
A Additional Figures

(a) CIFAR100

(b) CIFAR10

(c) Tiny ImageNet

(d) CIFAR10

(e) Tiny ImageNet
Figure 5: Left/Right: Test loss/accuracy on plane containing θ1, θ2, and Pθ2.

Figure 6: Left/Right: Training loss while learning the curve between two CIFAR10/Tiny ImageNet
models.

Table 2: The training loss with standard deviation is reported for each combination of dataset, network
architecture, and curve class. GoogLeNet has higher training loss due to weight regularization.

Model Endpoints CIFAR10 CIFAR100 Tiny ImageNet

TinyTen

Unaligned 0.428± 0.003 1.839± 0.010 3.317± 0.008
PAM Unaligned 0.413± 0.001 1.753± 0.016 3.249± 0.005
PAM Aligned 0.372± 0.002 1.679± 0.005 3.214± 0.003
Aligned 0.371± 0.002 1.693± 0.008 3.217± 0.013

ResNet32

Unaligned 0.179± 0.001 1.124± 0.005 2.383± 0.005
PAM Unaligned 0.170± 0.001 1.043± 0.008 2.350± 0.001
PAM Aligned 0.147± 0.002 0.975± 0.008 2.308± 0.003
Aligned 0.147± 0.001 1.011± 0.002 2.299± 0.009

GoogLeNet Unaligned 0.540± 0.001 1.161± 0.004 2.570± 0.009
Aligned 0.516± 0.001 1.033± 0.002 2.278± 0.005

B Algorithms

This section contains algorithms described in Section 2. In the curve finding algorithm, the opti-
mization step can correspond to a variety of techniques. In this paper, we use traditional stochastic

13



(a) CIFAR100

(b) CIFAR10

(c) Tiny ImageNet

(d) CIFAR100

(e) CIFAR10

(f) Tiny ImageNet

Figure 7: Left/Right: The test loss/accuracy on plane containing learned curve, rφ(t).

gradient descent to update the curve parameters φ. Notice that stochasticity is introduced by the
sampling of t as well as the training data. This is detailed in Algorithm 2.

For the purpose of computing validation loss and test loss for rφ, important care must be given for
networks that contain batch normalization layers. This is because batch normalization aggregates
running statistics of the network output that are used when evaluating the model. Though, rφ(t0)
gives the weights for the model at point t0, the running statistics need to be aggregated for each
normalization layer. In practice, this can be done by training the model for one epoch, while freezing
all learnable parameters of the model. Since batch statistics would need to be computed for each
point sampled along the curve, it happens that computing the validation or test loss of the curve rφ is
more expensive than an epoch of training.

C Theoretical Motivation for Mode Connectivity with Neuron Alignment

In this section we present a theoretical discussion regarding the use of neuron alignment for curve
finding up to weight symmetry. We begin by defining relevant terminology.

14



(a) CIFAR100 (b) CIFAR10

Figure 8: Robust test loss on curve between robust models.

(a) CIFAR10 Clean Accuracy (b) CIFAR10 Robust Accuracy

Figure 9: Clean/Robust accuracy on the CIFAR10 robust curves.

Wasserstein distance In the following proof, we will make use of the Wasserstein-2 metric for
measuring a distance between probability distributions. This metric has recently been popular in
works such as WGAN (Arjovsky et al., 2017). Formally, let µ and ν be probability measures, i.e.
distributions, on a given metric space M . We let Γ(µ, ν) denote the set of joint probability measures
with marginals µ and ν. Then the Wasserstein-p metric is defined as

Wp(µ, ν) :=

(
inf

γ∈Γ(ν,µ)
E(x,y)∼γ [||x− y||p]

) 1
p

(8)

Note that this metric is related to optimal transport, where γ∗ is the optimal transport plan between
the two distributions with the cost being the Euclidean p-norm. Remember that the distributions we
are interested in our the distributions of intermediate activations of neuron networks,X(1)

l andX(2)
l ,

as discussed in 2.2. Then equation (8) simplifies to

Wp(X
(1)
l ,X

(2)
l )p = min

P∈ΠKl

∑
i∈Kl

||X(1)
l,i −X

(1)
l,P (i)||

2. (9)

This comes from the fact that since we are dealing with an empirical distribution with uniform
marginals, so the set of permutations extremal points and thus contains a minimizer.

C.1 Proof of Theorem 3.1

For this proof, we consider a pair of feed-forward networks, with output defined as

Yj = W
(j)
L σW

(j)
L−1 . . . σW

(j)
1 X0, i = 1, 2, (10)

Algorithm 2: Curve Finding (Garipov et al., 2018)
Input: Two trained models, θ1 and θ2

Output: A parameterized curve, rφ, connecting θ1 and θ2 along which loss is flat
Initialize rφ(t) as θ1 + t(θ2 − θ1);
while not converged do

for batch in dataset do
sample point t0 in [0, 1]
compute loss L(rφ(t0))
optimization step on network rφ(t0) to update φ

15



for the given input data distribution X0. Now we consider the addition of the permutation matrices,
Pi, that generalize the above equation to deal with weight symmetry,

Yj = W
(j)
L P T

L−1σPL−1W
(j)
L−1P

T
L−2 . . .P

T
1 σP1W

(j)
1 X0. (11)

The initialization used for curve finding is the interpolation between the two neural networks. This
allows us to define the unaligned and aligned linear interpolations,

lu(t) =
(

(1− t)W (1)
L + tW

(2)
L

)
σ
(

(1− t)W (1)
L−1 + tW

(2)
L−1

)
. . . (12)

σ
(

(1− t)W (1)
1 + tW

(2)
1

)
X0,

la(t) =
(

(1− t)W (1)
L + tW

(2)
L P T

L−1

)
σ
(

(1− t)W (1)
L−1 + tPL−1W

(2)
L−1P

T
L−2

)
. . . (13)

σ
(

(1− t)W (1)
1 + tP1W

(2)
1

)
X0.

For layer i of networks along the interpolation, we define the pre-activations, fi, and post-activations,
gi,

fu1 (t) =
(

(1− t)W (1)
1 + tW

(2)
1

)
X0 (14)

gui (t) =σfui (t)

fui (t) =
(

(1− t)W (1)
i + tW

(2)
i

)
gui−1(t).

These are defined similarly for the interpolation of the aligned networks, where we denote them as
fai and gai .

Now we consider the L2 distance between the first layer pre-activation distributions and the endpoint
intermediate activation distributions. We define the following relevant L2 distances:

du1 (t; 0) = ||fu1 (t)− fu1 (0)||2 = t|| − fu1 (0) + fu1 (1)||2 (15)
du1 (t; 1) = ||fu1 (t)− fu1 (1)||2 = (1− t)|| − fu1 (0) + fu1 (1)||2 (16)
da1(t; 0) = ||fa1 (t)− fu1 (0)||2 = t|| − fu1 (0) + P1f

u
1 (1)||2 (17)

da1(t; 1) = ||fa1 (t)− P1f
u
1 (1)||2 = (1− t)|| − fu1 (0) + P1f

u
1 (1)||2 (18)

Notice that P1 is the permutation associated with minimizing the ground metric L2 norm for the
Wasserstein distance between the endpoint models fu1 (0) and fu1 (1). Then it immediately follows
that

da1(t; 0) ≤ du1 (t; 0) da1(t; 1) ≤ du1 (t; 1). (19)
Thus, we have a tighter bound on the distance between the first layer pre-activations of models along
the aligned curve than the unaligned curve to those of the endpoint models. We also have that the
nonlinear pointwise activation function σ is Lipschitz continuous. Thus, there exists a constant Lσ
such that

||σfu1 (t)− σfu1 (0)||2 ≤ Lσdu1 (t; 0). (20)
Clearly, a similar relation holds for the other distances.

We calculate our distances d for the deeper layers of the network. We determine bounds on these
distances, using d recursively, given in the following equations:
dui (t; 0) = ||fui (t)− fui (0)||2 (21)

≤ Lσ((1− t)||W (1)
i ||2d

u
i−1(t; 0) + t||W (2)

i ||2d
u
i−1(t; 1)) + t|| − fui (0) + fui (1)||2

dui (t; 1) = ||fui (t)− fui (1)||2 (22)

≤ Lσ((1− t)||W (1)
i ||2d

u
i−1(t; 0) + t||W (2)

i ||2d
u
i−1(t; 1))

+ (1− t)|| − fui (0) + fui (1)||2
dai (t; 0) = ||fai (t)− fui (0)||2 (23)

≤ Lσ((1− t)||W (1)
i ||2d

a
i−1(t; 0) + t||W (2)

i ||2d
a
i−1(t; 1)) + t|| − fui (0) + Pif

u
i (1)||2

dai (t; 1) = ||fai (t)− Pifui (1)||2 (24)

≤ Lσ((1− t)||W (1)
i ||2d

a
i−1(t; 0) + t||W (2)

i ||2d
a
i−1(t; 1))

+ (1− t)|| − fui (0) + Pif
u
i (1)||2

16



Using equation (19) and that Pi is chosen to minimize the L2 distance of the intermediate pre-
activations of the endpoints, it follows inductively that

dai (t; 0) ≤ dui (t; 0) dai (t; 1) ≤ dui (t; 1). (25)

Thus, we have derived a tighter bound on the distance between the intermediate pre-activation
distributions for models along the aligned linear interpolation to those of the endpoint.

Now, we make clear that the two endpoint networks are taken to be ε optimal networks. That is,
||Y − Yj ||2 ≤ ε, where Y are the true output for the training data. Clearly, given two trained
networks such an ε must exist. This allows the following inequalities to hold,

||lu(t)− Y ||2 ≤ (1− t)||W (1)
L (σfuL−1(t)− σfuL−1(0))||2 (26)

+ t||W (2)
L (σfuL−1(t)− σfuL−1(1))||2 + ε,

≤ (1− t)||W (1)
L ||2Lσd

u
L−1(t; 0) + t||W (2)

L ||2Lσd
u
L−1(t; 1) + ε.

Similarly, we have that

||la(t)− Y ||2 ≤ (1− t)||W (1)
L ||2Lσd

a
L−1(t; 0) + t||W (2)

L ||2Lσd
a
L−1(t; 1) + ε. (27)

Finally, we have that the loss function L is Lipschitz-continuous or that the input dataset is bounded.
If only the later case is satisfied, then it follows that the output is also bounded. As the loss function
is continuous, it follows that L is Lipschitz-continuous restricted to the image of the dataset under
the neural networks. Then there exists a constant LL such that

L(lu(t)− Y ) ≤ LL||lu(t)− Y ||2 := Bu(t), (28)
L(la(t)− Y ) ≤ LL||la(t)− Y ||2 := Ba(t).

Now notice that since daL−1(t) ≤ duL−1(t), it follows that

Ba(t) ≤ Bu(t), t ∈ [0, 1]. (29)

Then we define upper bounds on the initializations for solving equation (5),

Ba :=

∫ 1

0

Ba(t)dt ≤ Bu :=

∫ 1

0

Bu(t)dt, (30)

where P is fixed as unaligned or determined by alignment. Thus, they are upper bounds for the
optimal solutions. This completes the proof.

C.2 On the Tightness of the Bounds

In the aforementioned proof, we derive tighter bounds for loss along the aligned curve compared to
the unaligned curve, using the L2 distance between pre-activations. We can establish the tightness of
the provided bounds for a nontrivial class of networks. We do this to show that the bounds provide
insight into how alignment aids mode connectivity, while having some practicality. The class of
networks for which we will show tightness are networks with ReLU activation function and root
mean squared error (RMSE) loss.

We emphasize that the bound depends on the following inequalities:

1. local Lipschitz continuity of the loss function
2. Lipschitz continuity of the activation function
3. matrix norm inequalities for the layer weightsWi

4. triangle inequality for expressing the intermediate activations as a linear combination of
those in the previous layer

5. triangle inequality related to ε-optimality of the endpoints

First we show which weights allow the bounds for the linear interpolation between models to be tight.

1. Since the loss function is RMSE, equation (28) achieves equality with LL = 1.

17



2. The ReLU activation function is Lipschitz continuous with Lσ = 1. This inequality is tight
for bias vector large enough so that activations are non-negative.

3. The matrix norm inequality is met with equality when the weights Wi act as isometries on
the set of activations from the previous layer.

4. For these triangle inequalities to be met, all terms in the sum must have the same sign.
This can be accomplished by a choice of bias vectors such that min fui (1) is greater than
max fui (0). This is in addition to W (1)

i ≥ 0 and W (2)
i ≤ 0.

5. The final triangle inequality can be satisfied in the following way. The signs of the weight
matrices can be found such that the endpoint activations have the same sign. The bias vectors
can be found such that the endpoint activations are greater than the ground truth labels for
some dataset. These choices of weights define a dataset for which the endpoint models are
strictly ε1 and ε2 optimal respectively. Then ε in equation (27) can be replaced with the
term, (1− t)ε1 + tε2. These choices guarantee the last inequality is tight, albeit with a more
specified epsilon.

Note that we show that there exists a choice of weights, ε1, and ε2 for which these bounds are tight.

In the main text, we discussed how tightness in the bounds for linear interpolation implies tightness
in the bounds for continuous curves. Then, these bounds are nontrivial as we have tightness for a
wide class of networks and curve parameterizations under a reasonable assumption.

C.3 On the Use of Post-Activations for Neuron Alignment

In the previous proof in Appendix C.1, we assumed that the alignment is based on minimizing the
L2 distance of preactivations. The use of preactivation is needed in the calculation of di, where
the term fui (t) can be linearly decomposed into (1− t)W (1)

i σfui−1(t) and tW (2)
i σfui−1(t). Such a

decomposition does not necessarily hold for post-activations.

A natural question is how Theorem 3.1 can be applied to alignment of post-activations. This can
be accomplished by modifying equation (2) in the following way. Let Cl,pre and Cl,post be the cost
matrices of the L2 distances of pre-activations and post-activations in network layer l respectively.
Then we can define the permutation associated with aligning post-activations as

P ∗l = arg min
Pl∈ΠKl

trace(CT
l,postPl) (31)

such that trace(CT
l,prePl) ≤ trace(CT

l,pre).

Given the added constraint, it follows that we can establish a tighter upper bound on the loss after
aligning the post-activations, though this bound is not necessarily as tight as aligning preactivations.
Using post-activations is more complicated theoretically due to the nonlinear nature of the activation
function σ.

On the Use of Cross-Correlation In the main body of the paper, our numerical results concern the
alignment given by maximizing the correlation of post-activations. We have just discussed theoretical
details regarding the alignment of post-activations. Now, we address the use of cross-correlation.
Given post-activations gi(0) and gi(1), if the distribution at each neuron is a unit normal Gaussian
N (0, 1), then the alignment that maximizes cross-correlation is equivalent to the alignment that
minimizes L2 distance. In this sense, the use of cross-correlation approximates normalizing the
distributions of post-activations before a L2 minimizing alignment.

We provide an example to motivate the use of cross-correlation over unnormalized L2 distance in
our experiments. Consider a network with post-activations gi that will induce an alignment on the
weights in the following linear layer of a neural network, Wi+1. With these quantities, we define
quantities in what can be viewed as an equivalent network,

ĝi = diag(Σgi)
−1(gi − E[gi]), (32)

Ŵi+1 = Wi+1(I + E[gi])diag(Σgi).

Note that these are pointwise normalizations of the post-activations. Then it is reasonable that if we
were to align the activations gi and ĝi, we would want an alignment invariant to affine transformations

18



that can essentially be absorbed into the following linear layer. Additionally, maximizing cross-
correlation as opposed to minimizing the L2 distance of normalized distributions leads to the easy-to-
interpret correlation signature seen in Figure 1.

In Figure 2, we compare these different techniques for alignment. Empirically, we find that aligning
post-activations outperforms aligning pre-activations. Additionally, alignment via maximizing cross-
correlation is seen to outperform all other methods. This validates are decision to use this technique
in the main body of the paper.

D Residual Network Alignment

Algorithm 1 applies to networks with a typical feed-forward structure. In this section, we discuss
how we compute alignments for the ResNet32 architecture as it is more complicated. It is important
to align networks such that the network structure is preserved and network activations are not altered.
In the context of residual networks, special consideration must be given to skip connections.

Consider the formulation of a basic skip connection,
Xk+1 = σ ◦ (Wk+1Xk) +Xk−1 (33)

In this equation, we can see thatXk+1 andXk−1 share the same indexing of their units. This becomes
clear when you consider permuting the hidden units inXk−1 without permuting the hidden units of
Xk+1. It is impossible to do so without breaking the structure of the equation above, where there is
essentially the use of an identity mapping from Xk−1 to Xk+1. This effect that skip connections
has on the symmetries of the loss surface has been studied previously in (Orhan & Pitkow, 2017).
We note that the skip connection does not eliminate this symmetry, the symmetry is now just shared
across certain layers.

We consider a traditional residual network that is decomposed into residual blocks. In each block the
even layers have skip connections while the odd layers do not. So, we compute the alignment as usual
for odd layers. For all even layers within a given residual block, we determine a shared alignment.
We do this by solving the assignment problem for the average of the cross-correlation matrix over the
even layers in that residual block.

E Proximal Alternating Minimization for Solving the Joint Model

We introduce a framework to solve the generalized problem in equation (5). Theoretically, this
problem is fairly complicated and hard to analyze. Numerically, approaching the problem directly
with first order methods could be computationally intensive as we need to store gradients of φ and P
simultaneously. The problem can be more easily addressed using the method of proximal alternating
minimization (PAM) (Attouch et al., 2010). The PAM scheme involves iteratively solving the two
subproblems in equation (34). Here we let Q(φ,P ) denote the objective function in equation (5). We
only consider parameterized forms of r that satisfy the endpoint constraints for all φ and P .

P k+1 = arg min
P

Q(φk,P ) + 1
2νP
||P − P k||22

such that blockdiag(P1,P2, ...,PL−1) where Pl ∈ Π|Kl|
φk+1 = arg min

φ
Q(φ,P k+1) + 1

2νφ
||φ− φk||22

(34)

Computing the unaligned curve is equivalent to solving the PAM scheme with a very small value of
νP . In fact, we are able to prove local convergence results for a certain class of networks.
Theorem E.1 (Convergence). Let {φk+1,P k+1} be the sequence produced by equation (34). As-
sume that rφ(t) corresponds to a feed-forward neural network with activation function σ for t ∈ [0, 1].
Assume that L, rφ, and σ are all piece-wise analytic functions in C1 and locally Lipschitz differen-
tiable in φ and P . Lastly, assume that the input data is bounded and the norm of the network weights
are constrained to be bounded above. Then the following statements hold:

1. Q(φk+1,P k+1) + 1
2νφ
||φk+1 − φk||22 + 1

2νP
||P k+1 − P k||22 ≤ Q(φk,P k), ∀k ≥ 0

2. {φk,P k} converges to critical point of equation (5).

Proof. See Appendix E.3.

19



E.1 Quadratic Bezier Curve Parameterization

We explicitly define the quadratic Bezier curve for use in the PAM algorithm in equation (35). Here
the curve has been reparameterized so that the control point is a function of the permutation P . θ̃c
captures the deviation of the control point from the linear midpoint between θ1 and Pθ2. For PAM,
θ̃c is the learnable curve parameter in φ. It is zero initialized so that the initial curve is a linear
interpolation between models as in traditional curve finding. This coupling of the control point with
the permutation is critical for the success of PAM.

r(t; θ̃c,P ) = (1− t)2θ1 + t2Pθ2 + 2(1− t)t
(
θ1 + Pθ2

2
+ θ̃c

)
. (35)

E.2 Numerical Implementation for PAM

To learn each PAM curve, we perform a single outer iteration of PAM. This was seen as sufficient
for training to converge. The permutation subproblem entails 20 epochs of projected stochastic
gradient descent to the set of doubly stochastic matrices. This is done as the set of doubly stochastic
matrices is the convex relaxation of the set of permutations. This projection is accomplished through
20 iterations of alternating projection of the updated permutation to the set of nonnegative matrices
and the set of matrices with row and column sum of 1. After the 20 epochs of PGD, each layer
permutation is projected to the set of permutations, Π|Kl|. This projection is detailed in Appendix
E.4. The curve parameter subproblem, which optimizes θ̃c from equation (35), entails 250 epochs
of SGD. The same hyperparameters are used as in training the other curves. The learning rates are
annealed with each iteration of PAM.

E.3 Proofs for PAM

For the following proofs, we first establish and more rigorously define some terminology. We first
discuss an important abuse of notation. For clarity the parameterized curve connecting networks
under some permutation P that has been written as rφ(t) will now sometimes be referred to as
r(t;φ,P ).

Feed-forward neural networks In this section, we will be analyzing feed-forward neural networks.
We let X0 ∈ Rm0×d be the input to the neural network, d samples of dimension m0. Then we let
Wi ∈ Rmi×mi−1 denote the network weights mapping from layer l − 1 to layer l. Additionally, σ
denotes the pointwise activation function. Then we can express the output of a feed-forward neural
network, Y , as:

Y := WLσ ◦WL−1σ ◦WL−2...σ ◦W1X0 (36)

To include biases, {bi}Li=1, we simply convert to homogeneous coordinates,

X̂0 =

[
X0

1

]
, Ŵi =

[
Wi bi
0 1

]
, Ŷ =

[
Y
1

]
(37)

In all proofs, these terms are interchangeable.

Huberized ReLU The commonly used ReLU function is defined as σ(t) := max(0, t). However,
this function is not in C1 and hence not locally Lipschitz differentiable. This makes conducting
analysis with this function difficult. Thus, we will approach studying it through the lens of the
huberized ReLU function, defined as:

σδ(t) :=


0 for t ≤ 0
1
2δ t

2 for 0 ≤ t ≤ δ
t− δ

2 for δ ≤ t
(38)

It is clear that σδ is a C1 approximation of σ such that ||σ − σδ||∞ = δ
2 . Using huberized forms of

loss functions for analysis is a fairly common technique such as in (Xu et al., 2016) which studies
huberized support vector machines.

20



Kurdyka-Lojasiewicz property The function f is said to have the Kurdyka-Lojasiewics (KL)
property at x̄ if there exist ν ∈ (0,+∞], a neighborhood U of x̄ and a continuous concave function
ψ : [0, ν)→ R+ such that:

• ψ(0) = 0

• ψ is C1 on (0, ν)

• ∀s ∈ (0, ν), ψ′(s) > 0

• ∀x ∈ U ∩ [f(x̄) < f < f(x̄) + ν], the Kurdyka-Lojasiewics inequality holds

ψ′(f(x)− f(x̄))dist(0, ∂f(x)) ≥ 1. (39)

Here ∂f denotes the subdifferential of f . Informally, a function that satisfies this inequality is one
whose range can be reparameterized such that a kink occurs at its minimum. More intuitively, if ψ
has the form, s1−θ with θ in (0, 1), and f is differentiable on (0, ν), then the inequality reduces to

1

(1− θ)
|f(x)− f(x̄)|θ ≤ ||∇f(x)|| (40)

Semialgebraic function A subset of Rn is semialgebraic if it can be written as a finite union of
sets of the form

{x ∈ Rn : pi(x) = 0, qi(x) < 0, i = {1, 2, ..., p}}
where pi and qi are real polynomial functions. A function f : Rn → R ∪ {+∞} is said to be
semialgebraic if its graph is a semialgebraic subset of Rn+1.

Subanalytic function Globally subanalytic sets are sets that can be obtained through finite intersec-
tions and finite unions of sets of the form {(x, t) ∈ [−1, 1]n×R : f(x) = t}where f : [−1, 1]n → R
is an analytic function that can be extended analytically on a neighborhood of the interval [−1, 1]n.
A function is subanalytic if its graph is a globally subanalytic set.

E.3.1 Proof of Theorem E.1

To prove this, we need that our problem meets the conditions required for local convergence of
proximal alternating minimization (PAM) described in (Attouch et al., 2010). This requires the
following:

1. Each term in the objective function containing only one primal variable is bounded below
and lower semicontinuous.

2. Each term in the objective function which contains both variables is in C1 and is locally
Lipschitz differentiable.

3. The objective function satisfies the Kurdyka-Lojasiewicz (KL) property.

First we reformulate the problem so that it becomes unconstrained. Let χ denote the indicator
function, where:

χC(t) :=

{
0, for t ∈ C
+∞, otherwise

(41)

This problem contains two hard constraints. First, each permutation matrix, Pl, must clearly be
restricted to the set of permutation matrices of size |Kl|, Π|Kl|. Additionally, it is assumed that
the norm of the weights are bounded above. Without loss of generality, let KW denote an upper
bound valid for all the weights. We denote the set of weights that satisfy the norm constraint as
{A : ||A||22 ≤ KW }. Then equation (5) with added regularization is equivalent to:

φ∗,P ∗ = arg min
φ,P

Q(φ,P ) +

L−1∑
l=1

χΠ|Kl|
(Pl) +

L∑
l=1

χ{A:||A||22<KW }(Wl) (42)

We now address each requirement for local convergence.

1. From equation (41), we can see that the sum of indicator functions are bounded below and
lower semicontinuous.

21



2. Now we consider the form of the function, Q(φ,P ). It has been defined as∫ 1

t=0

L(r(t;φ,P ))dt

We know that r(t;φ,P ) corresponds to a feed-forward neural network. Then Q can be
expressed as:∫ 1

t=0

L (WL(t;φ,P )σ ◦WL−1(t;φ,P ) . . . σ ◦W1(t;φ,P )X0) dt (43)

with weight matrices Wi and activation function σ. It becomes clear that for Q(φ,P ) to be
in C1 and locally Lipschitz differentiable, the same must be true for L, σ, and {Wi}Li=1.
The first two are true as they are assumptions of the theorem. Since, rφ is in C1 and locally
Lipschitz differentiable in the primal variables, then this is also true for all Wi. Thus,
Q(φ,P ) is in C1 and locally Lipschitz differentiable.

3. To satisfy the KL property, the objective function must be a tame function (Attouch et al.,
2010). Rigorously, this means that the graph of the function belongs to an o-minimal
structure, a concept from algebraic geometry. We refer curious readers to (van den Dries &
Speissegger, 2002) for further reference.
First, we note that Q(φ,P ) is piece-wise analytic. This is because Q is a composition of
piece-wise analytic functions, L, σ, and rφ. Additionally, because the input data is bounded
and the norm of the weight matrices are bounded, it follows that the domain of Q is bounded.
Since, Q is a piece-wise analytic function with bounded domain, it follows that Q is a
subanalytic function. The boundedness of the domain is an important detail here. This is
because analytic functions are not necessarilly subanalytic unless their domain is bounded;
a popular example of such a function is the exponential function.
We now consider the constraints associated with this problem, which have been re-expressed
as indicator functions in the objective. The set of permutation matrices, Π|Kl|, is finite and
thus it is clearly a semi-algebraic set. Notice that the set of weight matrices satisfying the
norm bound is equivalent to {A : ||A||22 −KW < 0}. The function that defines this set is
a polynomial, so it is a semi-algebraic set. Indicator functions on semi-algebraic sets are
semi-algebraic functions. Thus, the indicator functions in the objective are semi-algebraic.
The graphs of semi-algebraic functions and subanalytic functions both belong to the
logarithmic-exponential structure, an o-minimal structure. A basic algebraic property
of o-minimal structures is that the graphs of addition and multiplication are also elements of
the structure (van den Dries & Speissegger, 2002). Since our objective function is a linear
combination of semi-algebraic functions and subanalytic functions, it follows that the graph
of our objective function is an element of the logarithmic-exponential structure. Therefore,
our objective function is a tame function and it satisfies the KL property.

E.3.2 Considering Rectified Networks

Theorem E.1 does not extend to the class of rectified networks. However, we are still interested in
contructing a sequence of iterates {φk,P k} such that the objective value, Et∼U [L(r(t;φk,P k))],
is monotonic decreasing. The following theorem will introduce a technique for constructing such a
sequence.
Lemma E.2 (L restricted to possible network outputs is Lipschitz continuous). For a feed-forward
neural network, assume that L is continuous and that the neural network input, X0, is bounded.
Additionally, assume that the spectral norm of all weights, {Wi}Li=1, is bounded above by KW , and
the activation function, σ, is continous with ||σ|| ≤ 1. Let SY denote the set of Y where

Y = WLσ ◦WL−1σ ◦WL−2...σ ◦W1X0 (44)
such that ||Wi||2 ≤ KW ∀i ∈ {1, 2, ..., L}

Then L restricted to the set SY is Lipschitz continuous with some Lipschitz constant K.

Proof. Since X0 is bounded, it follows that there exists some constant KX such that ||X0|| ≤ KX .
Since, the spectral norm of W1 is bounded above by KW , it is easy to see that ||W1X0|| ≤ KWKX .
Now since the pointwise activation function is a non-expansive map, it immediately follows that

22



||σ ◦W1X0|| ≤ KWKX . Following this process inductively, we see that the network output, Y , is
bounded and that:

||Y || ≤ KL
WKX (45)

Since Y is arbitrary, it follows that this is a bound for SY . Then we can restrict L to the ball in
RmL×d of radius KL

WKX . This ball is compact and L is continuous, so it follows that L restricted
to this ball is Lipschitz continuous. Thus, there exists some Lipschitz constant K. Clearly, SY is
contained in this ball. Therefore, L is Lipschitz continuous on the set of all possible network outputs
with Lipschitz constant K.

Let θ1 and θ2 be feed-forward neural networks with ReLU activation function. Assume that L and
rφ are piece-wise analytic functions in C1 and locally Lipschitz differentiable. Assume that the
maximum network width at any layer is M units. Additionally, assume that the network weights
have a spectral norm bounded above by KW , and that this is a hard constraint when training the
networks. Finally, any point on rφ must be equivalent to an affine combination of neural networks
(Bezier curves, polygonal chains, etc.) satisfying the previously stated spectral norm bound.

Create the parameterized curve rδ(t;φ,P ) by substituting the huberized ReLU function, σδ, into
all ReLU functions in r(t;φ,P ). We refer to the objective values associated with these curves as
Qδ(φ,P ) and Q(φ,P ) respectively.
Theorem E.3 (Monotonic Decreasing Sequence for Rectified Networks). For a feed-forward network,
assume the above assumptions have been met. Additionally, assume that X0 is bounded, so that L
restricted to the set of possible network outputs is Lipschitz continuous with Lipschitz constant KL

by Lemma E.2. Now generate the sequence {φk,P k} by solving equation (34) for rδ(t;φ,P ). On
this sequence impose the additional stopping criteria that

1

2νφ
||φk+1 − φk||22 +

1

2νP
||P k+1 − P k||22 ≥ KL

√
M
δ

2

L−1∑
i=1

Ki
W ∀k ≥ 0. (46)

Then, the sequence of curves r(t;φk,P k) connecting rectified networks has monotonic decreasing
objective value.

Proof. First we consider the approximation error from replacing σ with σδ. It is straightforward to
see that

max
t
|σ(t)− σδ(t)| ≤

δ

2
. (47)

Then it follows that for any input x,

||σ ◦W1x− σδ ◦W1x||2 ≤
√
M
δ

2
.

Since the spectral norm of Wi are bounded above by KW , then we see that

||W2σ ◦W1x−W2σδ ◦W1x||2 ≤ KW

√
M
δ

2
.

Now notice that
||σ ◦W2σ ◦W1x− σδ ◦W2σδ ◦W1x|| ≤ ||σ ◦W2σ ◦W1x− σ ◦W2σδ ◦W1x||

+ ||σ ◦W2σδ ◦W1x− σδ ◦W2σδ ◦W1x||.
Since the ReLU function is a non-expansive map, it must be that the first term is bounded above
by the previous error, KW

√
M δ

2 . The second term corresponds once again to the error associated
with the huberized form of the ReLU function,

√
M δ

2 . Thus the total error can be bounded by
(KW + 1)

√
M δ

2 .

Following this inductively, it can be seen that the this error grows geometrically with the number of
layers. Additionally, the loss function is Lipschitz continuous when restricted to the set of possible
network outputs. So we find the following bounds:

||Y − Yδ|| ≤
√
M
δ

2

L−1∑
i=1

Ki
W

||L(Y )− L(Yδ)|| ≤ KL

√
M
δ

2

L−1∑
i=1

Ki
W (48)

23



Since any point on the curve is an affine combination of networks with the KW bound on the spectral
norm of their weights, it immediately follows this spectral norm bound also holds for the weights
for any point on the curve. Then ||Q(φ,P ) − Qδ(φ,P )|| is also bounded above by the bound in
equation (48).

Then let {φk,P k} be the sequence generated by solving equation (34) using the curve rδ. σδ is a
piece-wise analytic function in C1 and is locally Lipschitz differentiable. Additionally, the spectral
norm constraint on the weights is semi-algebraic and bounded below, so Theorem E.1 can be applied.
It then follows that

Q(φk+1,P k+1) +
1

2νφ
||φk+1 − φk||22 +

1

2νP
||P k+1 − P k||22

≤ Q(φk,P k) +KL

√
M
δ

2

L−1∑
i=1

Ki
W , ∀k ≥ 0

(49)

Thus, r(t;φk,P k) is a sequence of curves, connecting rectified networks, with monotonic decreasing
objective value as long as

1

2νφ
||φk+1 − φk||22 +

1

2νP
||P k+1 − P k||22 ≥ KL

√
M
δ

2

L−1∑
i=1

Ki
W ∀k ≥ 0

Since the above equation is a stopping criterion introduced in the theorem statement, it follows that
we have constructed a sequence of curves, connecting rectified networks, with monotonic decreasing
objective value.

E.4 Details on Solving the Permutation Subproblem in PAM

In this section, we provide additional details on the solution to the permutation subproblem in
equation (34). For short-hand notation, we re-express the subproblem as

P k+1 = arg min
P∈blockdiag(P1,...,PL−1);s.t.Pi∈Π|Ki|

L(P ;φk,P k) (50)

As described in Section E.2, when considering the permutation subproblem, we begin by solving the
convex relaxation of the subproblem. To be clear, we solve for the locally optimal matrixD∗, which
is blockwise doubly-stochastic, minimizing L in equation (50) , using projected stochastic gradient
descent.

Critical to solving the permutation subproblem is obtaining P k+1 given D∗. We utilize D∗ to
determine a set of block permutation matrices, S, with P k+1 as an element. Specifically,

P k+1 := arg min
P∈S

L(P ;φk,P k). (51)

Intuitively, a natural candidate for S is the projection ofD∗ to the set of permutations, Π. We refer
to this permutation as PΠ(D∗). This solution is a classic heuristic for solving integer programs.
This heuristic is precisely solving the convex relaxation of an integer program and then projecting
the optimal solution back to the feasible set. In practice, this projection can be solved using the
Hungarian algorithm. That is, the projection is the solution to

PΠ(D∗) := arg min
P∈Π

−trace(P TD∗). (52)

As this projection is a heuristic, there is no guarantee that PΠ(D∗) is more optimal than the previous
permutation, P k. To this end, we also let P k be in S. This prevents us from having our loss increase
after solving the subproblem.

It is also possible that there exists a permutation near D∗ that is more optimal than PΠ(D∗). To
this end, we are interested in randomly sampling such matrices. To do this, we will construct the
block permutation matrix R := blockdiag(R1, . . . ,RL−1) where Ri is the permutation matrix
corresponding to the ith layer and is sampled from a distribution Ωi. For more concise notation, we
will say that R ∼ Ω. As there is no definitive way for sampling permutation matrices from doubly
stochastic matrices, we detail how we construct the distributions {Ωl}L−1

l=1 as follows.

24



Table 3: Average test accuracy of models along the learned curves trained with different hyperparam-
eters. The curves connect the TinyTen architecture and are trained on the CIFAR100 dataset. The
accuracy of any choice of aligned curve exceeds that of all unaligned curves. This establishes that
the performance gains associated with alignment are not sensitive to choice of batch size or intial
learning rate.

Unaligned curves Aligned curves
Learning rate Batch size Batch size

64 128 256 64 128 256

1E-2 55.9± 0.2 55.3± 0.3 54.2± 0.3 58.4± 0.2 57.9± 0.3 57.4± 0.1
1E-1 55.9± 0.1 56.0± 0.2 56.0± 0.1 59.0± 0.1 58.7± 0.2 58.7± 0.1
5E-1 55.5± 0.3 55.7± 0.3 55.5± 0.1 58.6± 0.2 58.7± 0.1 58.9± 0.1

A well-known result is that every doubly stochastic matrix is a convex combination of permutation
matrices, with this convex combination being known as a Birkhoff-von Neumann (BvN) decomposi-
tion of the matrix (Dufossé & Uçar, 2016). That is, for any doubly stochastic matrix D, there exists a
set of permutation matrices such that

D =
∑
i∈I

αiPi s.t. α ≥ 0,
∑
i∈I

αi = 1,Pi ∈ Π. (53)

The problem of determining the minimal size of the index set I is known to be an NP hard problem,
and a doubly stochastic matrix can have multiple BvN decompositions. For sampling the permutation
from layer l, Pl, we utilize a BvN decomposition. This is because the BvN decomposition lends
itself to having a probabilistic interpretation. Given the decomposition in equation (53), we view the
permutation Pi being sampled from Ωl with probability αi.

To determine the specific BvN decomposition that we use, we introduce a variant of the greedy
Birkhoff heuristic (Dufossé & Uçar, 2016). First, letD(1) := D. We associate a bipartite graph, G(1),
with the matrix. In this bipartite graph, the two vertex sets correspond to the rows and columns of
D(1) with an edge indicating a nonzero value in the corresponding entry ofD(1). We then consider
the set of permutation matrices corresponding to a perfect matching in G, ΠM . With this, we define
the first permutation in the BvN decomposition as

P1 = arg max
P∈ΠM

trace(P TD(1)). (54)

Then α1 is taken to be the smallest nonzero term in P TD(1). Following this, we take D(2) =
D(1)−α1P1 and iteratively repeat this process until the full BvN decomposition has been constructed.

This BvN decomposition can easily be solved iteratively using the Hungarian algorithm. Note that
PΠ(D∗l ) is guaranteed to be the first term of the BvN decomposition with the highest value of α1

possible among BvN decompositions including that permutation. This motivates the use of this
heuristic, as it can be seen as a natural probabilistic extension of direct projection to the permutation
set. The traditional greedy Birkhoff heuristic determines Pl in the following way instead,

Pl = arg max
P∈ΠM

min diag(P TD(1)). (55)

In practice, we truncate α after i = 10, and normalize the truncated coefficient vector to determine
the distribution Ωl. We sample M block permutation matrices R from Ω, with M = 32. This is
clearly a small sample given the dimension of P , but it is large enough to provide matrices that
outperform PΠ(D∗) in our experiments.

Then all together, we have that the set S contains the block permutation matrices,
{P k, PΠ(D∗), {R(t)}Mt=1;R(t) ∼ Ω}.

F Hyperparameter Search

In the main paper, the CIFAR100 curves are trained with an initial learning rate of 1E-1 and a batch
size of 128. The choice of batch size is the same as in (Garipov et al., 2018) while training was seen

25



to converge with the given initial learning rate. Still, it is important to establish that are main results
are not dependent on the choice of hyperparameters.

In Table 3, the results for training curves for the TinyTen architecture and CIFAR100 dataset using
three different choices of initial learning rate and batch size are displayed. We see that the curves
are mostly optimal when the choice of batch size is not too large and the learning rate is not too
small. Regardless, it is clear that the accuracies associated with the aligned curves exceed those of the
unaligned curves. Namely, the lowest of the aligned accuracies is notably greater than the highest of
the unaligned accuracies. Thus, we can conclude that alignment improves mode connectivity while
not being sensitive to the choice of hyperparameters. We believe this insensitivity to hyperparameters
will extend to different architectures and datasets.

26


