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Abstract

In reinforcement learning, an agent attempts to learn high-performing behaviors
through interacting with the environment, such behaviors are often quantified in
the form of a reward function. However some aspects of behavior—such as ones
which are deemed unsafe and to be avoided—are best captured through constraints.
We propose a novel approach called First Order Constrained Optimization in Policy
Space (FOCOPS) which maximizes an agent’s overall reward while ensuring the
agent satisfies a set of cost constraints. Using data generated from the current policy,
FOCOPS first finds the optimal update policy by solving a constrained optimization
problem in the nonparameterized policy space. FOCOPS then projects the update
policy back into the parametric policy space. Our approach has an approximate
upper bound for worst-case constraint violation throughout training and is first-
order in nature therefore simple to implement. We provide empirical evidence that
our simple approach achieves better performance on a set of constrained robotics
locomotive tasks.

1 Introduction

In recent years, Deep Reinforcement Learning (DRL) saw major breakthroughs in several challenging
high-dimensional tasks such as Atari games (Mnih et al., 2013, 2016; Van Hasselt et al., 2016;
Schaul et al., 2015; Wang et al., 2017), playing go (Silver et al., 2016, 2018), and robotics (Peters
and Schaal, 2008; Schulman et al., 2015, 2017b; Wu et al., 2017; Haarnoja et al., 2018). However
most modern DRL algorithms allow the agent to freely explore the environment to obtain desirable
behavior, provided that it leads to performance improvement. No regard is given to whether the
agent’s behavior may lead to negative or harmful consequences. Consider for instance the task
of controlling a robot, certain maneuvers may damage the robot, or worse harm people around it.
RL safety (Amodei et al., 2016) is a pressing topic in modern reinforcement learning research and
imperative to applying reinforcement learning to real-world settings.

Constrained Markov Decision Processes (CMDP) (Kallenberg, 1983; Ross, 1985; Beutler and Ross,
1985; Ross and Varadarajan, 1989; Altman, 1999) provide a principled mathematical framework
for dealing with such problems as it allows us to naturally incorporate safety criteria in the form of
constraints. In low-dimensional finite settings, an optimal policy for CMDPs with known dynamics
can be found by linear programming (Kallenberg, 1983) or Lagrange relaxation (Ross, 1985; Beutler
and Ross, 1985).

While we can solve problems with small state and action spaces via linear programming and value
iteration, function approximation is required in order to generalize over large state spaces. Based
on recent advances in local policy search methods (Kakade and Langford, 2002; Peters and Schaal,
2008; Schulman et al., 2015), Achiam et al. (2017) proposed the Constrained Policy Optimization
(CPO) algorithm. However policy updates for the CPO algorithm involve solving an optimization
problem through Taylor approximations and inverting a high-dimensional Fisher information matrix.
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These approximations often result in infeasible updates which would require additional recovery
steps, this could sometimes cause updates to be backtracked leading to a waste of samples.

In this paper, we propose the First Order Constrained Optimization in Policy Space (FOCOPS)
algorithm. FOCOPS attempts to answer the following question: given some current policy, what
is the best constraint-satisfying policy update? FOCOPS provides a solution to this question in the
form of a two-step approach. First, we will show that the best policy update has a near-closed form
solution when attempting to solve for the optimal policy in the nonparametric policy space rather
than the parameter space. However in most cases, this optimal policy is impossible to evaluate.
Hence we project this policy back into the parametric policy space. This can be achieved by drawing
samples from the current policy and evaluating a loss function between the parameterized policy
and the optimal policy we found in the nonparametric policy space. Theoretically, FOCOPS has
an approximate upper bound for worst-case constraint violation throughout training. Practically,
FOCOPS is extremely simple to implement since it only utilizes first order approximations. We
further test our algorithm on a series of challenging high-dimensional continuous control tasks
and found that FOCOPS achieves better performance while maintaining approximate constraint
satisfaction compared to current state of the art approaches, in particular second-order approaches
such as CPO.

2 Preliminaries

2.1 Constrained Markov Decision Process

Consider a Markov Decision Process (MDP) (Sutton and Barto, 2018) denoted by the tuple
(S,A, R, P, µ) where S is the state space, A is the action space, P : S × A × S → [0, 1]
is the transition kernel, R : S × A → R is the reward function, µ : S → [0, 1] is the ini-
tial state distribution. Let π = {π(a|s) : s ∈ S, a ∈ A} denote a policy, and Π denote the
set of all stationary policies. We aim to find a stationary policy that maximizes the expected
discount return J(π) := Eτ∼π [

∑∞
t=0 γ

tR(st, at)]. Here τ = (s0, a0, . . . , ) is a sample tra-
jectory and γ ∈ (0, 1) is the discount factor. We use τ ∼ π to indicate that the trajectory
distribution depends on π where s0 ∼ µ, at ∼ π(·|st), and st+1 ∼ P (·|st, at). The value

function is expressed as V π(s) := Eτ∼π
[∑∞

t=0 γ
tR(st, at)

∣∣∣∣s0 = s

]
and action-value function

as Qπ(s, a) := Eτ∼π
[∑∞

t=0 γ
tR(st, at)

∣∣∣∣s0 = s, a0 = a

]
. The advantage function is defined as

Aπ(s, a) := Qπ(s, a)− V π(s). Finally, we define the discounted future state visitation distribution
as dπ(s) := (1− γ)

∑∞
t=0 γ

tP (st = s|π).

A Constrained Markov Decision Process (CMDP) (Kallenberg, 1983; Ross, 1985; Altman, 1999)
is an MDP with an additional set of constraints C which restricts the set of allowable policies. The
set C consists of a set of cost functions Ci : S × A → R, i = 1, . . . ,m. Define the Ci-return as
JCi(π) := Eτ∼π [

∑∞
t=0 γ

tCi(s, a)]. The set of feasible policies is then ΠC := {π ∈ Π : JCi(π) ≤
bi, i = 1, . . . ,m}. The reinforcement learning problem w.r.t. a CMDP is to find a policy such that
π∗ = argmaxπ∈ΠC J(π).

Analogous to the standard V π , Qπ , and Aπ for return, we define the cost value function, cost action-
value function, and cost advantage function as V πCi , Q

π
Ci

, and AπCi where we replace the reward R
with Ci. Without loss of generality, we will restrict our discussion to the case of one constraint with
a cost function C. However we will briefly discuss in later sections how our methodology can be
naturally extended to the multiple constraint case.

2.2 Solving CMDPs via Local Policy Search

Typically, we update policies by drawing samples from the environment, hence we usually consider a
set of parameterized policies (for example, neural networks with a fixed architecture) Πθ = {πθ :
θ ∈ Θ} ⊂ Π from which we can easily evaluate and sample from. Conversely throughout this paper,
we will also refer to Π as the nonparameterized policy space.

Suppose we have some policy update procedure and we wish to update the policy at the kth iteration
πθk to obtain πθk+1

. Updating πθk within some local region (i.e. D(πθ, πθk) < δ for some divergence
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measure D) can often lead to more stable behavior and better sample efficiency (Peters and Schaal,
2008; Kakade and Langford, 2002; Pirotta et al., 2013). In particular, theoretical guarantees for policy
improvement can be obtained when D is chosen to be DKL (πθ‖πθk) (Schulman et al., 2015; Achiam
et al., 2017).

However solving CMDPs directly within the context of local policy search can be challenging and
sample inefficient since after each policy update, additional samples need to be collected from the
new policy in order to evaluate whether the C constraints are satisfied. Achiam et al. (2017) proposed
replacing the cost constraint with a surrogate cost function which evaluates the constraint JC(πθ)
using samples collected from the current policy πθk . This surrogate function is shown to be a good
approximation to JC(πθ) when πθ and πθk are close w.r.t. the KL divergence. Based on this idea, the
CPO algorithm (Achiam et al., 2017) performs policy updates as follows: given some policy πθk , the
new policy πθk+1

is obtained by solving the optimization problem

maximize
πθ∈Πθ

E
s∼dπθk
a∼πθ

[Aπθk (s, a)] (1)

subject to JC(πθk) +
1

1− γ
E

s∼dπθk
a∼πθ

[
A
πθk
C (s, a)

]
≤ b (2)

D̄KL(πθ ‖ πθk) ≤ δ. (3)

where D̄KL(πθ ‖ πθk) := Es∼dπθk [DKL (πθ‖πθk) [s]]. We will henceforth refer to constraint (2) as
the cost constraint and (3) as the trust region constraint. For policy classes with a high-dimensional
parameter space such as deep neural networks, it is often infeasible to solve Problem (1-3) directly in
terms of θ. Achiam et al. (2017) solves Problem (1-3) by first applying first and second order Taylor
approximation to the objective and constraints, the resulting optimization problem is convex and can
be solved using standard convex optimization techniques.

However such an approach introduces several sources of error, namely (i) Sampling error resulting
from taking sample trajectories from the current policy (ii) Approximation errors resulting from
Taylor approximations (iii) Solving the resulting optimization problem post-Taylor approximation
involves taking the inverse of a Fisher information matrix, whose size is equal to the number of
parameters in the policy network. Inverting such a large matrix is computationally expensive to
attempt directly hence the CPO algorithm uses the conjugate gradient method (Strang, 2007) to
indirectly calculate the inverse. This results in further approximation errors. In practice the presence
of these errors require the CPO algorithm to take additional steps during each update in the training
process in order to recover from constraint violations, this is often difficult to achieve and may not
always work well in practice. We will show in the next several sections that our approach is able to
eliminate the last two sources of error and outperform CPO using a simple first-order method.

2.3 Related Work

In the tabular case, CMDPs have been extensively studied for different constraint criteria (Kallenberg,
1983; Beutler and Ross, 1985, 1986; Ross, 1989; Ross and Varadarajan, 1989, 1991; Altman, 1999).

In high-dimensional settings, Chow et al. (2017) proposed a primal-dual method which is shown to
converge to policies satisfying cost constraints. Tessler et al. (2019) introduced a penalized reward
formulation and used a multi-timescaled approach for training an actor-critic style algorithm which
guarantees convergence to a fixed point. However multi-timescaled approaches impose stringent
requirements on the learning rates which can be difficult to tune in practice. We note that neither of
these methods are able to guarantee cost constraint satisfaction during training.

Several recent work leveraged advances in control theory to solve the CMDP problem. Chow et al.
(2018, 2019) presented a method for constructing Lyapunov function which guarantees constraint-
satisfaction during training. Stooke et al. (2020) combined PID control with Lagrangian methods
which dampens cost oscillations resulting in reduced constraint violations.

Recently Yang et al. (2020) independently proposed the Projection-Based Constrained Policy Opti-
mization (PCPO) algorithm which utilized a different two-step approach. PCPO first finds the policy
with the maximum return by doing one TRPO (Schulman et al., 2015) update. It then projects this
policy back into the feasible cost constraint set in terms of the minimum KL divergence. While PCPO
also satisfies theoretical guarantees for cost constraint satisfaction, it uses second-order approxima-
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tions in both steps. FOCOPS is first-order which results in a much simpler algorithm in practice.
Furthermore, empirical results from PCPO does not consistently outperform CPO.

The idea of first solving within the nonparametric space and then projecting back into the parameter
space has a long history in machine learning and has recently been adopted by the RL community.
Abdolmaleki et al. (2018) took the “inference view” of policy search and attempts to find the desired
policy via the EM algorithm, whereas FOCOPS is motivated by the “optimization view” by directly
solving the cost-constrained trust region problem using a primal-dual approach then projecting the
solution back into the parametric policy space. Peters et al. (2010) and Montgomery and Levine (2016)
similarly took an optimization view but are motivated by different optimization problems. Vuong
et al. (2019) proposed a general framework exploring different trust-region constraints. However to
the best of our knowledge, FOCOPS is the first algorithm to apply these ideas to cost-constrained RL.

3 Constrained Optimization in Policy Space

Instead of solving (1-3) directly, we use a two-step approach summarized below:

1. Given policy πθk , find an optimal update policy π∗ by solving the optimization problem
from (1-3) in the nonparameterized policy space.

2. Project the policy found in the previous step back into the parameterized policy space Πθ by
solving for the closest policy πθ ∈ Πθ to π∗ in order to obtain πθk+1

.

3.1 Finding the Optimal Update Policy

In the first step, we consider the optimization problem

maximize
π∈Π

E
s∼dπθk
a∼π

[Aπθk (s, a)] (4)

subject to JC(πθk) +
1

1− γ
E

s∼dπθk
a∼π

[
A
πθk
C (s, a)

]
≤ b (5)

D̄KL(π ‖ πθk) ≤ δ (6)

Note that this problem is almost identical to Problem (1-3) except the parameter of interest is now the
nonparameterized policy π and not the policy parameter θ. We can show that Problem (4-6) admits
the following solution (see Appendix A of the supplementary material for proof):

Theorem 1. Let b̃ = (1− γ)(b− J̃C(πθk)). If πθk is a feasible solution, the optimal policy for (4-6)
takes the form

π∗(a|s) =
πθk(a|s)
Zλ,ν(s)

exp

(
1

λ

(
Aπθk (s, a)− νAπθkC (s, a)

))
(7)

where Zλ,ν(s) is the partition function which ensures (7) is a valid probability distribution, λ and ν
are solutions to the optimization problem:

min
λ,ν≥0

λδ + νb̃+ λ E
s∼dπθk
a∼π∗

[logZλ,ν(s)] (8)

The form of the optimal policy is intuitive, it gives high probability mass to areas of the state-action
space with high return which is offset by a penalty term times the cost advantage. We will refer to the
optimal solution to (4-6) as the optimal update policy. We also note that it is possible to extend our
results to accommodate for multiple constraints by introducing Lagrange multipliers ν1, . . . , νm ≥ 0,
one for each cost constraint and applying a similar duality argument.

Another desirable property of the optimal update policy π∗ is that for any feasible policy πθk , it
satisfies the following bound for worst-case guarantee for cost constraint satisfaction from Achiam
et al. (2017):

JC(π∗) ≤ b+

√
2δγεπ

∗

C

(1− γ)2
(9)

where επ
∗

C = maxs

∣∣∣Ea∼π[A
πθk
C (s, a)]

∣∣∣.
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3.2 Approximating the Optimal Update Policy

When solving Problem (4-6), we allow π to be in the set of all stationary policies Π thus the resulting
π∗ is not necessarily in the parameterized policy space Πθ and we may no longer be able to evaluate
or sample from π∗. Therefore in the second step we project the optimal update policy back into the
parameterized policy space by minimizing the loss function:

L(θ) = E
s∼dπθk

[DKL (πθ‖π∗) [s]] (10)

Here πθ ∈ Πθ is some projected policy which we will use to approximate the optimal update policy.
We can use first-order methods to minimize this loss function where we make use of the following
result:
Corollary 1. The gradient of L(θ) takes the form

∇θL(θ) = E
s∼dπθk

[∇θDKL (πθ‖π∗) [s]] (11)

where

∇θDKL (πθ‖π∗) [s] = ∇θDKL (πθ‖πθk ) [s]−
1

λ
E

a∼πθk

[
∇θπθ(a|s)
πθk (a|s)

(
Aπθk (s, a)− νA

πθk
C (s, a)

)]
(12)

Proof. See Appendix B of the supplementary materials.

Note that (11) can be estimated by sampling from the trajectories generated by policy πθk which
allows us to train our policy using stochastic gradients.

Corollary 1 provides an outline for our algorithm. At every iteration we begin with a policy πθk ,
which we use to run trajectories and gather data. We use that data and (8) to first estimate λ and ν.
We then draw a minibatch from the data to estimate ∇θL(θ) given in Corollary 1. After taking a
gradient step using Equation (11), we draw another minibatch and repeat the process.

3.3 Practical Implementation

Solving the dual problem (8) is computationally impractical for large state/action spaces as it requires
calculating the partition function Zλ,ν(s) which often involves evaluating a high-dimensional integral
or sum. Furthermore, λ and ν depends on k and should be adapted at every iteration.

We note that as λ → 0, π∗ approaches a greedy policy; as λ increases, the policy becomes more
exploratory. We also note that λ is similar to the temperature term used in maximum entropy
reinforcement learning (Ziebart et al., 2008), which has been shown to produce reasonable results
when kept fixed during training (Schulman et al., 2017a; Haarnoja et al., 2018). In practice, we found
that a fixed λ found through hyperparameter sweeps provides good results. However ν needs to be
continuously adapted during training so as to ensure cost constraint satisfaction. Here we appeal to
an intuitive heuristic for determining ν based on primal-dual gradient methods (Bertsekas, 2014).
Recall that by strong duality, the optimal λ∗ and ν∗ minimizes the dual function (8) which we will
denote by L(π∗, λ, ν). We can therefore apply gradient descent w.r.t. ν to minimize L(π∗, λ, ν). We
can show that
Corollary 2. The derivative of L(π∗, λ, ν) w.r.t. ν is

∂L(π∗, λ, ν)

∂ν
= b̃− E

s∼dπθk
a∼π∗

[Aπθk (s, a)] (13)

Proof. See Appendix C of the supplementary materials.

The last term in the gradient expression in Equation (13) cannot be evaluated since we do not have
access to π∗. However since πθk and π∗ are ’close’ (by constraint (6)), it is reasonable to assume that
Es∼dπθk ,a∼π∗ [A

πθk (s, a)] ≈ Es∼dπθk ,a∼πθk [Aπθk (s, a)] = 0. In practice we find that this term can
be set to zero which gives the update term:

ν ← proj
ν

[ν − α(b− JC(πθk))] (14)
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where α is the step size, here we have incorporated the discount term (1 − γ) in b̃ into the step
size. The projection operator projν projects ν back into the interval [0, νmax] where νmax is chosen
so that ν does not become too large. However we will show in later sections that FOCOPS is
generally insensitive to the choice of νmax and setting νmax = +∞ does not appear to greatly reduce
performance. Practically, JC(πθk) can be estimated via Monte Carlo methods using trajectories
collected from πθk . We note that the update rule in Equation (14) is similar in to the update rule
introduced in Chow et al. (2017). We recall that in (7), ν acts as a cost penalty term where increasing
ν makes it less likely for state-action pairs with higher costs to be sampled by π∗. Hence in this
regard, the update rule in (14) is intuitive in that it increases ν if JC(πθk) > b (i.e. the cost constraint
is violated for πθk ) and decreases ν otherwise. Using the update rule (14), we can then perform one
update step on ν before updating the policy parameters θ.

Our method is a first-order method, so the approximations that we make is only accurate near the initial
condition (i.e. πθ = πθk ). In order to better enforce this we also add to (11) a per-state acceptance
indicator function I(sj) := 1DKL(πθ‖πθk)[sj ]≤δ . This way sampled states whose DKL (πθ‖πθk) [s] is
too large are rejected from the gradient update. The resulting sample gradient update term is

∇̂θL(θ) ≈ 1

N

N∑
j=1

[
∇θDKL (πθ‖πθk) [sj ]−

1

λ

∇θπθ(aj |sj)
πθk(aj |sj)

(
Â(sj , aj)− νÂC(sj , aj)

)]
I(sj).

(15)
Here N is the number of samples we collected using policy πθk , Â and ÂC are estimates of the
advantage functions (for the return and cost) obtained from critic networks. We estimate the advantage
functions using the Generalized Advantage Estimator (GAE) (Schulman et al., 2016). We can then
apply stochastic gradient descent using Equation (15). During training, we use the early stopping
criteria 1

N

∑N
i=1DKL (πθ‖πθk) [si] > δ which helps prevent trust region constraint violation for the

new updated policy. We update the parameters for the value net by minimizing the Mean Square
Error (MSE) of the value net output and some target value (which can be estimated via Monte Carlo
or bootstrap estimates of the return). We emphasize again that FOCOPS only requires first order
methods (gradient descent) and is thus extremely simple to implement.

Algorithm 1 presents a summary of the FOCOPS algorithm. A more detailed pseudocode is provided
in Appendix F of the supplementary materials.

Algorithm 1 FOCOPS Outline
Initialize: Policy network πθ0 , Value networks Vφ0

, V Cψ0
.

1: while Stopping criteria not met do
2: Generate trajectories τ ∼ πθk .
3: Estimate C-returns and advantage functions.
4: Update ν using Equation (14).
5: for K epochs do
6: for each minibatch do
7: Update value networks by minimizing MSE of Vφk , V target

φk
and V Cψk , V C,target

ψk
.

8: Update policy network using Equation (15)
9: if 1

N

∑N
j=1DKL (πθ‖πθk) [sj ] > δ then

10: Break out of inner loop

4 Experiments

We designed two different sets of experiments to test the efficacy of the FOCOPS algorithm. In
the first set of experiments, we train different robotic agents to move along a straight line or a two
dimensional plane, but the speed of the robot is constrained for safety purposes. The second set of
experiments is inspired by the Circle experiments from Achiam et al. (2017). Both sets of experiments
are implemented using the OpenAI Gym API (Brockman et al., 2016) for the MuJoCo physical
simulator (Todorov et al., 2012). Implementation details for all experiments can be found in the
supplementary material.
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In addition to the CPO algorithm, we are also including for comparison two algorithms based on
Lagrangian methods (Bertsekas, 1997), which uses adaptive penalty coefficients to enforce constraints.
For an objective function f(θ) and constraint g(θ) ≤ 0, the Lagrangian method solves max-min
optimization problem maxθ minν≥0(f(θ)− νg(θ)). These methods first perform gradient ascent on
θ, and then gradient descent on ν. Chow et al. (2019) and Ray et al. (2019) combined Lagrangian
method with PPO (Schulman et al., 2017b) and TRPO (Schulman et al., 2015) to form the PPO
Lagrangian and TRPO Lagrangian algorithms, which we will subsequently abbreviate as PPO-L and
TRPO-L respectively. Details for these two algorithms can be found in the supplementary material.

4.1 Robots with Speed Limit

Figure 1: Learning curves for robots with speed limit tasks. The x-axis represent the number of
samples used and the y-axis represent the average total reward/cost return of the last 100 episodes.
The solid line represent the mean of 1000 bootstrap samples over 10 random seeds. The shaded
regions represent the bootstrap normal 95% confidence interval. FOCOPS consistently enforce
approximate constraint satisfaction while having a higher performance on five out of the six tasks.

We consider six MuJoCo environments where we attempt to train a robotic agent to walk. However
we impose a speed limit on our environments. The cost thresholds are calculated using 50% of the
speed attained by an unconstrained PPO agent after training for a million samples (Details can be
found in Appendix G.1).

Figure 1 shows that FOCOPS outperforms other baselines in terms of reward on most tasks while
enforcing the cost constraint. In theory, FOCOPS assumes that the initial policy is feasible. This
assumption is violated in the Swimmer-v3 environment. However in practice, the gradient update
term increases the dual variable associated with the cost when the cost constraint is violated, this
would result in a feasible policy after a certain number of iterations. We observed that this is indeed
the case with the swimmer environment (and similarly the AntCircle environment in the next section).
Note also that Lagrangian methods outperform CPO on several environments in terms of reward, this
is consistent with the observation made by Ray et al. (2019) and Stooke et al. (2020). However on
most tasks TRPO-L does not appear to consistently maintain constraint satisfaction during training.
For example on HalfCheetah-v3, even though TRPO-L outperforms FOCOPS in terms of total
return, it violates the cost constraint by nearly 9%. PPO-L is shown to do well on simpler tasks but
performance deteriorates drastically on the more challenging environments (Ant-v3, HalfCheetah-v3,
and Humanoid-v3), this is in contrast to FOCOPS which perform particularly well on these set of
tasks. In Table 1 we summarized the performance of all four algorithms.

4.2 Circle Tasks

For these tasks, we use the same exact geometric setting, reward, and cost constraint function as
Achiam et al. (2017), a geometric illustration of the task and details on the reward/cost functions can
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Table 1: Bootstrap mean and normal 95% confidence interval with 1000 bootstrap samples over
10 random seeds of reward/cost return after training on robot with speed limit environments. Cost
thresholds are in brackets under the environment names.

Environment PPO-L TRPO-L CPO FOCOPS
Ant-v3 Reward 1291.4± 216.4 1585.7± 77.5 1406.0± 46.6 1830.0± 22.6

(103.12) Cost 98.78± 1.77 107.82± 1.16 100.25± 0.67 102.75± 1.08

HalfCheetah-v3 Reward 1141.3± 192.4 1621.59± 39.4 1470.8± 40.0 1612.2± 25.9
(151.99) Cost 151.53± 1.88 164.93± 2.43 150.05± 1.40 152.36± 1.55

Hopper-v3 Reward 1433.8± 313.3 750.3± 355.3 1167.1± 257.6 1953.4± 127.3
(82.75) Cost 81.29± 2.34 87.57± 3.48 80.39± 1.39 81.84± 0.92

Humanoid-v3 Reward 471.3± 49.0 4062.4± 113.3 3952.7± 174.4 4529.7± 86.2
(20.14) Cost 18.89± 0.77 19.23± 0.76 15.83± 0.41 18.63± 0.37

Swimmer-v3 Reward 29.73± 3.13 21.15± 9.56 20.31± 6.01 31.94± 2.60
(24.52) Cost 24.72± 0.85 28.57± 2.68 23.88± 0.64 25.29± 1.49

Walker2d-v3 Reward 2074.4± 155.7 1153.1± 473.3 1040.0± 303.3 2485.9± 158.3
(81.89) Cost 81.7± 1.14 80.79± 2.13 78.12± 1.78 81.27± 1.33

be found in Appendix G.2 of the supplementary materials. The goal of the agents is to move along the
circumference of a circle while remaining within a safe region smaller than the radius of the circle.

Similar to the previous tasks, we provide learning curves (Figure 2) and numerical summaries (Table
2) of the experiments. We also plotted an unconstrained PPO agent for comparison. On these tasks, all
four approaches are able to approximately enforce cost constraint satisfaction (set at 50), but FOCOPS
does so while having a higher performance. Note for both tasks, the 95% confidence interval for
FOCOPS lies above the confidence intervals for all other algorithms, this is strong indication that
FOCOPS outperforms the other three algorithms on these particular tasks.

Figure 2: Comparing reward and cost returns on circle Tasks. The x-axis represent the number of
samples used and the y-axis represent the average total reward/cost return of the last 100 episodes.
The solid line represent the mean of 1000 bootstrap samples over 10 random seeds. The shaded
regions represent the bootstrap normal 95% confidence interval. An unconstrained PPO agent is also
plotted for comparison.

4.3 Generalization Analysis

In supervised learning, the standard approach is to use separate datasets for training, validation,
and testing where we can then use some evaluation metric on the test set to determine how well an
algorithm generalizes over unseen data. However such a scheme is not suitable for reinforcement
learning.
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Table 2: Bootstrap mean and normal 95% confidence interval with 1000 bootstrap samples over 10
random seeds of reward/cost return after training on circle environments for 10 million samples. Cost
thresholds are in brackets under the environment names.

Environment PPO-L TRPO-L CPO FOCOPS
Ant-Circle Reward 637.4± 88.2 416.7± 42.1 390.9± 43.9 965.9± 46.2

(50.0) Cost 50.4± 4.4 50.4± 3.9 50.0± 3.5 49.9± 2.2

Humanoid-Circle Reward 1024.5± 23.4 697.5± 14.0 671.0± 12.5 1106.1± 32.2
(50.0) Cost 50.3± 0.59 49.6± 0.96 47.9± 1.5 49.9± 0.8

To similarly evaluate our reinforcement learning agent, we first trained our agent on a fixed random
seed. We then tested the trained agent on ten unseen random seeds (Pineau, 2018). We found that
with the exception of Hopper-v3, FOCOPS outperformed every other constrained algorithm on all
robots with speed limit environments. Detailed analysis of the generalization results are provided in
Appendix H of the supplementary materials.

4.4 Sensitivity Analysis

The Lagrange multipliers play a key role in the FOCOPS algorithms, in this section we explore the
sensitivity of the hyperparameters λ and νmax. We find that the performance of FOCOPS is largely
insensitive to the choice of these hyperparamters. To demonstrate this, we conducted a series of
experiments on the robots with speed limit tasks.

The hyperparameter νmax was selected via hyperparameter sweep on the set {1, 2, 3, 5, 10,+∞}.
However we found that FOCOPS is not sensitive to the choice of νmax where setting νmax = +∞
only leads to an average 0.3% degradation in performance compared to the optimal νmax = 2.
Similarly we tested the performance of FOCOPS against different values of λ where for other values
of λ, FOCOPS performs on average 7.4% worse compared to the optimal λ = 1.5. See Appendix I
of the supplementary materials for more details.

5 Discussion

We introduced FOCOPS—a simple first-order approach for training RL agents with safety constraints.
FOCOPS is theoretically motivated and is shown to empirically outperform more complex second-
order methods. FOCOPS is also easy to implement. We believe in the value of simplicity as it makes
RL more accessible to researchers in other fields who wish to apply such methods in their own work.
Our results indicate that constrained RL is an effective approach for addressing RL safety and can be
efficiently solved using our two step approach.

There are a number of promising avenues for future work: such as incorporating off-policy data;
studying how our two-step approach can deal with different types of constraints such as sample path
constraints (Ross and Varadarajan, 1989, 1991), or safety constraints expressed in other more natural
forms such as human preferences (Christiano et al., 2017) or natural language (Luketina et al., 2019).

6 Broader Impact

Safety is a critical element in real-world applications of RL. We argue in this paper that scalar
reward signals alone is often insufficient in motivating the agent to avoid harmful behavior. An RL
systems designer needs to carefully balance how much to encourage desirable behavior and how
much to penalize unsafe behavior where too much penalty could prevent the agent from sufficient
exploration and too little could lead to hazardous consequences. This could be extremely difficult in
practice. Constraints are a more natural way of quantifying safety requirements and we advocate for
researchers to consider including constraints in safety-critical RL systems.
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Supplementary Material for First Order Constrained
Optimization in Policy Space

Appendices
A Proof of Theorem 1

Theorem 1. Let b̃ = (1− γ)(b− J̃C(πθk)). If πθk is a feasible solution, the optimal policy for (4-6)
takes the form

π∗(a|s) =
πθk(a|s)
Zλ,ν(s)

exp

(
1

λ

(
Aπθk (s, a)− νAπθkC (s, a)

))
(7)

where Zλ,ν(s) is the partition function which ensures (7) is a valid probability distribution, λ and ν
are solutions to the optimization problem:

min
λ,ν≥0

λδ + νb̃+ λ E
s∼dπθk
a∼π∗

[logZλ,ν(s)] (8)

Proof. We will begin by showing that Problem (4-6) is convex w.r.t. π = {π(a|s) : s ∈ S, a ∈ A}.
First note that the objective function is linear w.r.t. π. Since JC(πθk) is a constant w.r.t. π, constraint
(5) is linear. Constraint (6) can be rewritten as

∑
s d

πθk (s)DKL (π‖πθk) [s] ≤ δ, the KL divergence
is convex w.r.t. its first argument, therefore constraint (6) which is a linear combination of convex
functions is also convex. Since πθk satisfies Constraint (5) and is also an interior point within the set
given by Constraints (6) (DKL (πθk‖πθk) = 0, and δ > 0), therefore Slater’s constraint qualification
holds, strong duality holds.

We can therefore solve for the optimal value of Problem (4-6) p∗ by solving the corresponding dual
problem. Let

L(π, λ, ν) = λδ+ νb̃+ E
s∼d

πθk

[
E

a∼π(·|s)
[Aπθk (s, a)]− ν E

a∼π(·|s)
[A
πθk
C (s, a)] − λDKL (π‖πθk ) [s]

]
(16)

Therefore,
p∗ = max

π∈Π
min
λ,ν≥0

L(π, λ, ν) = min
λ,ν≥0

max
π∈Π

L(π, λ, ν) (17)

where we invoked strong duality in the second equality. We note that if π∗, λ∗, ν∗ are optimal for
(17), π∗ is also optimal for Problem (4-6) (Boyd and Vandenberghe, 2004).

Consider the inner maximization problem in (17), we can decompose this problem into separate
problems, one for each s. This gives us an optimization problem of the form,

maximize
π

E
a∼π(·|s)

[
Aπθk (s, a)− νAπθkC (s, a)− λ(log π(a|s)− log πθk(a|s))

]
subject to

∑
a

π(a|s) = 1

π(a|s) ≥ 0 for all a ∈ A

(18)

which is equivalent to the inner maximization problem in (17). This is clearly a convex optimization
problem which we can solve using a simple Lagrangian argument. We can write the Lagrangian of
(18) as

G(π) =
∑
a

π(a|s)
[
Aπθk (s, a)− νAπθkC (s, a)− λ(log π(a|s)− log πθk(a|s)) + ζ

]
− 1 (19)
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where ζ > 0 is the Lagrange multiplier associated with the constraint
∑
a π(a|s) = 1. Differentiating

G(π) w.r.t. π(a|s) for some a:

∂G

∂π(a|s)
= Aπθk (s, a)− νAπθkC (s, a)− λ(log π(a|s) + 1− log πθk(a|s)) + ζ (20)

Setting (20) to zero and rearranging the term, we obtain

π(a|s) = πθk(a|s) exp

(
1

λ

(
Aπθk (s, a)− νAπθkC (s, a)

)
+
ζ

λ
+ 1

)
(21)

We chose ζ so that
∑
a π(a|s) = 1 and rewrite ζ/λ+ 1 as Zλ,ν(s). We find that the optimal solution

π∗ to (18) takes the form

π∗(a|s) =
πθk(a|s)
Zλ,ν(s)

exp

(
1

λ

(
Aπθk (s, a)− νAπθkC (s, a)

))
Plugging π∗ back into Equation 17 gives us

p∗ = min
λ,ν≥0

λδ + νb̃+ E
s∼dπθk
a∼π∗

[Aπθk (s, a)− νAπθkC (s, a)− λ(log π∗(a|s)− log πθk(a|s))]

= min
λ,ν≥0

λδ + νb̃+ E
s∼dπθk
a∼π∗

[Aπθk (s, a)− νAπθkC (s, a)− λ(log πθk(a|s)− logZλ,ν(s)

+
1

λ
(Aπθk (s, a)− νAπθkC (s, a))− log πθk(a|s))]

= min
λ,ν≥0

λδ + νb̃+ λ E
s∼dπθk
a∼π∗

[logZλ,ν(s)]

B Proof of Corollary 1

Corollary 1. The gradient of L(θ) takes the form

∇θL(θ) = E
s∼dπθk

[∇θDKL (πθ‖π∗) [s]] (11)

where

∇θDKL (πθ‖π∗) [s] = ∇θDKL (πθ‖πθk ) [s]−
1

λ
E

a∼πθk

[
∇θπθ(a|s)
πθk (a|s)

(
Aπθk (s, a)− νA

πθk
C (s, a)

)]
(12)

Proof. We only need to calculate the gradient of the loss function for a single sampled s. We first
note that,

DKL (πθ‖π∗) [s] =−
∑
a

πθ(a|s) log π∗(a|s) +
∑
a

πθ(a|s) log πθ(a|s)

=H(πθ, π
∗)[s]−H(πθ)[s]

where H(πθ)[s] is the entropy and H(πθ, π
∗)[s] is the cross-entropy under state s. We expand the

cross entropy term which gives us

H(πθ, π
∗)[s] =−

∑
a

πθ(a|s) log π∗(a|s)

=−
∑
a

πθ(a|s) log

(
πθk(a|s)
Zλ,ν(s)

exp

[
1

λ

(
Aπθk (s, a)− νAπθkC (s, a)

)])
=−

∑
a

πθ(a|s) log πθk(a|s) + logZλ,ν(s)− 1

λ

∑
a

πθ(a|s)
(
Aπθk (s, a)− νAπθkC (s, a)

)
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We then subtract the entropy term to recover the KL divergence:

DKL (πθ‖π∗) [s] =DKL (πθ‖πθk) [s] + logZλ,ν(s)− 1

λ

∑
a

πθ(a|s)
(
Aπθk (s, a)− νAπθkC (s, a)

)
=DKL (πθ‖πθk) [s] + logZλ,ν(s)− 1

λ
E

a∼πθk (·|s)

[
πθ(a|s)
πθk(a|s)

(
Aπθk (s, a)− νAπθkC (s, a)

)]
where in the last equality we applied importance sampling to rewrite the expectation w.r.t. πθk .
Finally, taking the gradient on both sides gives us:

∇θDKL (πθ‖π∗) [s] = ∇θDKL (πθ‖πθk) [s]− 1

λ
E

a∼πθk (·|s)

[
∇θπθ(a|s)
πθk(a|s)

(
Aπθk (s, a)− νAπθkC (s, a)

)]
.

C Proof of Corollary 2

Corollary 2. The derivative of L(π∗, λ, ν) w.r.t. ν is

∂L(π∗, λ, ν)

∂ν
= b̃− E

s∼dπθk
a∼π∗

[Aπθk (s, a)] (13)

Proof. From Theorem 1, we have

L(π∗, λ, ν) = λδ + νb̃+ λ E
s∼dπθk
a∼π∗

[logZλ,ν(s)]. (22)

The first two terms is an affine function w.r.t. ν, therefore its derivative is b̃. We will then focus on
the expectation in the last term. To simplify our derivation, we will first calculate the derivative of π∗
w.r.t. ν,

∂π∗(a|s)
∂ν

=
πθk(a|s)
Z2
λ,ν(s)

[
Zλ,ν(s)

∂

∂ν
exp

(
1

λ

(
Aπθk (s, a)− νAπθkC (s, a)

))
− exp

(
1

λ

(
Aπθk (s, a)− νAπθkC (s, a)

)) ∂Zλ,ν(s)

∂ν

]
= −

A
πθk
C (s, a)

λ
π∗(a|s)− π∗(a|s)∂ logZλ,ν(s)

∂ν

Therefore the derivative of the expectation in the last term of L(π∗, λ, ν) can be written as

∂

∂ν
E

s∼dπθk
a∼π∗

[logZλ,ν(s)]

= E
s∼dπθk
a∼πθk

[
∂

∂ν

(
π∗(a|s)
πθk(a|s)

logZλ,ν(s)

)]

= E
s∼dπθk
a∼πθk

[
1

πθk(a|s)

(
∂π∗(a|s)
∂ν

logZλ,ν(s) + π∗(a|s)∂ logZλ,ν(s)

∂ν

)]

= E
s∼dπθk
a∼πθk

[
π∗(a|s)
πθk(a|s)

(
−
A
πθk
C (s, a)

λ
logZλ,ν(s)− ∂ logZλ,ν(s)

∂ν
logZλ,ν(s) +

∂ logZλ,ν(s)

∂ν

)]

= E
s∼dπθk
a∼π∗

[
−
A
πθk
C (s, a)

λ
logZλ,ν(s)− ∂ logZλ,ν(s)

∂ν
logZλ,ν(s) +

∂ logZλ,ν(s)

∂ν

]
.

(23)
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Also,

∂Zλ,ν(s)

∂ν
=

∂

∂ν

∑
a

πθk(a|s) exp

(
1

λ

(
Aπθk (s, a)− νAπθkC (s, a)

))

=
∑
a

−πθk(a|s)
A
πθk
C (s, a)

λ
exp

(
1

λ

(
Aπθk (s, a)− νAπθkC (s, a)

))

=
∑
a

−
A
πθk
C (s, a)

λ

πθk(a|s)
Zλ,ν(s)

exp

(
1

λ

(
Aπθk (s, a)− νAπθkC (s, a)

))
Zλ,ν(s)

= −Zλ,ν(s)

λ
E

a∼π∗(·|s)

[
A
πθk
C (s, a)

]
.

(24)

Therefore,
∂ logZλ,ν(s)

∂ν
=
∂Zλ,ν(s)

∂ν

1

Zλ,ν(s)
= − 1

λ
E

a∼π∗(·|s)

[
A
πθk
C (s, a)

]
. (25)

Plugging (25) into the last equality in (23) gives us

∂

∂ν
E

s∼dπθk
a∼π∗

[logZλ,ν(s)] = E
s∼dπθk
a∼π∗

[
−
A
πθk
C (s, a)

λ
logZλ,ν(s) +

A
πθk
C (s, a)

λ
logZλ,ν(s)− 1

λ
A
πθk
C (s, a)

]

= − 1

λ
E

s∼dπθk
a∼π∗

[
A
πθk
C (s, a)

]
.

(26)
Combining (26) with the derivatives of the affine term gives us the final desired result.

D PPO Lagrangian and TRPO Lagrangian

D.1 PPO-Lagrangian

Recall that the PPO (clipped) objective takes the form (Schulman et al., 2017b)

L(θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip
(
πθ(a|s)
πθk(a|s)

, 1− ε, 1 + ε

)
Aπθk (s, a)

)
(27)

We augment this objective with an additional term to form the a new objective function

L̃(θ) = L(θ) + ν (JC(πθ)− b) (28)

The Lagrangian method involves a maximization and a minimization step. For the maximization step,
we optimize the objective (28) by performing backpropagation w.r.t. θ. For the minimization step, we
apply gradient descent to the same objective w.r.t ν. Like FOCOPS, the PPO-Lagrangian algorithm is
also first-order thus simple to implement, however its empirical performance deteriorates drastically
on more challenging environments (See Section 4). Furthermore, it remains an open question whether
PPO-Lagrangian satisfies any worst-case constraint guarantees.

D.2 TRPO-Lagrangian

Similar to the PPO-Lagrangian method, we instead optimize an augmented TRPO problem

maximize
θ

L̃(θ) (29)

subject to D̄KL(πθ ‖ πθk)[s] ≤ δ. (30)

where

L̃(θ) =
πθ(a|s)
πθk(a|s)

Aπθk (s, a) + ν (JC(πθ)− b) (31)
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We then apply Taylor approximation to (29) and (30) which gives us

maximize
θ

g̃T (θ − θk) (32)

subject to
1

2
(θ − θk)TH(θ − θk) ≤ δ. (33)

Here g̃ is the gradient of (29) w.r.t. the parameter θ.

Like for the PPO-Lagrangian method, we first perform a maximization step where we optimize
(32)-(33) using the TRPO method (Schulman et al., 2015). We then perform a minimization step
by updating ν. TRPO-Lagrangian is also a second-order algorithm. Performance-wise TRPO-
Lagrangian does poorly in terms of constraint satisfaction. Like PPO-Lagrangian, further research
into the theoretical properties of TRPO merits further research.

E FOCOPS for Different Cost Thresholds

In this section, we verify that FOCOPS works effectively for different threshold levels. We experiment
on the robots with speed limits environments. For each environment, we calculated the cost required
for an unconstrained PPO agent after training for 1 million samples. We then used 25%, 50%, and
75% of this cost as our cost thresholds and trained FOCOPS on each of thresholds respectively. The
learning curves are reported in Figure 3. We note from these plots that FOCOPS can effectively learn
constraint-satisfying policies for different cost thresholds.

Figure 3: Performance of FOCOPS on robots with speed limit tasks with different cost thresholds.
The x-axis represent the number of samples used and the y-axis represent the average total reward/cost
return of the last 100 episodes. The solid line represent the mean of 1000 bootstrap samples over
10 random seeds. The horizontal lines in the cost plots represent the cost thresholds corresponding
to 25%, 50%, and 75% of the cost required by an unconstrained PPO agent trained with 1 million
samples. Each solid line represents FOCOPS trained with the corresponding thresholds. The shaded
regions represent the bootstrap normal 95% confidence interval. Each of the solid lines represent
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F Pseudocode

Algorithm 2 First Order Constrained Optimization in Policy Space (FOCOPS)
Initialize: Policy network πθ; Value network for return Vφ; Value network for costs V Cψ .
Initialize: Discount rates γ, GAE parameter β; Learning rates αν , αV , απ; Temperature λ; Initial

cost constraint parameter ν; Cost constraint parameter bound νmax. Trust region bound δ; Cost
bound b.
while Stopping criteria not met do

Generate batch data of M episodes of length T from (si,t, ai,t, ri,t, si,t+1, ci,t) from πθ,
i = 1, . . . ,M , t = 1, . . . , T .
Estimate C-return by averaging over C-return for all episodes:

ĴC =
1

M

M∑
i=1

T−1∑
t=0

γtci,t

Store old policy θ′ ← θ

Estimate advantage functions Âi,t and ÂCi,t, i = 1, . . . ,M , t = 1, . . . , T using GAE.
Get V target

i,t = Âi,t + Vφ(si,t) and V C,target
i,t = Âi,t + V Cψ (si,t)

Update ν by
ν ← proj

ν

[
ν − αν

(
b− ĴC

)]
for K epochs do

for each minibatch {sj , aj , Aj , ACj , V
target
j , V C,target

j } of size B do
Value loss functions

LV (φ) =
1

2N

B∑
j=1

(Vφ(sj)− V target
j )2

LV C (ψ) =
1

2N

B∑
j=1

(Vψ(sj)− V C,target
j )2

Update value networks

φ← φ− αV∇φLV (φ)

ψ ← ψ − αV∇ψLV C (ψ)

Update policy
θ ← θ − απ∇̂θLπ(θ)

where

∇̂θLπ(θ) ≈ 1

B

B∑
j=1

[
∇θDKL (πθ‖πθ′) [sj ]−

1

λ

∇θπθ(aj |sj)
πθ′(aj |sj)

(
Âj − νÂCj

)]
1DKL(πθ‖πθ′ )[sj ]≤δ

if 1
MT

∑M
i=1

∑T−1
t=0 DKL (πθ‖πθ′) [si,t] > δ then

Break out of inner loop

G Implementation Details for Experiments

Our open-source implementation of FOCOPS can be found at https://github.com/ymzhang01/
focops. All experiments were implemented in Pytorch 1.3.1 and Python 3.7.4 on Intel Xeon Gold
6230 processors. We used our own Pytorch implementation of CPO based on https://github.
com/jachiam/cpo. For PPO, PPO Lagrangian, TRPO Lagrangian, we used an optimized PPO and
TRPO implementation based on https://github.com/Khrylx/PyTorch-RL, https://github.
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com/ikostrikov/pytorch-a2c-ppo-acktr-gail, and https://github.com/ikostrikov/
pytorch-trpo.

G.1 Robots with Speed Limit

G.1.1 Environment Details

We used the MuJoCo environments provided by OpenAI Gym Brockman et al. (2016) for this set of
experiments. For agents manuvering on a two-dimensional plane, the cost is calculated as

C(s, a) =
√
v2
x + v2

y

For agents moving along a straight line, the cost is calculated as
C(s, a) = |vx|

where vx, vy are the velocities of the agent in the x and y directions respectively.

G.1.2 Algorithmic Hyperparameters

We used a two-layer feedforward neural network with a tanh activation for both our policy and
value networks. We assume the policy is Gaussian with independent action dimensions. The policy
networks outputs a mean vector and a vector containing the state-independent log standard deviations.
States are normalized by the running mean the running standard deviation before being fed to any
network. The advantage values are normalized by the batch mean and batch standard deviation before
being used for policy updates. Except for the learning rate for ν which is kept fixed, all other learning
rates are linearly annealed to 0 over the course of training. Our hyperparameter choices are based on
the default choices in the implementations cited at the beginning of the section. For FOCOPS, PPO
Lagrangian, and TRPO Lagrangian, we tuned the value of νmax across {1, 2, 3, 5, 10,+∞} and used
the best value for each algorithm. However we found all three algorithms are not especially sensitive
to the choice of νmax. Table 3 summarizes the hyperparameters used in our experiments.

G.2 Circle

G.2.1 Environment Details

In the circle tasks, the goal is for an agent to move along the circumference of a circle while remaining
within a safety region smaller than the radius of the circle. The exact geometry of the task is shown
in Figure 4. The reward and cost functions are defined as:

Figure 4: In the Circle task, reward is maximized by moving along the green circle. The agent is not
allowed to enter the blue regions, so its optimal constrained path follows the line segments AD and
BC (figure and caption taken from Achiam et al. (2017)).

R(s) =
−yvx + xvy

1 + |
√
x2 + y2 − r|

C(s) = 1(|x| > xlim).

1for PPO, PPO-L, and FOCOPS, this refers to the number of iteration for training the value net per minibatch
update.
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Table 3: Hyperparameters for robots with speed limit experiments

Hyperparameter PPO PPO-L TRPO-L CPO FOCOPS

No. of hidden layers 2 2 2 2 2
No. of hidden nodes 64 64 64 64 64
Activation tanh tanh tanh tanh tanh
Initial log std -0.5 -0.5 -1 -0.5 -0.5
Discount for reward γ 0.99 0.99 0.99 0.99 0.99
Discount for cost γC 0.99 0.99 0.99 0.99 0.99
Batch size 2048 2048 2048 2048 2048
Minibatch size 64 64 N/A N/A 64
No. of optimization epochs 10 10 N/A N/A 10
Maximum episode length 1000 1000 1000 1000 1000
GAE parameter (reward) 0.95 0.95 0.95 0.95 0.95
GAE parameter (cost) N/A 0.95 0.95 0.95 0.95
Learning rate for policy 3× 10−4 3× 10−4 N/A N/A 3× 10−4

Learning rate for reward value net 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Learning rate for cost value net N/A 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Learning rate for ν N/A 0.01 0.01 N/A 0.01
L2-regularization coeff. for value net 3× 10−3 3× 10−3 3× 10−3 3× 10−3 3× 10−3

Clipping coefficient 0.2 0.2 N/A N/A N/A
Damping coeff. N/A N/A 0.01 0.01 N/A
Backtracking coeff. N/A N/A 0.8 0.8 N/A
Max backtracking iterations N/A N/A 10 10 N/A
Max conjugate gradient iterations N/A N/A 10 10 N/A
Iterations for training value net1 1 1 80 80 1
Temperature λ N/A N/A N/A N/A 1.5
Trust region bound δ N/A N/A 0.01 0.01 0.02
Initial ν, νmax N/A 0, 1 0, 2 N/A 0, 2

where x, y are the positions of the agent on the plane, vx, vy are the velocities of the agent along
the x and y directions, r is the radius of the circle, and xlim specifies the range of the safety region.
The radius is set to r = 10 for both Ant and Humanoid while xlim is set to 3 and 2.5 for Ant and
Humanoid respectively. Note that these settings are identical to those of the circle task in Achiam
et al. (2017). Our experiments were implemented in OpenAI Gym (Brockman et al., 2016) while the
circle tasks in Achiam et al. (2017) were implemented in rllab (Duan et al., 2016). We also excluded
the Point agent from the original experiments since it is not a valid agent in OpenAI Gym. The first
two dimensions in the state space are the (x, y) coordinates of the center mass of the agent, hence the
state space for both agents has two extra dimensions compared to the standard Ant and Humanoid
environments from OpenAI Gym. Our open-source implementation of the circle environments can be
found at https://github.com/ymzhang01/mujoco-circle.

G.2.2 Algorithmic Hyperparameters

For these tasks, we used identical settings as the robots with speed limit tasks except we used a
batch size of 50000 for all algorithms and a minibatch size of 1000 for PPO, PPO-Lagrangian, and
FOCOPS. The discount rate for both reward and cost were set to 0.995. For FOCOPS, we set λ = 1.0
and δ = 0.04.

H Generalization Analysis

We used trained agents using all four algorithms (PPO Lagrangian, TRPO Lagrangian, CPO, and
FOCOPS) on robots with speed limit tasks shown in Figure 1. For each algorithm, we picked the
seed with the highest maximum return of the last 100 episodes which does not violate the cost
constraint at the end of training. The reasoning here is that for a fair comparison, we wish to pick
the best performing seed for each algorithm. We then ran 10 episodes using the trained agents on 10
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unseen random seeds (identical seeds are used for all four algorithms) to test how well the algorithms
generalize over unseen data. The final results of running the trained agents on the speed limit and
circle tasks are reported in Tables 4. We note that on unseen seeds FOCOPS outperforms the other
three algorithms on five out of six tasks.

Table 4: Average return of 10 episodes for trained agents on the robots with speed limit tasks on 10
unseen random seeds. Results shown are the bootstrap mean and normal 95% confidence interval
with 1000 bootstrap samples.

Environment PPO-L TRPO-L CPO FOCOPS

Ant-v3 Reward 920.4± 75.9 1721.4± 191.2 1335.57± 43.17 1934.9± 99.5
(103.12) Cost 68.25± 11.05 99.20± 2.55 80.72± 3.82 105.21± 5.91

HalfCheetah-v3 Reward 1698.0± 22.5 1922.4± 12.9 1805.5± 60.0 2184.3± 32.6
(151.99) Cost 150.21± 4.47 179.82± 1.73 164.67± 9.43 158.39± 6.56

Hopper-v3 Reward 2084.9± 39.69 2108.8± 24.8 2749.9± 47.0 2446.2± 9.0
(82.75) Cost 83.43± 0.41 82.17± 1.53 52.34± 1.95 81.26± 0.88

Humanoid-v3 Reward 582.2± 28.9 3819.3± 489.2 1814.8± 221.0 4867.3± 350.8
(20.14) Cost 18.93± 0.93 18.60± 1.27 20.30± 1.81 21.58± 0.74

Swimmer-v3 Reward 37.90± 1.05 33.48± 0.44 33.45± 2.30 39.37± 2.04
(24.52) Cost 25.49± 0.57 32.81± 2.61 22.61± 0.33 17.23± 1.64

Walker2d-v3 Reward 1668.7± 337.1 2638.9± 163.3 2141.7± 331.9 3148.6± 60.5
(81.89) Cost 79.23± 1.24 90.96± 0.97 40.67± 6.86 73.35± 2.67

I Sensitivity Analysis

We tested FOCOPS across ten different values of λ, and five difference values of νmax while keeping
all other parameters fixed by running FOCOPS for 1 millon samples on each of the robots with speed
limit experiment. For ease of comparison, we normalized the values by the return and cost of an
unconstrained PPO agent trained for 1 million samples (i.e. if FOCOPS achieves a return of x and an
unconstrained PPO agent achieves a result of y, the normalized result reported is x/y) The results on
the robots with speed limit tasks are reported in Tables 5 and 6. We note that the more challenging
environments such as Humanoid are more sensitive to parameter choices but overall FOCOPS is
largely insensitive to hyperparameter choices (especially the choice of νmax). We also presented the
performance of PPO-L and TRPO-L for different values of νmax.

Table 5: Performance of FOCOPS for Different λ

Ant-v3 HalfCheetah-v3 Hopper-v3 Humanoid-v3 Swimmer-v3 Walker2d-v3 All Environments

λ Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

0.1 0.66 0.55 0.38 0.46 0.77 0.50 0.63 0.52 0.34 0.51 0.43 0.48 0.53 0.50
0.5 0.77 0.54 0.38 0.45 0.97 0.50 0.71 0.54 0.36 0.50 0.66 0.50 0.64 0.50
1.0 0.83 0.55 0.47 0.47 1.04 0.50 0.80 0.52 0.34 0.49 0.76 0.49 0.70 0.50
1.3 0.83 0.55 0.42 0.47 1.00 0.50 0.85 0.53 0.36 0.51 0.87 0.49 0.72 0.51
1.5 0.83 0.55 0.42 0.47 1.01 0.50 0.87 0.52 0.37 0.51 0.87 0.50 0.73 0.51
2.0 0.83 0.55 0.42 0.47 1.06 0.50 0.89 0.52 0.37 0.52 0.82 0.45 0.73 0.51
2.5 0.79 0.54 0.43 0.47 1.03 0.50 0.94 0.53 0.35 0.50 0.73 0.49 0.71 0.51
3.0 0.76 0.54 0.42 0.47 1.01 0.49 0.92 0.52 0.41 0.50 0.77 0.49 0.72 0.50
4.0 0.70 0.54 0.40 0.46 1.00 0.49 0.87 0.53 0.43 0.49 0.64 0.49 0.67 0.50
5.0 0.64 0.55 0.40 0.47 1.01 0.50 0.81 0.54 0.38 0.49 0.57 0.50 0.63 0.51
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Table 6: Performance of FOCOPS for Different νmax

Ant-v3 HalfCheetah-v3 Hopper-v3 Humanoid-v3 Swimmer-v3 Walker2d-v3 All Environments

νmax Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

1 0.83 0.55 0.45 0.61 1.00 0.51 0.87 0.52 0.40 0.62 0.88 0.50 0.74 0.55
2 0.83 0.55 0.42 0.47 1.01 0.50 0.87 0.52 0.35 0.51 0.87 0.50 0.73 0.51
3 0.81 0.54 0.41 0.47 1.01 0.49 0.83 0.53 0.34 0.49 0.87 0.50 0.71 0.50
5 0.82 0.55 0.41 0.47 1.01 0.50 0.83 0.53 0.31 0.49 0.87 0.50 0.71 0.51
10 0.82 0.55 0.41 0.47 1.01 0.50 0.83 0.53 0.34 0.47 0.87 0.50 0.71 0.50

+∞ 0.82 0.55 0.41 0.47 1.01 0.50 0.83 0.53 0.35 0.47 0.88 0.50 0.72 0.50

Table 7: Performance of PPO Lagrangian for Different νmax

Ant-v3 HalfCheetah-v3 Hopper-v3 Humanoid-v3 Swimmer-v3 Walker2d-v3 All Environments

νmax Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

1 0.80 0.55 0.41 0.49 0.98 0.49 0.73 0.52 0.28 0.50 0.77 0.50 0.66 0.51
2 0.71 0.49 0.36 0.50 0.81 0.48 0.73 0.52 0.32 0.50 0.72 0.50 0.61 0.50
3 0.78 0.54 0.36 0.47 0.73 0.49 0.73 0.52 0.40 0.48 0.72 0.50 0.62 0.50
5 0.77 0.53 0.35 0.47 0.73 0.49 0.73 0.52 0.40 0.49 0.72 0.50 0.62 0.50
10 0.77 0.54 0.36 0.47 0.73 0.49 0.73 0.52 0.40 0.49 0.72 0.50 0.62 0.50

+∞ 0.66 0.54 0.27 0.45 0.73 0.49 0.55 0.47 0.40 0.49 0.72 0.50 0.55 0.49

Table 8: Performance of TRPO Lagrangian for Different νmax

Ant-v3 HalfCheetah-v3 Hopper-v3 Humanoid-v3 Swimmer-v3 Walker2d-v3 All Environments

νmax Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

1 0.71 0.50 0.70 0.68 0.61 0.50 0.68 0.50 0.43 0.61 0.48 0.50 0.61 0.55
2 0.70 0.51 0.50 0.53 0.39 0.53 0.68 0.50 0.33 0.53 0.36 0.50 0.49 0.52
3 0.70 0.51 0.52 0.53 0.41 0.53 0.68 0.50 0.30 0.67 0.35 0.50 0.49 0.54
5 0.70 0.51 0.49 0.52 0.36 0.52 0.68 0.50 0.23 0.67 0.35 0.51 0.47 0.54
10 0.70 0.51 0.48 0.51 0.34 0.52 0.68 0.50 0.31 0.77 0.34 0.50 0.47 0.55

+∞ 0.70 0.51 0.48 0.51 0.36 0.52 0.68 0.50 0.30 0.78 0.34 0.50 0.48 0.55
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