 1. Let the sequence {xt} be defined in (110), where 0 < η < 1, 0 ≤ β < 1 and336

0 ≤ ν ≤ 1 are constant hyper-parameters. Then in the limit337

lim
t→∞

E[F (xt)] =
η

2
× (1 + β)(1− β + βη)− νηβ(1 + 3β − 2νβ)

(2− η)(1 + β)(1− β + βη)− νηβ(4β − η − 3βη + 2νηβ)
(111)

We now analyze three cases based on the proposition:338

• Only use gradient in an update. Set ν = 0 in (111), we obtain limt→∞ E[F (xt)] =
η

4−2η .339

• Only use momentum in an update. Set ν = 1 in (111), we obtain limt→∞ E[F (xt)] =340
η

4−2η 1−β
1+β

.341

• Combine gradient and momentum in an update. It can be verified that for proper 0 < ν < 1,342

(111) is less than η

4−2η 1−β
1+β

(therefore less than η
4−2η ). Furthermore, when β → 1, a straight-343

forward calculation shows that limt→∞ E[F (xt)]→ η
4

1−ν −2η
. Thus limt→∞ E[F (xt)] can344

be arbitrarily close to zero if ν is close to 1. However, this does not happen in the previous345

two cases, where limt→∞ E[F (xt)] there must be greater than η
4 .346

We further plot the value of (111) with respect to ν and β in Figure 1 to visualize the above finding.347

It can be clearly seen that the using both gradient and momentum with a proper interpolation factor348

ν outperforms both SGD and SGD with momentum by a large margin (Figure 1(a)). Furthermore,349

we can drive β → 1 to further improve convergence (Figure 1(b)), while in SGD with momentum350

we can not.351

Although we use the simple function F (x) = 1
2x

2 as an example, similar result exists in any gen-352

eral quadratic form with positive definite Hessian. Furthermore, the experiments in Section 4 also353

demonstrate that the mixed clipping outperforms both gradient clipping and momentum clipping.354
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Figure 1: Convergence value of different hyper-parameters η, β, ν over stochastic function f(x, ξ) =
1
2 (x + ξ)2. The mixed update with proper ν outperforms both SGD and SGD with momentum
by a large margin. Furthermore, for the mixed update we can drive β → 1 to further improve
convergence, while for SGD with momentum we can not.

E.1 Proof of Proposition E.1355

E.1.1 Proof of a simple case356

For clarity, we first assume ν = 1. Consider a specific time step t. We first calculate E[m2
t ].357

E[m2
t+1] = E[(βmt + (1− β)(xt + ξt))

2]

= β2E[m2
t ] + (1− β)2(E[x2

t ] + E[ξ2t ]) + 2(1− β)2E[xtξt] + 2β(1− β)(E[mtxt] + E[mtξt])

= β2E[m2
t ] + (1− β)2(E[x2

t ] + 1) + 2β(1− β)E[mtxt])
(112)

where we use the fact that ξt is independent with xt and mt. We then calculate E[x2
t ].358

E[x2
t+1] = E[(xt − ηmt)

2]

= E[x2
t + η2m2

t+1 − 2ηxtmt+1]

= (1 + η2(1− β)2 − 2η(1− β))E[x2
t ] + η2β2E[m2

t ] + η2(1− β)2 + 2(η2β(1− β)− ηβ)E[mtxt]
(113)

where in the last equation we use (112). To complete the recursive relationship, we also need to359

calculate E[xt+1mt+1].360

E[xt+1mt+1] = E[mt+1xt − ηm2
t+1]

= E[βmtxt + (1− β)x2
t − ηm2

t+1]

= (1− β)(1− η(1− β))E[x2
t ]− ηβ2E[m2

t ]− η(1− β)2 + (β − 2ηβ(1− β))E[mtxt]
(114)

Combining (112), (113) and (114), we can write the recursive relationship into a matrix form:361  Ex2
t+1

Em2
t+1

Ext+1mt+1

1

 =

 1 + η2(1− β)2 − 2η(1− β) η2β2 2(η2β(1− β)− ηβ) η2(1− β)2

(1− β)2 β2 2β(1− β) (1− β)2

(1− β)(1− η(1− β)) −ηβ2 β − 2ηβ(1− β) −η(1− β)2

0 0 0 1


 Ex2

t

Em2
t

Extmt

1


(115)

Denote the above matrix as M . After a straightforward calculation, we can find that λ1 = 1 is an
eigenvalue of M , and

u =

(
−η 1 + β

1− β
,−2, η, η − 2

1 + β

1− β

)T

is the only eigenvector associated with λ1 = 1. Similarly, λ2 = β is also an eigenvalue of M . Let362

the other two eigenvalues be λ3 and λ4, then363

λ1λ2λ3λ4 = detM = β3

λ1 + λ2 + λ3 + λ4 = trM = 1− β + (η(1− β)− β − 1)2
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It follows that λ3λ4 = β2 and λ3 + λ4 = (η(1− β)− β − 1)2 − 2β. Since (1 + β − η(1− β))2 <364

(1 + β)2, we have λ3 + λ4 < 1 + β2. Therefore |λ3| < 1 and |λ4| < 1 (note that λ3 and λ4 can be365

composite numbers). If η < 1, we can further conclude that the four eigenvalues are different from366

each other (otherwise λ3 = λ4 = β, which contradicts to λ3 + λ4 = (η(1− β)− β − 1)2 − 2β).367

Based on the above calculation, for any initial vector v, limt→∞ M tv converges to a vector propor-
tional to u. In our case, (Ex2

0,Em2
0,Ex0m0, 1)

T = (0, 0, 0, 1)T , and we also know that the the last
element of the vector limt→∞ M t(0, 0, 0, 1)T is 1. As a result,

lim
t→∞

M t(0, 0, 0, 1)T = − 1− β

2(1 + β)
u

Namely,
lim
t→∞

E[x2
t+1] =

η

2− η 1−β
1+β

E.1.2 Proof of the general case368

Now we prove Proposition E.1 for general ν.369

E[x2
t+1] = (1− η + νηβ)2E[x2

t ] + ν2η2β2E[m2
t ]− 2νηβ(1 + νηβ − η)E[mtxt] + (νη(1− β) + (1− ν)η)2

(116)

E[xt+1mt+1] = (1− η + νηβ)(1− β)E[x2
t ]− νηβ2E[m2

t ] + (1− η − νη + 2νηβ)βE[xtmt]

− νη(1− β)2 − (1− ν)η(1− β)
(117)

Combining (112), (116) and (117), we obtain the following recursive matrix M :370

M =

 (1− η + νηβ)2 ν2η2β2 −2νηβ(1 + νηβ − η) (νη(1− β) + (1− ν)η)2

(1− β)2 β2 2β(1− β) (1− β)2

(1− η + νηβ)(1− β) −νηβ2 (1− η − νη + 2νηβ)β −νη(1− β)2 − (1− ν)η(1− β)
0 0 0 1


Using the same calculation as in the previous section, we finally get371

lim
t→∞

E[x2
t+1] = η

(1 + β)(1− β + βη)− νηβ(1 + 3β − 2νβ)

(2− η)(1 + β)(1− β + βη)− νηβ(4β − η − 3βη + 2νηβ)
(118)

Appendix F Soft Clipping372

Algorithm 3: The General Soft Clipping Framework
Input :Initial point x0, learning rate η, clipping parameter γ, momentum β ∈ [0, 1),

interpolation parameter ν ∈ [0, 1] and the total number of iterations T
1 Initialize m0 arbitrarily;
2 for t← 0 to T − 1 do
3 Compute the stochastic gradient∇f(xt, ξt) for the current point xt;
4 mt+1 ← βmt + (1− β)∇f(xt, ξt);

5 xt+1 ← xt −
[
νη

mt+1

1 + η‖mt+1‖/γ
+ (1− ν)η

∇f(xt, ξt)

1 + η‖∇f(xt, ξt)‖/γ

]
;

For Algorithm 1, as long as the norm of the gradient (or momentum) exceeds a constant, it is then373

clipped; we refer to this form of clipping as hard clipping. One can also consider a soft form of374

clipping, as presented in Algorithm 3.375

We take ν = 0 for example to analyze soft clipping. For any gradient norm lg, the norm of the376

update lu is a function of lg:377

lu = hsoft(lg) = η
lg

1 + ηlg/γ
(119)
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Figure 2: The update norm lu w.r.t. the gradient norm lg for hard clipping and soft clipping (η =
1, γ = 1).

For hard clipping, we can similarly write378

lu = hhard(lg) = min(ηlg, γ) (120)

A straightforward calculation shows that379

1

2
min(ηlg, γ) ≤ η

lg
1 + ηlg/γ

≤ min(ηlg, γ) (121)

Therefore soft clipping is in fact equivalent to hard clipping up to a constant factor 2 in the step size380

choice. Thus it’s easy to see that our results also hold for Algorithm 3. However, compared to hard381

clipping, soft clipping has the advantage that the function hsoft in (119) is smooth while hhard in (120)382

is not, as shown in Figure 2. We also empirically observe that the training curve of soft clipping is383

more smooth than hard clipping.384

Appendix G Experimental Details in Section 4385

Based on the discussion in Appendix F, we use the soft version of clipping algorithms in all the386

experiments.387

G.1 CIFAR-10388

The CIFAR-10 dataset contains 50k images for training and 10k for testing. All the images are389

32×32 RGB bitmaps. We use the standard ResNet-32 architecture. The total number of parameters390

is 466,906. For all algorithms, we use mini-batch size 128 and weight decay 5 × 10−4. For the391

baseline algorithm, we use SGD with momentum using learning rate lr = 1.0 and momentum392

factor β = 0.9. Note that we use the momentum defined in Algorithm 1, which is equivalent to a393

Pytorch implementation with lr = 0.1 and β = 0.9. We optimize ResNet-32 for 150 epochs, and394

decrease the learning rate at epoch 80 and epoch 120. For other algorithms, we perform a course395

grid search for lr an γ, while keeping all the training strategy the same as SGD. We use 5 random396

seeds ranging from 2016 to 2020, and the results are similar. The plot in Figure 2 uses the random397

seed 2020.398

G.2 PTB399

The Penn Treebank dataset has a vocabulary of size 10k, and 887k/70k/78k words for train-400

ing/validation/testing. We use the state-of-the-art AWD-LSTM architecture using hidden size 1150401

and embedding size 400. The total number of parameters is 23,941,600. For the baseline algorithm,402

we follow Merity et al. [2017] who use averaged SGD clipping without momentum using learning403

rate lr = 30 and γ = 7.5. Note that here γ = 7.5 means that the gradient norm will be clipped to404

be no more than 0.25. We use the same dropout rate and regularization hyper-parameters in [Merity405

et al., 2017]. We train AWD-LSTM for 250 epochs, and averaging is triggered when the validation406

perplexity stops improving. For other algorithms, we perform a course grid search for lr an γ, while407

keeping all the training strategy the same as SGD clipping. We use 5 random seeds ranging from408

2016 to 2020, and the results are similar. The plot in Figure 2 uses the random seed 2020.409
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Figure 3: Experimental results on ImageNet.

G.3 ImageNet410

We also conduct experiments on ImageNet dataset. This dataset contains about 1.28 million training411

images and 50k validation images with various sizes. We train the standard ResNet-50 architecture412

on this dataset. The total number of parameters is 25,557,032. We use a batch size of 256 on 8 GPUs413

and a weight decay of 10−4. For the baseline algorithm, we choose SGD with learning rate lr = 1.0414

and momentum β = 0.9, following Goyal et al. [2017]. Note that we use the momentum defined in415

Algorithm 1, which is equivalent to a Pytorch implementation with lr = 0.1 and β = 0.9. We train416

the ResNet-50 for 90 epochs, and decrease the learning rate in epoch 30, epoch 60 and epoch 80.417

For the other algorithms, we perform a course grid search for lr an γ, while keeping all the training418

strategy the same as SGD.419

Figure 3 plot the training loss curve and validation accuracy curve on ImageNet. All the algorithms420

reach a validation accuracy of about 76%. However, all the clipping algorithms train faster than the421

baseline SGD. Mixed clipping performs the best among the four algorithms.422

Appendix H Additional experiments in (L0, L1)-smooth setting using MNIST423

dataset424

In this section, we are aiming to construct an optimization problem which provably satisfies the425

(L0, L1)-smoothness condition in this paper rather than the traditional L-smoothness condition. We426

then conduct experiments in both deterministic setting and stochastic setting.427

We first cosider a binary classification problem. Suppose a dataset D contains n samples, denoted428

as {(xi, yi)}ni=1, where xi is a d-dimensional input vector and yi ∈ {−1,+1} is the corresponding429

label. A discriminant function f with parameter w, b is a mapping from Rd to R such that fw,b(x) =430

wTx+ b. We use the empirical error under the exponential loss function (122):431

L(w, b) = E
(x,y)∼D

exp(−yfw,b(x)) =
1

n

n∑
i=1

exp(−yi(wTxi + b)) (122)

In fact, if the exponential function exp(·) is replaced by log(1 + exp(·)), the problem becomes the432

well-known logistic regression. However, logistic loss has bounded second-order derivative (thus433

is L-smooth), while exp(·) does not. Furthermore, exponential function is (0,1)-smooth, thus we434

expect L(w, b) is also (L0, L1)-smooth for some L0, L1 (see the following proposition). This is435

why we use exponential loss here. We point out that such exponential loss is also used in a variety436

of algorithms, such as boosting (AdaBoost).437

When the dataset is linearly separable, parameter w will be driven to infinity through optimization,438

thus adding some regularization is prevalent in linear classification. We use the following term (123)439

rather than L2 norm for regularization, in order to be compatible with L(w, b).440

Rλ(w) =

d∑
i=1

[
exp(λwi) + exp(−λwi)

2
− 1

]
(123)

28



0 100 200 300 400 500
epoch

2

3

4

5

6

7

8

tra
in
in
g 
lo
  

{SGD+Mom, lr: 0.003125, β: 0.9}
{SGDClip, lr: 0.05, γ: 0.1}
{MomClip, lr: 1.6, γ: 0.1, β: 0.9}
{MixClip, lr: 6.0, γ: 0.08, β: 0.9}

(a) The deterministic setting

0 10 20 30 40 50
epoch

1.5

1.8

2.1

2.4

2.7

3.0

3.3

3.6

tra
in
in
g 
lo
  

{SGD+Mom, lr: 0.0026, β: 0.9}
{SGDClip, lr: 0.025, γ: 0.4}
{MomClip, lr: 0.05, γ: 0.1, β: 0.9}
{MixClip, lr: 0.05, γ: 0.4, β: 0.9}
{MixClip, lr: 0.05, γ: 0.4, β: 0.999}
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Figure 4: Experimental results on MNIST.

In fact, Rλ(w) is similar to weight decay regularization in that Rλ(w) =
1
2λ

2‖w‖2 + O(λ4‖w‖4)441

when w is small.442

The total loss Eλ(w, b) = L(w, b)+Rλ(w). We now claim that Eλ(w, b) is indeed (L0, L1)-smooth.443

Proposition H.1 Assume bias term b = 0 for simplicity. Suppose the data points have bounded
norm, i.e. ‖xi‖ ≤ R for all i and λ < R. Let the loss function Eλ(w, 0) be defined above. Then for
every ρ1 > 0, ρ2 > 0, ρ = ρ1 + ρ2, Eλ(w, 0) is (L0, L1)-smooth w.r.t w for

L0 = max

(
(1 + ρ)

√
d

λ
R2(R+ dλ), (R2 + dλ2)

(
n(R2 + dλ2)

ρ1R2

)1+ 1
ρ2

)
, L1 =

(1 + ρ)
√
d

λ
R2.

We use MNIST dataset in this section, which contains 60,000 hand-writing training images. We only444

evaluate the training speed for different algorithms on the training set rather than the generalization445

capability. The loss functions is defined to be the sum of ten losses, each of which corresponds to446

the loss of a binary classification problem to recognize number 0 to 9. Regularization coefficient λ447

is set to be 0.02.448

To compare different algorithms, we choose the best hyperparameters lr and γ for each algorithm449

based on a careful grid search. ν is set to be 0.7 for mixed clipping. The parameter initalization and450

all inputs in the schocastic setting are the same for all algorithms. For each run, we average the loss451

of the last 5 epoch in order to reduce variance. In the deterministic setting we train 500 epochs, each452

of which uses the entire dataset. In the stochastic setting we train 50 epochs with a mini-batch size453

200. We run on 5 different random seeds ranging from 2016 to 2020 altogether and average their454

results.455

Figure 4 plots the results. It is clear that in both settings, clipping is vital to a fast convergence. Also,456

momentum helps training, and mixed clipping performs the best in the stochastic setting.457

H.1 Proof of Proposition H.1458

Consider the augmented dataset D̃ containing n+ 2d data points {zi}n+2d
i=1 , with459

zi =

{ −xiyi i ≤ n
λei−n n < i ≤ n+ d
−λei−n−d n+ d < i ≤ n+ 2d

(124)

where ei is the vector with all zero entries except the ith entry which is one. Denote coefficient460

vector c ∈ Rn+2d with elements ci = 1/n if i ≤ n and ci = 1/2 otherwise. It directly follows that461

the original problem with regularization term can be written as:462

Eλ(w) =
1

n

n∑
i=1

exp(wT zi) +
1

2

n+2d∑
i=n+1

exp(wT zi)− d =

n+2d∑
i=1

ci exp(w
T zi)− d (125)
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Let M = max
i∈[n+2d]

wT zi. Let ρ1 > 0, ρ2 > 0 be two constants. Pick M0 =
(
1 + 1

ρ2

)
log n(R2+dλ2)

ρ1R2 .463

We consider the following two cases:464

(1)M ≤M0. In this case ‖∇2E(w)‖ can be directly upper bounded:465

‖∇2E(w)‖ ≤ 1

n

n∑
i=1

exp(wT zi)‖zi‖2 +
1

2

n+2d∑
i=n+1

exp(wT zi)‖zi‖2

≤ (R2 + dλ2) exp(M)

≤ (R2 + dλ2)

(
n(R2 + dλ2)

ρ1R2

)1+ 1
ρ2

(126)

The first inequality in (126) uses the triangular inequality of matrix spectral norm and ‖zzT ‖ =466

‖zT z‖ = ‖z‖2.467

(2)M > M0. Decompose M0 to be M0 = M1 +M2 where

M1 = log
n(R2 + dλ2)

ρ1R2
,M2 =

1

ρ2
log

n(R2 + dλ2)

ρ1R2
.

Define set I = {i ∈ [n+ 2d] : wT zi ≥M −M1} and I2 = {i ∈ [n+ 2d] : wT zi < 0}. Then468

‖∇E(w)‖ =
n+2d∑
i=1

ci exp(w
T zi)zi (127)

≥
n+2d∑
i=1

ci exp(w
T zi)

wT zi
‖w‖

(128)

≥
∑
i∈I

ci exp(w
T zi)

M −M1

‖w‖
−
∑
i∈I2

ci‖zi‖ (129)

≥
∑
i∈I

ci exp(w
T zi)

M −M1

‖w‖
− (R+ dλ) (130)

In (128) we use the Cauchy-Schwartz inequality; In (129) we partition the index {i : i ∈ [n+ 2d]}469

to three subsets I , I2 and [n+ 2d]\(I ∪ I2), and use the lower bound and upper bound of wT zi > 0470

for each set.471

Similar, we can upper bound ‖∇2E(w)‖:472

‖∇2E(w)‖ ≤
∑
i∈I

ci exp(w
T zi)‖zi‖2 +

∑
i/∈I

ci exp(w
T zi)‖zi‖2 (131)

≤
∑
i∈I

ci exp(w
T zi)R

2 + (R2 + dλ2) exp(M −M1) (132)

To bound exp(M1), we again bound ‖∇E(w)‖ from a different perspective:473

‖∇E(w)‖ ≥
∑
i∈I

ci exp(w
T zi)

wT zi
‖w‖

−
∑
i∈I2

ci‖zi‖ (133)

≥ 1

n
exp(M)

M

‖w‖
− (R+ dλ) (134)

where (134) is obtained by selecting the i with the largest wT zi which is equal to M . Substitute474

(130) and (134) into (132) then we get475

‖∇2E(w)‖ ≤
(

R2

M −M1
+

n(R2 + dλ2)

M exp(M1)

)
‖w‖(‖∇E(w)‖+R+ dλ) (135)

=

(
R2

M −M1
+

ρ1R
2

M

)
‖w‖(‖∇E(w)‖+R+ dλ) (136)
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Since M = max
i∈[n+2d]

wT zi implies that |λwk| ≤ M for all k ∈ [d] from (124), we can upper bound476

the norm of w: ‖w‖ ≤ M
√
d

λ . Substitute this into (136) we get477

‖∇2E(w)‖ ≤
(

M

M −M1
+ ρ1

) √
d

λ
R2(‖∇E(w)‖+R+ dλ) (137)

≤ (1 + ρ1 + ρ2)
√
d

λ
R2(‖∇E(w)‖+R+ dλ) (138)

Combining the above two cases concludes the proof.478
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