
A Global landscape analysis under deterministic conditions

As mentioned, the proof of Theorem 2 and Proposition 1, will be based on deterministic conditions
on the weights of the network and the noise matrix. In particular we will consider the minimization
problem (4) with:

M = G(x?)G(x?)
ᵀ +H,

for an unknown symmetric matrix H ∈ Rn×n and nonzero x? ∈ Rk.

Recall the definition 1 of the WDC. Below we will say that a d-layer generative network G of the
form (3), satisfies the WDC with constant ε > 0 if every weight matrix Wi has the WDC with
constant ε for all i = 1, . . . d.

We can now describe the landscape of the minimization problem (4) in a deterministic settings.

Theorem 3. Consider a generative network G : Rk → Rn as in (3) and the minimization problem
(4) with unknown nonzero x? and symmetric H . Fix ε > 0 such that K1d

16
√
ε ≤ 1 and let d ≥ 2.

Suppose that G satisfies the WDC with constant ε and assume that:

‖Λᵀ
xHΛx‖2 ≤

ω

2d
for all x ∈ Rk, (11)

with 2dd12w ≤ K2‖x?‖2 and K2 < 1.

Then for all x ∈ Rk:

• if x /∈ B(x?, r+) ∪ B(−ρdx?, r−) ∪ {0} and
vx ∈ ∂f(x):

D−vxf(x) < 0

where
r+ = K3(d4ε1/2 + 2dω‖x?‖−22 )d10‖x?‖2,

and
r− = K4(d2ε1/4 + 2d/2ω1/2‖x?‖−12 )d10‖x?‖

• if x ∈ B(0, ‖x?‖2/16π)\{0} and vx ∈ ∂f(x) then

〈x, vx〉 < 0

while if x = 0 and v ∈ Sk−1 then

D−vf(0) = 0

Here ρd is a positive number that converges to 1 as d→∞ and K1, . . . ,K4 are universal constants.

Similarly, below we give the deterministic version of Proposition 1.

Proposition 2. Under the assumptions of Theorem 3, for any φd ∈ [ρd, 1], it holds that:

f(x) < f(y) (12)

for all x ∈ B(φdx?, %‖x?‖d−12) and y ∈ B(−φdx?, %‖x?‖d−12) where % < 1 is a universal
constant.

The rest of the paper is organized as follows. After summarizing the notation used throughout the
paper in Section A.1 and deriving concentration results for the subgradients from the WDC in Section
A.2, we give the proof of Theorem 3 in Section A.3. In Section A.4 we prove Proposition 2, while
Section A.5 contains the proofs of supplementary lemmas needed in the main results. Finally in
Section B, we derive the main Theorem 2 and Proposition 2 from the corresponding deterministic
ones by controlling the noise terms and recalling a result of [30] which shows that the WDC holds
with high probability.
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A.1 Notation

We now collect the notation that is used throughout the paper. For any real number a, let relu(a) =
max(a, 0) and for any vector v ∈ Rn, denote the entrywise application of relu as relu(v) . Let
diag(Wx > 0) be the diagonal matrix with i-th diagonal element equal to 1 if (Wx)i > 0 and 0
otherwise. For any vector x we denote with ‖x‖ its Euclidean norm and for any matrix A we denote
with ‖A‖ its spectral norm and with ‖A‖F its Frobenius norm. The euclidean inner product between
two vectors a and b is 〈a, b〉, while for two matrices A and B their Frobenius inner product will be
denoted by 〈A,B〉F . For any nonzero vector x ∈ Rn, let x̂ = x/‖x‖. For a set S we will write |S|
for its cardinality and Sc for its complement. Let B(x, r) be the Euclidean ball of radius r centered at
x, and Sk−1 be the unit sphere in Rk. With Dvf(x) we denote the (normalized) one-sided directional
derivative of f in direction v: Dvf(x) = limt→0

f(x+tv)−f(x)
t‖v‖2 . We will write γ = Ω(δ) to mean that

there exists a positive constant C such that γ ≥ Cδ and similarly γ = O(δ) if γ ≤ Cδ. Additionally
we will use a = b+O1(δ) when ‖a− b‖ ≤ δ, where the norm is understood to be the absolute value
for scalars, the Euclidean norm for vectors and the spectral norm for matrices.

A.2 Preliminaries

At a differentiable point, the gradient of f is given by (10) and will be denoted by ṽx and . By the
WDC, ṽx concentrates up to the noise level around the direction hx ∈ Rk:

hx :=
[ 1

22d
xxᵀ − h̃x,x? h̃ᵀx,x?

]
x, (13)

where h̃x,x? is defined below and is a continuous function of x and x?. The vector field h̃x,x? depends
on a function that controls how the angles are contracted by the deep network, and defined as:

g(θ) := cos−1
( (π − θ) cos θ + sin θ

π

)
(14)

With this definition we let h̃x,x? be:

h̃x,x? :=
1

2d
[( d−1∏

i=0

π − θ̄i
π

)
x? +

d−1∑
i=1

sin θ̄i
π

( d−1∏
j=i+1

π − θ̄j
π

)
‖x?‖x̂

]
where θi := g(θ̄i−1) for g given by (14) and θ0 = ∠(x, y). For brevity of notation below we will use
h̃x = h̃x,x? . For later convenience we also define the following vectors:

px := Λᵀ
xΛxx;

qx := Λᵀ
xΛx?x?;

v̄x := [pxp
ᵀ
x − qxqᵀx ]x;

ηx := Λᵀ
xHΛx x.

and note that when f is differentiable at x, then ṽx := ∇f(x) = v̄x − ηx, in particular for zero noise
ṽx = v̄x.

We now observe the following facts.
Lemma 1 (Lemma 8 in [29]). Suppose that d ≥ 2 and the WDC holds with ε < 1/(16πd2)2, then
for all nonzero x, x? ∈ Rk,

〈Λxx,Λx?x?〉 ≥
1

4π

1

2d
‖x‖2‖x?‖, (15)

‖Λᵀ
xΛx?x? − h̃x,x?‖ ≤ 24

d3
√
ε

2d
‖x?‖, and (16)

‖Λx‖2 ≤
1

2d
(1 + 2ε)d ≤ 1 + 4εd

2d
≤ 13

12

1

2d
. (17)

Proof. The first two bounds can be found in [29, Lemma 8]. The third bound follows noticing that
the WDC implies:

‖Λx‖2 ≤ Π1
i=d‖Wi,+,x‖2 ≤

1

2d
(1 + 2ε)d ≤ 1 + 4εd

2d
≤ 13

12

1

2d

where we used log(1 + z) ≤ z and ez ≤ (1 + 2z) for all 0 ≤ z ≤ 1.
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The next lemma shows that the noiseless gradient v̄x, concentrates around hx.
Lemma 2. Suppose d ≥ 2 and the WDC holds with ε < 1/(16πd2)2, then for all nonzero x, x? ∈
Rk:

‖v̄x − hx‖ ≤ 86
d4
√
ε

22d
max(‖x?‖2, ‖x‖2)‖x‖

We now use the characterization of the Clarke subdifferential given in (9), to derive a bound on the
concentration of vx ∈ ∂f(x) around hx up to the noise level.
Lemma 3. Under the assumption of Lemma 2, and with H satisfying (11), for any vx ∈ ∂f(x):

‖vx − hx‖ ≤ 86
d4
√
ε

22d
max(‖x?‖2, ‖x‖2)‖x‖+

ω

2d
‖x‖

A.3 Proof of Theorem 3

We define the set Sβ outside which we can lower bound the gradient as:

Sβ :=
{
x ∈ Rk| ‖hx‖ ≤

β

22d
max(‖x‖2, ‖x?‖2)‖x‖

}
with:

β = 5 ·
(
86d4
√
ε+ 2dω‖x?‖−2

)
(18)

Outside the set Sβ the gradient is bounded below and the landscape has favorable optimization
geometry.

Due to the continuity and piecewise smoothness of the generator G and in turn of the loss function f ,
for any x, y 6= 0 there exists a sequence of {xn} → x such that f is differentiable at each xn and
Dyf(x) = limn→∞∇f(xn) · y. It follows that:

D−vxf(x) = − lim
n→∞

ṽxn ·
vx
‖vx‖

as∇f(xn) = ṽxn . Regarding the right hand side of the above, observe that:

ṽxn · vx =hxn · hx + (vxn − hxn) · hx + hxn · (vx − hx) + (ṽxn − hxn) · (vx − hx)

≥hxn · hx − ‖ṽxn − hxn‖‖hx‖ − ‖hxn‖‖vx − hx‖ − ‖ṽxn − hxn‖‖vx − hx‖,

≥hxn · hx −
86d4
√
ε+ 2dω‖x?‖−2

22d

(
max(‖xn‖2, ‖x?‖2)‖xn‖‖hx‖+ max(‖x‖2, ‖x?‖2)‖x‖‖hxn‖

)
−
(86d4

√
ε+ 2dω‖x?‖−2

22d

)2
max(‖x‖2, ‖x?‖2) max(‖xn‖2, ‖x?‖2)‖xn‖‖x‖

where the second inequality follows from Lemma 3. Moreover as hx is continuous in x for all
nonzero x:

lim
n→∞

ṽxn · vx ≥‖hx‖2 − 2
86d4
√
ε+ 2dω‖x?‖−2

22d
max(‖x‖2, ‖x?‖2)‖x‖‖hx‖

−
(86d4

√
ε+ 2dω‖x?‖−2

22d

)2
max(‖x‖2, ‖x?‖2)2‖x‖2

≥ ‖hx‖
2

[
‖hx‖ − 4

86d4
√
ε+ 2dω‖x?‖−2

22d
max(‖x‖2, ‖x?‖2)‖x‖

]
+

1

2

[
‖hx‖2 − 2

(86d4
√
ε+ 2dω‖x?‖−2

22d

)2
max(‖x‖2, ‖x?‖2)2‖x‖2

]
By our choice of β in (18) it follows that for any x ∈ Scβ\{0} :

‖hx‖−4
86d4
√
ε+ 2dω‖x?‖−2

22d
max(‖x‖2, ‖x?‖2)‖x‖ ≥ max(‖x‖2, ‖x?‖2)

22d
‖x‖
(
β−4

(
86d4
√
ε+2dω‖x?‖−2

))
,

so that:

lim
n→∞

vxn · vx ≥
‖hx‖

2

max(‖x‖2, ‖x?‖2)

22d
86d4
√
ε‖x‖ > 0.
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The latter equation allows to conclude D−vxf(x) < 0 for any nonzero x ∈ Scβ and any vx ∈ ∂f(x).
Finally observe that the radii of the neighborhoods around x? and −ρdx? can be found applying
Lemma 4 below with β as given in (18).

Next for any nonzero v ∈ Rk and τ ∈ R we have:

f(τv)− f(0) =
τ4

4
‖G(v)G(v)ᵀ‖2F −

τ2

2
〈G(v)G(v)ᵀ, G(x?)G(x?)

ᵀ +H〉F ,

which implies that Dvf(0) = 0 for any v ∈ Sk−1.

Finally notice that at a differentiable point x ∈ Rk:

〈ṽx, x〉 = 〈Λᵀ
x[Λxxx

ᵀΛᵀ
x − Λx?x?x?

ᵀΛᵀ
x? ]Λxx, x〉 − 〈ΛxHΛx, x〉

= ‖G(x)‖4 − 〈G(x), G(x?)〉2 − 〈ΛxHΛx, x〉

≤ ‖x‖
2

22d

[(13

12

)2
‖x‖2 −

( 1

16π2
− 2dω

‖x?‖2
)
‖x?‖2

]
≤ ‖x‖

2

22d

[
2‖x‖2 − 1

32π2
‖x?‖2

]
having used (15), (17) and the assumption on the noise (11) in the first inequality and 2dd12w ≤
K2‖x?‖2 with d ≥ 2 in the last one. We conclude that if f is differentiable at x ∈ B(0, ‖x?‖/16π)
then 〈x, ṽx〉 < 0.

If f is not differentiable at a nonzero x ∈ B(0, ‖x?‖/16π), then by (9) for any vx ∈ ∂f(x):

〈vx, x〉 = 〈c1v1 + c2v2 + · · ·+ cT vT , x〉

≤ (c1 + c2 · · ·+ cT )
‖x‖2

22d

[
2‖x‖2 − 1

32π2
‖x?‖2

]
< 0

A.3.1 Control of the zeros of hx

In this section we show that hx is nonzero outside two neighborhoods of x? and −ρdx?.
Lemma 4. Suppose 8πd6

√
β ≤ 1. Define:

ρd :=

d−1∑
i=0

sin θ̌i
π

( d−1∏
j=i+1

π − θ̌j
π

)
where θ̌0 = π and θ̌i = g(θ̌i−1). If x ∈ Sβ , then we have either:

|θ̄0| ≤ 32d4πβ and |‖x‖2 − ‖x?‖2| ≤ 258πβd6‖x?‖

or
|θ̄0 − π| ≤ 8πd4

√
β and |‖x‖2 − ρ2d‖x?‖2| ≤ 281π2

√
βd10‖x?‖.

In particular, we have:

Sβ ⊂ B(x?, R1βd
10‖x?‖) ∪ B(−ρdx?, R2

√
βd10‖x?‖)

where R1, R2 are numerical constants and ρd → 1 as d→∞.

Proof. Without loss of generality, let x? = e1 and x = r cos θ̄0 ·e1+r sin θ̄0 ·e2, for some θ̄0 ∈ [0, π],
and r ≥ 0. Recall that we call x̂ = x/‖x‖ and x̂? = x?/‖x?‖. We then introduce the following
notation:

ξ =

d−1∏
i=0

π − θ̄i
π

, ζ =

d−1∑
i=0

sin θ̄i
π

d−1∏
j=i+1

π − θ̄j
π

, r = ‖x‖, R = max(r2, 1), (19)

where θi = g(θ̄i−1) with g as in (14), and observe that 2dh̃x = (ξx̂? + ζx̂). Let α := 2d〈h̃x, x̂〉,
then we can write:

hx =
[ 〈x, x〉

22d
x− 〈h̃x, x〉h̃x

]
=

r

22d
[
r2x̂− α(ξx̂? + ζx̂)

]
.
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Using the definition of x̂ and x̂? we obtain:

22dhx
r

=
[
(r2 − α ζ) cos θ̄0 − α ξ

]
· e1 + [r2 − αζ] sin θ̄0 · e2,

and conclude that since x ∈ Sβ , then:

|(r2 − α ζ) cos θ̄0 − α ξ| ≤ βR (20)

|[r2 − αζ] sin θ̄0| ≤ βR. (21)

We now list some bounds that will be useful in the subsequent analysis. We have:

θ̄i ≤ θ̄i−1 for i ≥ 1 (22)

θ̄i ≤ cos−1(1/π) for i ≥ 2 (23)
|ξ| ≤ 1 (24)

|ζ| ≤ d

π
sin θ̄0 (25)

ξ ≥ π − θ̄0
π

d−3 (26)

θ̌i ≤
3π

i+ 3
for i ≥ 0 (27)

θ̌i ≥
π

i+ 1
for i ≥ 0 (28)

θ̄0 = π +O1(δ)⇒ |ξ| ≤ δ

π
(29)

θ̄0 = π +O1(δ)⇒ ζ = ρd +O1(3d3δ) if
d2δ

π
≤ 1 (30)

1/π ≤ α ≤ 1. (31)

The identities (22) through (30) can be found in Lemma 16 of [31], while the identity (31) follows by
noticing that α = ξ cos θ̄0 + ζ = cos θd and using (23) together with d ≥ 2.

Bound on R. We now show that if x ∈ Sβ , then r2 ≤ 4d and therefore R ≤ 4d.

If r2 ≤ 1, then the claim is trivial. Take r2 > 1, then note that either | sin θ̄0| ≥ 1/
√

2 or | cos θ̄0| ≥
1/
√

2 must hold. If | sin θ̄0| ≥ 1/
√

2 then from (21) it follows that r2 − αζ ≤
√

2βR =
√

2βr2

which implies:

r2 ≤ α ζ

1−
√

2β
≤ 1

(1−
√

2β)

d

π
≤ d

2

using (25) and (31) in the second inequality and β < 1/4 in the third. Next take | cos θ̄0| ≥ 1/
√

2,
then (20) implies |r2 − αζ| ≤

√
2(βr2 + αξ) which in turn results in:

r2 ≤ α(ζ +
√

2ξ)

1−
√

2β
≤ 4d

using (24), (25), (31) and β < 1/4. In conclusion if x ∈ Sβ then r2 ≤ 4d⇒ R ≤ 4d.

Bounds on θ̄0. We now show we only have to analyze the small angle case θ̄0 ≈ 0 and the large
angle case θ̄0 ≈ π.

At least one of the following three cases must hold:

1. sin θ̄0 ≤ 16βπd4: Then we have θ̄ = O1(32πβπd4) or θ̄ = π + O1(32πβπd4) as
32πβπd4 < 1.

2. |r2 − αζ| <
√
βR: Then (20), (31) and β < 1 yield |ξ| ≤ 2

√
βπR. Using (26), we then

get
θ̄ = π + O1(2

√
βπ2d3R).
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3. sin θ̄0 > 16βπd4 and |r2 − αζ| ≥
√
βR: Then (21) gives |r2 − αζ| ≤ βM/ sin θ̄0 which

used with (20) leads to:

|αξ| ≤ βR+ |r2 − αζ| ≤ βR+
βR

sin θ̄0
≤ 2

βR

sin θ̄0
.

Then using (31), the assumption on sin θ̄0 and R ≤ 4d we obtain ξ ≤ d−3/2. The
latter together with (26) leads to θ̄0 ≥ π/2. Finally as |r2 − αζ| ≥

√
βR then (21) leads to

| sin θ̄0| ≤
√
β. Therefore as θ̄0 ≥ π/2 and β < 1, we can conclude that θ̄0 = π+O1(2

√
β).

Inspecting the three cases, and recalling that R ≤ 4d, we can see that it suffices to analyze the small
angle case θ̄0 = O1(32d4πβ) and the large angle case θ̄ = π +O1(8

√
βπ2d4).

Small angle case. We assume θ̄0 = O1(δ) with δ = 32d4πβ and show that ‖x‖2 ≈ ‖x?‖2.

We begin collecting some bounds. Since θ̄i ≤ θ̄0 ≤ δ, then 1 ≥ ξ ≥ (1− δ/π)d ≥ 1 +O1(2dδ/π)
assuming δd/π ≤ 1/2, which holds true since 64d5β < 1. Moreover from (25) we have ζ =
O1(dδ/π). Finally observe that cos θ̄0 = 1 + O1(θ̄20/2) = 1 + O1(δ/2) for δ < 1. We then have
α = 1 +O1(2dδ) so that αζ = O1(d2δ) and αξ = 1 +O1(4d2δ). We can therefore rewrite (20) as:

(r2 +O1(d2δ))(1 +O1(δ/2))− (1 +O1(4d2δ)) = O1(βR).

Using the bound r2 ≤ R ≤ 4d and the definition of δ, we obtain:

r2 − 1 = O1

(δr2
2

+ d2δ +
d2δ2

2
+ 4d2δ + 4dβ

)
= O1(8d2δ + 4dβ)

= O1(258πd6β)

(32)

Large angle case. Here we assume θ̄ = π + O1(δ) with δ = 8
√
βπ2d4 and show that it must be

‖x‖2 ≈ ρ2d‖x?‖2.

From (29) we know that ξ = O1(δ/π), while from (30) we know that ζ = ρd + O1(3d3δ) as long
as 8
√
βπd6 ≤ 1. Moreover for large angles and δ < 1, it holds cos θ̄0 = −1 +O1((θ̄0 − π)2/2) =

−1 +O1(δ2/2). These bounds lead to:

α = ξ cos θ̄0 + ζ

= ρd +O1

( δ
π

+
δ3

2π
+ 3d3δ

)
= ρd +O1(4d3δ),

and using ρd ≤ d:

αζ = ρ2d +O1(4d3δρd + 3d3δρd + 12d6δ) = ρ2d +O1(20d6δ),

αξ = O1(
δ

π
ρd + 4

d3δ2

π
) = O1(2d3δ).

Then recall that (20) is equivalent to (r2 − αζ) cos θ̄0 − αξ = O1(4βd), that is:(
r2 − ρ2d +O1(20d6δ)

)(
1 +O1(δ2/2)

)
+O1(2d3δ) = O1(4βd)

and in particular:

r2 − ρ2d = O1

(
20d6δ + 10d6δ3 +

ρdδ
2

2
+
r2δ2

2
+ 2d3δ + 4βd

)
= O1

(
35d6δ + 4βd

)
= O1(281π2

√
βd10)

(33)

where we used ρd ≤ d, the definition of δ and δ < 1.
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Controlling the distance. We have shown that it is either θ̄0 ≈ 0 and ‖x‖2 ≈ ‖x?‖2 or θ̄0 ≈ π and
‖x‖2 ≈ ρ2d‖x?‖2. We can therefore conclude that it must be either x ≈ x? or x ≈ −ρdx?.

Observe that if a two dimensional point is known to have magnitude within ∆r of some r and is
known to be within an angle ∆θ from 0, then its Euclidean distance to the point of coordinates (r, 0)
is no more that ∆r + (r + ∆r)∆θ. Similarly we can write:

‖x− x?‖ ≤ |‖x‖ − ‖x?‖|+ (‖x?‖+ |‖x‖ − ‖x?‖|)θ̄0. (34)

In the small angle case, by (32), (34), and ‖x?‖ |‖x‖ − ‖x?‖| ≤ |‖x‖2 − ‖x?‖2|, we have:

‖x− x?‖ ≤ 258πd6β + (1 + 258πd6β) 32d4πβ ≤ 550πd10β.

Next we notice that ρ2 = 1/π and ρd ≥ ρd−1 as follows from the definition and (27), (28). Then
considering the large angle case and using (33) we have:

|‖x‖ − ρd| ≤
281π2

√
βd10

‖x‖+ ρd
≤ 281π3

√
βd10.

The latter, together with (34), yields:

‖x+ ρdx?‖ ≤ |‖x‖ − ρd|+ (ρd + |‖x‖ − ρd|)(π − θ̄0)

≤ 281π3
√
βd10 + (d+ 281π3

√
βd10)8

√
βπ2d4

≤ 284π3
√
βd10

where in the second inequality we have used ρd ≤ d and in the third 8
√
βπd6 ≤ 1.

We conclude by noticing that ρd → 1 as d→ 1 as shown in [31, Lemma 16].

A.4 Proof of Proposition 2

Recall that f(x) := 1/4‖G(x)G(x)ᵀ − G(x?)G(x?)
ᵀ − H‖2F , we next define the following loss

functions:

f0(x) :=
1

4
‖G(x)G(x)ᵀ −G(x?)G(x?)

ᵀ‖2F ,

fH(x) := f0(x)− 1

2
〈G(x)G(x)ᵀ −G(x?)G(x?)

ᵀ, H〉F ,

fE(x) :=
1

4

(
1

22d
‖x‖4 +

1

22d
‖x?‖4 − 2〈x, h̃x〉2

)
.

In particular notice that f(x) = fH(x) + 1/4‖H‖2F . Below we show that assuming the WDC is
satisfied f0(x) concentrates around fE(x).

Lemma 5. Suppose that d ≥ 2 and the WDC holds with ε < 1/(16πd2)2, then for all nonzero
x, x? ∈ Rk

|f0(x)− fE(x)| ≤ 16

22d
(‖x‖4 + ‖x?‖4)d4

√
ε

We next consider the loss fE and show that in a neighborhood −ρdx?, this loss function has larger
values than in a neighborhood of x?.

Lemma 6. Fix 0 < a ≤ 1/(2π3d3) and φd ∈ [ρd, 1] then:

fE(x) ≤ 1

22d+2
‖x?‖4 +

1

22d+2

[
(a+ φd)

4 − 2φ2d + 2πda
]
‖x?‖4 ∀x ∈ B(φdx?, a‖x?‖) and

fE(x) ≥ 1

22d+2
‖x?‖4 +

1

22d+2

[
(a− φd)4 − 2ρ2dφ

2
d − 40πd3a

]
‖x?‖4 ∀x ∈ B(−φdx?, a‖x?‖).

The above two lemmas are now used to prove Proposition 2.
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Proof of Proposition 2. Let x ∈ B(±φd x?, ϕ‖x?‖) for a 0 < ϕ < 1 that will be specified below,
and observe that by the assumptions on the noise:

|〈G(x)G(x)ᵀ −G(x?)G(x?)
ᵀ, H〉F | ≤ |G(x)ᵀHG(x)|+ |G(x?)

ᵀHG(x?)|

≤ ω

2d
(‖x‖2 + ‖x?‖2)

≤ ω

2d
((φd + ϕ)2 + 1)‖x?‖2,

and therefore by Lemma 5:

|f0(x)− fE(x)|+ 1

2
|〈G(x)G(x)ᵀ −G(x?)G(x?)

ᵀ, H〉F | ≤

≤ 16

22d
((φd + ϕ)4 + 1)‖x?‖4d4

√
ε+

ω

2d
((φd + ϕ)2 + 1)‖x?‖2

≤ 272

22d
‖x?‖4d4

√
ε+

ω

2d
((φd + ϕ)2 + 1)‖x?‖2

We next take ϕ = ε and x ∈ B(φd x?, ϕ‖x?‖), so that by Lemma 6 and the assumption 2dd12w ≤
K2‖x?‖2, we have:

fH(x) ≤ fE(x) + |f0(x)− fE(x)|+ 1

2
|〈G(x)G(x)ᵀ −G(x?)G(x?)

ᵀ, H〉F |

≤ 1

22d+2

[
1 + (ε+ φd)

4 − 2φ2d + 2πdε
]
‖x?‖4 + 272d4

√
ε‖x?‖4 +

ω

2d+1
(2 + 2ε+ ε2)‖x?‖2

≤ 1

22d+2

[
1− 2φ2d + (ε+ φd)

4
]
‖x?‖4 +

1

22d

(3

2
2d‖x?‖−2ω +

πd

2
+ 272d4

)√
ε‖x?‖4 +

ω

2d
‖x?‖2

≤ 1

22d+2

[
1− 2φ2d + (ε+ φd)

4
]
‖x?‖4 +

1

22d

(3

2
K2d

−12 +
πd

2
+ 272d4

)√
ε‖x?‖4 +K2

‖x?‖4

22d
d−12.

Similarly if y ∈ B(−φd x?, ϕ‖x?‖), and ϕ = ε we obtain:

fH(y) ≥ fE(y)− |f0(y)− fE(y)| − 1

2
|〈G(y)G(y)ᵀ −G(x?)G(x?)

ᵀ, H〉|

≥ 1

22d+2

[
1− 2φ2dρ

2
d + (ε− φd)4

]
‖x?‖4 −

1

22d

(3

2
2d‖x?‖−2ω + 10πd3 + 272d4

)√
ε‖x?‖4 −

ω

2d
‖x?‖2

≥ 1

22d+2

[
1− 2φ2dρ

2
d + (ε− φd)4

]
‖x?‖4 −

1

22d

(3

2
K2d

−12 + 10πd3 + 272d4
)√

ε‖x?‖4 −K2
‖x?‖4

22d
d−12.

In order to guarantee that f(y) > f(x), it suffices to have:

2(1− ρ2d)φ2d − 8K2d
−12 > 4Cd

√
ε

with Cd := (544d4 + 10πd3π + 3K2d
−12 + πd/2 + 1/100), that is to require:

ϕ = ε <

(
(1− ρ2d)φ2d − 4K2d

−12

2Cd

)2

.

Finally notice that by Lemma 17 in [31] it holds that 1− ρd ≥ (K(d+ 2))−2 for some numerical
constant K, we therefore choose ε = %/d12 for some % > 0 small enough.

A.5 Supplementary proofs

Below we prove Lemma 2 on the concentration of the gradient of f at a differentiable point.

Proof of Lemma 2. We begin by noticing that:

v̄x − hx =
[
〈px, x〉px − 〈x, x〉

x

22d
]

+ [〈h̃x, x〉x− 〈qx, x〉x].

Below we show that:

‖〈px, x〉px − 〈x, x〉
x

22d
‖ ≤ 50

22d
d3
√
εmax{‖x‖2, ‖x?‖2}‖x‖. (35)
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and
‖〈qx, x〉px − 〈h̃x, x〉h̃x| ≤

36

22d
d4
√
εmax{‖x‖2, ‖x?‖2}‖x‖. (36)

from which the thesis follows.

Regarding equation (35) observe that:

‖〈px, x〉px − 〈x, x〉
x

22d
‖ = ‖〈px, x〉

[
px −

x

2d
]

+ 〈px −
x

2d
,
x

2d
〉x‖

≤
(
‖Λxx‖2 +

‖x‖2

2d
)
‖px −

x

2d
‖

≤ 50

22d
d3
√
ε‖x‖3

where in the first inequality we used 〈px, x〉 = ‖Λxx‖2 and in the second we used equations (16) and
(17) of Lemma 1.

Next note that:
‖〈qx, x〉qx − 〈h̃x, x〉h̃x‖ = ‖〈qx, x〉(qx − h̃x) + 〈qx − h̃x, x〉h̃x‖

≤ (‖qx‖+ ‖h̃x‖)‖x‖‖qx − h̃x‖

≤
(13

12
+ 1 +

d

π

)‖x‖‖x?‖
2d

‖qx − h̃x‖

≤ 3

2
d
‖x‖‖x?‖

2d
‖qx − h̃x‖

where in the second inequality we have the bound (17) and the definition of h̃x. Equation (36) is then
found by appealing to equation (16) in Lemma 1.

The previous lemma is now used to control the concentration of the subgradients vx of f around hx.

Proof of Lemma 3. When f is differentiable at x, ∇f(x) = ṽx = v̄x + ηx, so that by Lemma 2 and
the assumption on the noise:

‖vx − hx‖ ≤ ‖v̄x − hx‖+ ‖ηx‖

≤ 86
d4
√
ε

22d
max(‖x?‖2, ‖x‖2)‖x‖+

ω

2d
‖x‖.

(37)

Observe, now, that by (9), for any x ∈ Rk, vx ∈ ∂f(x) =conv(v1, . . . , vt), and therefore vx =
a1v1 + · · · + aT vT for some a1, . . . , aT ≥ 0,

∑
i ai = 1. Moreover for each vi there exist a wi

such that vi = limδ→0+ ṽx+δwi . Therefore using equation (37), the continuity of hx with respect to
nonzero x and

∑
i ai = 1:

‖vx − hx‖ ≤
T∑
i=1

ai‖vi − hx‖

≤
T∑
i=1

ai lim
δ→0
‖ṽx+δwi − hx+δwi‖

≤ 86
d4
√
ε

22d
max(‖x?‖2, ‖x‖2)‖x‖+

ω

2d
‖x‖.

We now prove Lemma 5 on the concentration of the noiseless objective function.

Proof of Lemma 5. Observe that:

|f0(x)− fE(x)| ≤ 1

4
|‖G(x)‖4 − 1

22d
‖x‖4|

+
1

4
|‖G(x?)‖4 −

1

22d
‖x?‖4|

+
1

2
|〈G(x), G(x?)〉2 − 〈x, h̃x〉|.
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We analyze each term separately. The first term can be bounded as:
1

4
|‖G(x)‖4 − 1

22d
‖x‖4| = 1

4
|‖G(x)‖2 +

1

2d
‖x‖2| |‖G(x)‖2 − 1

2d
‖x‖2|

≤ 1

4

1

2d
(13

12
+ 1
)
‖x‖2 |‖G(x)‖2 − 1

2d
‖x‖2|

≤ 1

4

1

2d

(13

12
+ 1
)
‖x‖2 24

d3
√
ε

2d
‖x‖2

≤ 1

22d
13d3

√
ε‖x‖4

where in the first inequality we used (17) and in the second inequality (16) . Similarly we can bound
the second term:

1

4
|‖G(x?)‖4 −

1

22d
‖x?‖4| ≤

1

22d
13d3

√
ε‖x?‖4.

We next note that ‖h̃x‖ ≤ 2−d(1 + d/π)‖x?‖ and therefore from (17) and d ≥ 2 we obtain:

|‖G(x)‖‖G(x?)‖+ ‖x‖‖h̃x‖| ≤
1

2d
(13

12
+ 1 +

d

π

)
‖x‖‖x?‖ ≤

1

2d
3

2
d‖x‖‖x?‖

We can then conclude that:
1

2
|〈G(x), G(x?)〉2 − 〈x, h̃x〉2| ≤

1

2
|〈x,ΛTxΛx?x? − h̃x〉| |‖G(x)‖‖G(x?)‖+ ‖x‖‖h̃x‖|

≤ 1

2
‖x‖24

d3
√
ε

2d
‖x?‖

1

2d
3

2
d ‖x‖‖x?‖

≤ 9

22d
d4
√
ε(‖x?‖4 + ‖x‖4)

.

Below we prove lower and upper bound on the loss fE as in Lemma 6.

Proof of Lemma 6. Let x ∈ B(φdx?, a‖x?‖) then observe that 0 ≤ θ̄i ≤ θ̄0 ≤ πa/2φd and (φd −
a)‖x?‖ ≤ ‖x‖ ≤ (a+ φd)‖x?‖. Then observe that:

〈x, h̃d〉 =
1

2d
( d−1∏
i=0

π − θ̄i
π

)
‖x?‖‖x‖ cos θ̄0 +

1

2d

d−1∑
i=0

sin θ̄i
π

d−1∏
j=i+1

π − θ̄j
π

‖x?‖‖x‖

≥ 1

2d
( d−1∏
i=0

π − πa
2φd

π

)
(φd − a)‖x?‖2

(
1− π2a2

8φ2d

)
≥ 1

2d
(
1− da

φd

)
(φd − a)

(
1− π2a2

8φ2d

)
‖x?‖2.

using cos θ ≥ 1− θ2/2 and (1− x)d ≥ (1− 2dx) as long as 0 ≤ x ≤ 1. We can therefore write:

fE(x)− ‖x?‖
4

22d+2
≤ 1

22d+2
‖x‖4 − 1

22d+1

(
1− da

φd

)2
(φd − a)2

(
1− π2a2

8φ2d

)2‖x?‖4
≤ 1

22d+2

[
(φd + a)4 − 2

(
1− 2

da

φd

)
(φd − a)2

(
1− π2a2

4φ2d

)]
‖x?‖4

where in the second inequality we used (1− x)2 ≥ 1− 2x for all x ∈ R. We then observe that:(
1− 2

da

φd

)
(φd − a)2

(
1− π2a2

4φ2d

)
≥
(
1− π2a2

4φ2d
− 2ad

φd

)
φ2d + a(a− 2φd)

(
1− 2

da

φd

)(
1− π2a2

4φ2d

)
≥ φ2d − a

( 1

2πd3
+ 2dφd

)
+ a(a− 2φd)

(
1− 2

da

φd

)(
1− π2a2

4φ2d

)
≥ φ2d − a

( 1

2πd3
+ 2dφd + 2φd

)
≥ φ2d − πda,
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where in the second inequality we have used π3d3a ≤ 2 and in the last one d ≥ 2 and φd ≤ 1. We
can then conclude that:

fE(x)− ‖x?‖
4

22d+2
≤ 1

22d+2

[
(φd + a)4 − 2(φ2d − πda)

]
‖x?‖4

We next take x ∈ B(−φdx?, a‖x?‖) which implies 0 ≤ π − θ̄0 ≤ π2a/2 =: δ and ‖x‖ ≤
(a+ φd)‖x?‖. We then note that for ξ and ζ as defined in (19) we have:

|2dxᵀh̃x|2 ≤ (|ξ|+ |ζ|)2(a+ φd)
2‖x?‖4

≤
( δ
π

+ 3d3δ + ρd
)2

(a+ φd)
2‖x?‖4

≤
(π3d3

2
a+ ρd

)2
(a+ φ)2‖x?‖4

≤ (2π3d3a+ ρ2d)(a+ φd)
2‖x?‖4

≤ 20πd3a+ ρ2dφ
2
d

where the second inequality is due to (29) and (30), the rest from d ≥ 2, ρd ≤ φd ≤ 1 and
2π3d3a ≤ 1. Finally using (φd − a)‖x?‖ ≤ ‖x‖, we can then conclude that:

fE(x)− ‖x?‖
4

22d+2
≥ 1

22d+2

[
(φd − a)4 − 2(20πd3a+ ρ2dφ

2
d)
]
‖x?‖4.

B Proofs for the random spiked and generative models

We are now ready to prove our main results for random spiked models and generative networks with
random weights. We begin by recalling the following fact on the WDC of a single Gaussian layer.

Lemma 7 (Lemma 11 in [29]). Fix 0 < ε < 1 and suppose W ∈ Rn×k has i.i.d. N (0, 1/n) entries.
Then if n ≥ Cεk log k, then with probability at least 1− 8n exp(−γεk), W satisfies the WDC with
constant ε. Here Cε and γ−1ε depend polynomially on ε−1.

By a union bound over all layers, using the above result we can conclude that the WDC holds
simultaneously for all layers of the network with probability at least 1−

∑d
i=1 8nie

−γεni−1 . Note in
particular that this argument does not requires the independence of the layers.

By Lemma 7, with high probability the random generative network G satisfies the WDC. Therefore
if we can guarantee the assumptions on the noise term, then the proof of the main Theorem 2 follows
from the deterministic Theorem 3 and the previous lemma.

Before turning to the bounds of the noise terms in the spiked models, we recall the following lemma
which bounds the number of possible Λx for x 6= 0. Note that this is related to the number of possible
regions defined by a deep Relu network.

Lemma 8 (Proof of Lemma 8 in [31]). Consider a network G as defined in (3) with d ≥ 2, weight
matrices Wi ∈ Rni×ni−1 with i.i.d. entries N (0, 1/ni) and log(10) ≤ k/4 log(n1). Then, with
probability one, for any x 6= 0 the number of different matrices Λx is:

|{Λx|x 6= 0}| ≤ 10d
2

(nd1n
d−1
2 . . . nd)

k ≤ (nd1n
d−1
2 . . . nd)

2k

In the next section we use this lemma to control the noise term Λᵀ
xHΛx where:

• in the Spiked Wishart Model H = ΣN − Σ;

• in the Spiked Wigner Model H = H.

We then conclude in section B.3 with the proof of Proposition 1.B.
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B.1 Spike Wigner Model

Recall that in the Wigner model Y = G(x?)G(x?)
ᵀ +H and the symmetric noise matrixH follows

a Gaussian Orthogonal Ensemble GOE(ν, n), that is Hii ∼ N (0, 2ν/n) for all 1 ≤ i ≤ n and
Hij ∼ N (0, ν/n) for 1 ≤ j < i ≤ n. Our goal is to bound ‖Λᵀ

xHΛx‖ uniformly over x with high
probability.

Fix x ∈ Rk, and let N1/4 be a 1/4-net on the sphere Sk−1 such that |N1/4| ≤ 9k and:

‖Λᵀ
xHΛx‖ ≤ 2 max

z∈N1/4

|〈Λᵀ
xHΛxz, z〉|.

For any z ∈ N1/4 let `x,z := Λxz ∈ Rn and note that by the assumption on the entries ofH it holds
that `ᵀx,zH`x,z ∼ N (0, ν2‖`x,z‖4/n). In particular by Lemma 1, the quadratic form `ᵀx,zH`x,z is
sub-Gaussian with parameter γ2 given by:

γ2 :=
ν2

n

(13

12

)2 1

22d
.

Then for fixed x ∈ Rk, standard sub-Gaussian tail bounds and a union bound over N1/4 give:

P
[
‖Λᵀ

xHΛx‖ ≥ 2u
]
≤ P

[
max
z∈N1/4

‖`ᵀx,zH`x,z‖ ≥ u
]

≤
∑

z∈N1/4

P
[
‖`ᵀx,zH`x,z‖ ≥ u

]
≤ 2 · 9ke−

u2

2γ2 .

Lemma 8, then ensures that the number of possible Λx is at most (nd1n
d−1
2 . . . nd)

2k, so a union
bound over this set allows to conclude that:

P
[
‖Λᵀ

xHΛx‖ ≤
ν

2d

√
30k log(3nd1n

d−1
2 . . . nd)

n
, for allx

]
≥ 1− 2e−k log(n).

B.2 Spike Wishart Model

Recall that the data {yi}Ni=1 are i.i.d. samples from N (0,Σ) where Σ = G(x?)G(x?)
ᵀ + σ2In. In

the minimization problem (4) we take Y = ΣN − σ2In where ΣN is the empirical covariance matrix.
The symmetric noise matrix H is then given by H = ΣN − Σ and by the Law of Large Numbers
H → 0 as N →∞. We bound ‖Λᵀ

xHΛx‖ with high probability uniformly over x ∈ Rk.

Fix x ∈ Rk, let N1/4 be a 1/4-net on the sphere Sk−1 such that |N1/4| ≤ 9k, and notice that:

‖Λᵀ
xHΛx‖ ≤ 2 max

z∈N1/4

|zᵀΛᵀ
xHΛxz|.

By a union bound on N1/4 we obtain for any fixed z ∈ N1/4:

P
[
‖Λᵀ

xHΛx‖ ≥ 2u
]
≤ 9kP

[
|zTΛᵀ

xHΛxz| ≥ u
]
.

Let `x := Λxz and note that:

zTΛᵀ
xHΛxz =

1

N

N∑
i=1

(`ᵀxyi)
2 − E[(`ᵀxyi)

2]

Since si := `ᵀxyi ∼ N (0, γ2) where γ2 = `ᵀxΣ`x, then for u/γ2 ∈ (0, 1) by small deviation bounds
for χ2 random variables (see for example [59, Example 2.11]):

P
[
‖Λᵀ

xHΛx‖ ≥ 2u
]
≤ 9kP

[
| 1

N

∑
i=1

(si/γ)2 − 1| ≥ u

γ2

]
≤ 2 exp

[
k log 9− N

8

u2

γ4
]
.

Recall now that |{Λx|x 6= 0}| ≤ (nd1n
d
2 . . . nd)

k, then proceeding as for the Wigner case by a union
bound over all possible Λx:

P
[
‖Λᵀ

xHΛx‖ ≤ 2

√
24k log(3nd1n

d−1
2 . . . nd)

N
γ2, for all x

]
≥ 1− 2e−k log(3n)

Similarly when u/γ2 ≥ 1 we obtain

P
[
‖Λᵀ

xHΛx‖ ≤ 2
24k log(3nd1n

d−1
2 . . . nd)

N
γ2, for all x

]
≥ 1− 2e−k log(3n)
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B.3 Proof of Proposition 1

Observe that Proposition 1.A follows from Proposition 2 after noticing that the assumptions
on ε and ω in Theorem 2 imply that B(x?, r+) ⊂ B(x?, %‖x?‖d−12) and B(−ρd x?, r−) ⊂
B(−ρdx?, %‖x?‖d−12).

We next recall the following fact on the local Lipschitz property of the generative network.
Lemma 9 (Lemma 21 in [31]). Suppose x ∈ B(x?, d

√
ε‖x?‖), and the WDC holds with ε <

1/(200)4/d6. Then it holds that:

‖G(x)−G(x?)‖ ≤
1.2

2d/2
‖x− x?‖.

The proof of Proposition 1.B follows now from y? = G(x?), the above Lemma, the bounds (15) and
(17) and the assumptions on ε and the noise term.
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