
A Further Related Work

While we have covered the most relevant related work and background in the main body, we give
more details for related HC methods and objectives.

Dasgupta’s cost Having an objective function for HC is crucial not only for guiding the opti-
mization, but also for having theoretically grounded solutions. Unfortunately, there has been a lack
of global objectives measuring the quality of a HC, which is in stark contrast with the plethora
of flat clustering objectives like k-means, k-center, correlation clustering (e.g., [17, 5]) and many
more. This lack of optimization objectives for HC was initially addressed indirectly in [24] (by
comparing a tree against solutions to k-clustering objectives for multiple k), and has again emerged
recently by Dasgupta [25], who introduced a cost to evaluate and compare the performance of HC
algorithms. This discrete HC cost has the key property that good clustering trees should yield a low
cost. The formulation of this objective favors binary trees and the optimum solution can always be
assumed to be binary, as a tree with higher fan-out in any internal node can easily be modified into a
binary tree with the same cost (or less). In particular, one interesting aspect of this objective is that
running Recursive Sparsest Cut would produce a HC with provable guarantees with respect to his cost
function [14]. Subsequent work was able to shed light to Average Linkage performance; specifically,
[40] studied the complement to Dasgupta’s cost function and showed that Average Linkage will
find a solution within 33% of the optimizer. Further techniques based on semidefinite programming
relaxations led to improved approximations [15, 2, 4], however with a significant overhead in runtime
(see [18] for a survey).

Agglomerative Hierachical Clustering One of the first suite of algorithms developed to solve HC
was bottom-up linkage methods. These are simple and easy to implement algorithms that recursively
merge similar datapoints to form some small clusters and then gradually larger and larger clusters
emerge. Well-known heuristics include Single Linkage, Complete Linkage and Average Linkage,
that we briefly describe here. All three heuristics start with n datapoints forming singleton clusters
initially and perform exactly n− 1 merges in total until they produce a binary tree corresponding
to the HC output. At any given step, if A and B denote two already formed clusters, the criterion
for which clusters to merge next is to minimize the minimum, maximum and average distance
between two clusters A and B, for Single, Complete and Average Linkage respectively. If instead
of pairwise distances the input was given as a similarity graph, analogous formulas can be used,
where the criterion is to maximize the respective quantities. These algorithms can be made to run
in time O(n2 log n). A bottleneck at the core of the computations for such algorithms is the nearest
neighbor problem, for which known almost quadratic lower bounds apply [22, 3]. However, recent
works [1, 16] try to address this in Euclidean spaces where we are provided features by using locality
sensitive hashing techniques and approximate nearest neighbors. Instead, here, we learn these features
using similarities only, and then use a fast decoding algorithm on the learned features to output the
final tree. Finally, HC has been studied in the model of parallel computation, where a variation of
Boruvka’s minimum spanning tree algorithm was used [6].

Hyperbolic embeddings Hyperbolic geometry has been deeply studied in the network science
community [34, 43], with applications to network routing for instance [23, 31]. Recently, there
has been interest in using hyperbolic space to embed data that exhibits hierarchical structures. In
particular, Sarkar [46] introduced a combinatorial construction that can embed trees with high fidelity,
in just two dimensions (Fig. 1b). Sala et al. [45] extend this construction to higher dimensions
and study the tradeoffs between precision and quality. Nickel et al. [41] propose a gradient-based
method to embed taxonomies in the Poincaré model of hyperbolic space [41], which was further
extended to the hyperboloid model [42]. More recently, hyperbolic embeddings have been applied
to neural networks [27] and later extended to graph neural networks [13, 37] and knowledge graph
embeddings [12] (see [11] for a survey). In contrast with all the above methods that assume a known
input graph structure, HYPHC discovers and decodes a tree structure using pairwise similarities.

B Preliminaries

We first introduce our notational conventions in Appendix B.1 and define the notion of hyperbolicity
in Appendix B.2. In Appendix B.3, we review some useful results of hyperbolic metrics that will be
used throughout our proofs.

13

B.1 Notations

Binary trees A binary tree is one that has all degrees either 1 (a leaf node) or 3 (internal node).7
A binary tree with n leaves has exactly n− 1 internal nodes (of degree 3). A rooted binary tree is
a binary tree such that one of its internal nodes (i.e. non-leaf node), the root, has degree exactly 2.
Note that if we think of one leaf in a binary tree as the root, then removing it (and letting its unique
neighbor be the new root) converts this into a rooted binary tree in the traditional sense (See Fig. 7c
and Fig. 7d for examples of rooted and unrooted binary trees). By convention, we let T denote any
binary tree with leaves 1, . . . , n and root 0 if its rooted.

Tree and hyperbolic metrics With i, j, k, we refer to nodes in T , and zi, zj , zk correspond to
points in a hyperbolic embedding Z = {z1, . . . , zn} ⊂ Bn2 . With o or z0, we denote the origin
of hyperbolic space and dB2

is the hyperbolic metric; every tree T defines a tree metric dT . We
overload d(i, j) := dT (i, j) and d(zi, zj) := dB2

(zi, zj) when the types are clear. There is a close
correspondence between hyperbolic and tree metrics, and we define the notion of quasi-isometries,
which we will use throughout our proofs.
Definition B.1 (Quasi-isometric embedding). Let T be a binary tree on (n + 1) leaves and Z =
{z0, . . . , zn} an embedding set. The pair (Z, T) is (1 + ε, κ)-quasi-isometric if:

d(i, j) ≤ d(zi, zj) ≤ (1 + ε)d(i, j) + κ,

for all 0 ≤ i, j ≤ n.

Remark B.1. Note that Definition B.1 is equivalent to saying there is a quasi-isometric embedding
from {z0, . . . , zn} to the root and leaves of T , i.e. the two metrics agree up to a linear trans-
form. Compared to the usual definition of quasi-isometry, we consider only a one-sided version for
convenience in the proofs.

Node depth We overload d0(i) = dT (0, i) to refer to the distance from node i to the root in T , and
do(zi) = dB2

(z0, zi) to be the distance to the origin in B2. Intuitively, d0(·) and do(·) represent the
“depth” of a node or point. Note that the depths are dependent on the choice of a base point as the
root of a tree or origin of the space. We always use o for B2 and the node indexed by 0 for trees.

LCA We let i ∨ j denote the LCA of two leaf nodes in T , and zi ∨ zj denote the hyperbolic LCA
defined in Eq. (7). In particular, we say that {i, j|k}T holds if the LCA of (i, j) has a larger depth
than that of (i, k) and (j, k), i.e. d0(i ∨ j) ≥ max{d0(i ∨ k), d0(j ∨ k)}. Similarly, we say that
{zi, zj |zk}B2

holds if do(zi∨zj) ≥ max{do(zi∨zk), do(zj∨zk)}. We overload {i, j|k}T = {i, j|k}
and {zi, zj |zk}B2

= {zi, zj |zk} when the types are clear.

B.2 Gromov’s delta hyperbolicity

We define the Gromov [28] product which can be used to define δ-hyperbolic spaces.
Definition B.2 (Gromov product). In any metric space (X, d), the Gromov product of points x, y ∈ X
with respect to a third point z ∈ X is:

〈x, y〉z =
1

2
(d(x, z) + d(z, y)− d(x, y)) .

When the base point z is taken to be the origin of B2 or the root of a tree, we shorten this to 〈x, y〉
unambiguously.

A key characterization of hyperbolic spaces is the notion of δ-hyperbolicity.
Definition B.3 (δ-hyperbolicity, four-point condition). A metric space (X, d) is δ-hyperbolic if there
exists δ ≥ 0 such that for all w, x, y, z in X:

〈x, y〉z ≥ min{〈x,w〉z, 〈w, y〉z} − δ.
Example B.1. The hyperbolic space B2 is log 3-hyperbolic.

Example B.2. Metric trees are 0-hyperbolic.

Example B.3. The Euclidean space Rn is not δ-hyperbolic.

7We use undirected trees in our proofs.

14

(a) Euclidean triangle (not δ-
slim). (b) 0-slim triangle in a tree. (c) δ-slim triangle.

Figure 4: Illustration of the notion of δ-slim triangles.

Up to changing δ by a constant multiple, there are many equivalent variations of the notion of
δ-hyperbolicity. In particular, one intuitive interpretation of δ-hyperbolic spaces is using the notion
of δ-slim triangles, which says that any triangle in a δ-hyperbolic space has distance from any side to
the other two less than δ. This is not true in Euclidean space, for instance the midpoint of a large
isosceles triangle might be far from the other two sides (Fig. 4).

B.3 Tree-likeness of the hyperbolic space

An important result in the theory of hyperbolic metric spaces is their tree-likeness. We review two
useful results of δ-hyperbolic metrics. First, our notion of LCA depth is closely related to the Gromov
product, which is exactly the tree depth for 0-hyperbolic metrics (Lemma B.1). Second, any finite set
of points in B2 can be embedded in a binary tree (Proposition B.1):

Lemma B.1 (LCA depth is close to the Gromov product). For any i, j ∈ T ,

d0(i ∨ j) = 〈i, j〉.
There exists δ > 0 such that for any zi, zj ∈ B2,

〈zi, zj〉 ≤ do(zi ∨ zj) ≤ 〈zi, zj〉+ δ.

Proof. This is a direct application of Lemma 6.1 and 6.2 in [8] to tree metrics (which are 0-hyperbolic)
and to the hyperbolic space B2 (which is δ-hyperbolic).8

Proposition B.1 (Tree-likeness of hyperbolic space). There is a constant Cn such that for any set of
points {z0, z1, . . . , zn} ⊂ Bn+1

2 , there is a binary tree T on leaves 0, 1, . . . , n such that:

∀0 ≤ i, j ≤ n : dT (i, j) ≤ dB2
(zi, zj) ≤ dT (i, j) + Cn, (12)

with Cn = δ ·O(n).

Proof. The statement of Proposition B.1 without the binary or leaf condition is a standard result
(See Proposition 6.7 in [8]). That is, there exists a tree T with n nodes (not necessarily binary)
satisfying Eq. (12). We modify T to satisfy the leaf constraint (i.e. {z0, z1, . . . , zn} are leaves’
embeddings) and to satisfy the binary condition (i.e. T is binary in the sense that every node has
degree 1 or 3).

Leaf condition Let k ∈ [n] be a node in T and m be the minimum edge length in T . If k has
degree greater than 1 (i.e. k is not a leaf node), then we shrink every edge connected to it by some
constant c < min{δ, mn }, create a dummy node p in place of k and connect k to it (Fig. 5a). Now all
tree distances involving k are the same, and all other distances going through p are shrunk by at most
2c. The resulting tree T ′ has n leaves and is such that:

∀0 ≤ i, j ≤ n : dT ′(i, j) ≤ dT (i, j) ≤ dT ′(i, j) + 2c.

8Note that the notion of δ-hyperbolicity in [8] uses the incenter condition, which is equivalent to the four point
condition (Definition B.3), up to changing δ by a constant multiple. In standard hyperbolic space, Lemma B.1 is
in fact satisfied for δ = log 3.

15

`1
k

`2

`1 − cp

`2 − c
k

c

(a) Leaf condition.

`1 `2 `3

`1 c

`2 − c `3 − c

(b) Binary tree condition.

Figure 5: Tree transformations used to satisfy the leaf and the binary conditions in Proposition B.1

Binary condition Next, we modify T ′ to be binary. For every node of degree 2, simply delete
it, which does not affect the tree metric restricted to [n] (we could not have deleted a node in [n]
since they are all leaves now). For every node of degree 4 or more, we replace it by multiple copies
connected by edges of length c and decrease original edges by c every time we create a copy of the
original node (Fig. 5b), which causes the distances to shrink by at most 2c(n− 1) (case of star trees).
Therefore, distances in this new binary tree T ′′ satisfy:

∀0 ≤ i, j ≤ n : dT ′′(i, j) ≤ dT ′(i, j) ≤ dT ′′(i, j) + 2c(n− 1).

With this final binary tree on (n+ 1) leaves T ′′, we have:

∀0 ≤ i, j ≤ n : dT ′′(i, j) ≤ dB(zi, zj) ≤ dT ′′(i, j) + Cn + 2c+ 2c(n− 1).

Thus the statement holds for C ′n = Cn + 2cn, which is still δ ·O(n) since c < δ.

Remark B.2. Using the definition of quasi-isometries (Definition B.1), Proposition B.1 implies
that for any embedding Z ∈ Bn2 , there exists a binary tree T on n leaves such that there is a
(1, Cn)-quasi-isometry from the leaves of T to Z.

C Hyperbolic LCA construction

We detail the calculations used to compute the hyperbolic LCA and its distance to the origin.
Lemma 4.1. Let (x, y) ∈ (B2)2 and x ∨ y denote the point on the geodesic connecting x and y that
minimizes the distance to the origin o. Let θ be the angle between (x, y) and α be the angle between
(x, x ∨ y). We have:

α = tan−1
(

1

sin(θ)

(||x||2(||y||22 + 1)

||y||2(||x||22 + 1)
− cos(θ)

))
,

and do(x ∨ y) = 2 tanh−1(
√
R2 + 1−R),

where R =

√(||x||22 + 1

2||x||2cos(α)

)2

− 1.

(8)

Proof. We use circle inversions to show this result. Circle inversions are Euclidean transformations on
the plane that map circles to circles and preserve angles [9], and can represent hyperbolic reflections
(isometric transformations) along hyperbolic geodesics. In particular, the circle inversion formula
can be used to recover the center of the circle that is orthogonal to the boundary of the disk and that
coincides with the geodesic between two given points. Consider the circle defined by the geodesic
connecting x, and y and let R denote its radius, p the orthogonal projection of o onto this circle and
∆ = oo′ denote the distance between the origin and the circle center (Fig. 6). By the circle inversion
property and using the fact that the Poincaré disk has radius one, we have 1 = (∆ − R)(∆ + R),
which yields:

R2 = ∆2 − 1. (13)

Additionally, if θ = ∠xoy and α = ∠pox, we have by the Pythagorean theorem:{
R2 = (∆− ||x||2cos(α))2 + ||x||22sin2(α)

R2 = (∆− ||y||2cos(θ − α))2 + ||y||22sin2(θ − α).
(14)

16

Figure 6: Circle inversion used for hyperbolic LCA construction in Lemma 4.1.

This leads to the system of equations:{
2
√
R2 + 1cos(α) =

||x||22+1
||x||2

2
√
R2 + 1cos(θ − α) =

||y||22+1
||y||2

(15)

which is solved for R and α defined in Eq. (8). Now using Eq. (13), we have: ||p||2 = ∆ − R =√
R2 + 1−R. Finally, we get the result using the hyperbolic distance function and noting that the

orthogonal projection of a point on a geodesic that does not contain that point is minimizing the
distance between the point and the geodesic, that is p = x ∨ y.

D Proof of Theorem 4.1

Our goal in this section is to show our main result, Theorem 4.1, which gives a (1 + ε)-approximation
ratio for Dasgupta’s discrete objective. We first give an overview of the strategy used to show Theo-
rem 4.1 and state the two results used in the proof (Lemma D.1 and Lemma D.2) in Appendix D.0.
We then go over the details of Lemma D.1 in Appendix D.1 and Lemma D.2 in Appendix D.2.

D.0 Proof outline

Our proof of Theorem 4.1 relies on two main results; the existence of a constrained embedding, the
spread embedding set (Definition 4.1), such that the rooted binary tree decoded from any embedding
in that set has a discrete cost close to the continuous cost (Lemma D.1), and reciprocally, any rooted
binary tree has a corresponding embedding in that set (Lemma D.2).

First, we define the constrained spread embedding set and give more precise conditions on the spread
constants, which we’ll use throughout the proof.
Definition D.1 (Spread Embeddings). An embedding Z ∈ Bn2 is called spread if for every triplet
(i, j, k):

max{do(zi∨zj), do(zi∨zk), do(zj∨zk)}−min{do(zi∨zj), do(zi∨zk), do(zj∨zk)} > 3Cn+2δ+1,
(16)

where δ is Gromov’s delta hyperbolicity (Lemma B.1) and Cn = δ ·O(n) is defined in Proposition B.1.

The spread constraints force LCAs to be distinguishable from each other, which intuitively encour-
ages binary tree metrics. Now using this definition, we show that any spread embedding decoded
using Algorithm 1 returns a tree that has a discrete cost close to the embeddings’ continuous cost.
Lemma D.1. Let Z ∈ Z ⊂ Bn2 be a spread embedding. Then:

|CDasgupta(dec(Z);w)− CHYPHC(Z;w, τ)| ≤ 4e−1/τ
∑
ijk

max{|wij|, |wik|, |wjk|}

We then show that any rooted binary tree has a corresponding spread embedding that decodes to it.
Lemma D.2. For any unit-weight rooted binary tree T on n leaves, there exists a spread embedding
Z ∈ Z ⊂ Bn2 such that dec(Z) = T .

17

These two Lemmas show the tight equivalence between our continuous CHYPHC cost on spread
embeddings, and the discrete Dasgupta cost CDasgupta on rooted binary trees. Finally, putting
these together, we show our main result which is that the discrete tree returned by HYPHC has a
(1 + ε)-approximation factor for Dasgupta’s minimum (Theorem 4.1).

Theorem 4.1. Consider a dataset with n datapoints and pairwise similarities (wij) and let T ∗ be
the solution of Eq. (2). Let Z be the set of spread embeddings and Z∗ ∈ Z be the solution of Eq. (4)
for some τ > 0. For any ε > 0, if τ ≤ O(1/ log(1/ε)), then:

CDasgupta(dec(Z∗);w)

CDasgupta(T ∗;w)
≤ 1 + ε. (11)

Proof. Let Z ⊂ Bn2 be the set of spread leaves’ embeddings embeddings (Definition D.1), τ > 0
and:

T ∗ = argminT CDasgupta(T ;w)

Z∗ = argminZ∈Z CHYPHC(Z;w, τ).

WLOG, assume that all edges in T ∗ have unit weight.9 Since T ∗ is a unit-weight rooted binary, we
can apply Lemma D.2 to find Z ∈ Z such that dec(Z) = T ∗.

Next, let ∆ := CDasgupta(dec(Z∗);w)− CDasgupta(T ∗;w). We have:

0 ≤ ∆ ≤ CDasgupta(dec(Z∗);w)− CHYPHC(Z∗;w, τ) + CHYPHC(Z;w, τ)− CDasgupta(T ∗;w)

= CDasgupta(dec(Z∗);w)− CHYPHC(Z∗;w, τ) + CHYPHC(Z;w, τ)− CDasgupta(dec(Z);w)

≤ 2 supZ∈Z |CDasgupta(dec(Z);w)− CHYPHC(Z;w, τ)|
≤ 8 e−1/τ

∑
ijk

max{|wij |, |wik|, |wjk|}.

The first inequality follow from the fact that CHYPHC(Z∗;w, τ) ≤ CHYPHC(Z;w, τ) since Z∗ is the
minimizer, and the last inequality uses Lemma D.1. Then:

CDasgupta(dec(Z∗);w)

CDasgupta(T ∗;w)
≤ 1 + 8 e−1/τ

(∑
ijk max{wij , wik, wjk}
CDasgupta(T ∗;w)

)
. (17)

Since CDasgupta(T ∗;w) ≥ ∑ijk min{wij + wik, wij + wjk, wik + wjk} + 2
∑
ij wij , we finally

have:
CDasgupta(dec(Z∗);w)

CDasgupta(T ∗;w)
≤ 1 +O(e−1/τ). (18)

Remark D.1. At a high level, this bound suggests that a better approximation of the argmax function
(lower τ) gives a better approximation for Dasgupta’s discrete objective.

Remark D.2. The optimization set Z defines a local constraint on every triplet zi, zj , zk (Defini-
tion 4.1), and can be enforced on triplets concurrently with sampling them for the main loss (Eq. (9)).
The max and min operations can be relaxed using softmax, and the separation can be enforced with
any auxiliary constraint (e.g. hinge loss) .

D.1 Proof of Lemma D.1

The goal of this section is to show Lemma D.1. We first introduce a notion of LCA agreement (Ap-
pendix D.1.1). We show any spread embedding is in LCA agreement with some unrooted binary tree
T , and gets decoded into the rooted version of T (Lemma D.3 in Appendix D.1.2). This then allows
us to show Lemma D.1 in Appendix D.1.3.

9Any weighted version of T ∗ would achieve the same Dasgupta cost, so we consider the unit weight case for
simplicity.

18

D.1.1 LCA Agreement

We seek to understand when the continuous HYPHC cost of an embedding is close to the discrete cost
of the tree decoded with Algorithm 1. The discrete and continuous costs both depend on the ordering
of triplets, in terms of their LCAs’ depths (i.e. distances to the origin or root). If this ordering is
the same in the continuous embedding space and in the decoded discrete tree, then the costs should
be close, up the the continuous approximation error of the softmax function. This motivates us to
introduce the notion of LCA agreement.

Definition D.2. Given a metric space (X, d), and binary operation ∨ : X ×X → X , we define the
set of LCA triplets on any points x1, . . . , xn ∈ X with respect to the base point x0 to be

{{i, j|k}, i, j, k ∈ [n] : d(x0, xi ∨ xj) > min{d(x0, xi ∨ xk), d(x0, xj ∨ xk)}.
Definition D.3 (LCA agreement). We say two sets of points x1, . . . , xn ∈ Xn and y1, . . . , yn ∈ Y n
(possibly in different metric spaces) are in LCA agreement or LCA equivalent with respect to x0 and
y0, if their set of LCA triplets are identical.

Note that LCA agreement is a relative notion and depends on the base point. In our proofs, we always
refer to LCA agreement as being with respect to the origin z0 = o ∈ B2 for embeddings, and with
respect to the node labelled 0 for trees.

Intuitively, LCA agreement implies that the LCAs of an embedding are consistent with a ground
truth tree. Since our proposed decoding algorithm only relies on LCA distances, we can show that if
there exist a unrooted binary tree T such that (Z, T) are in LCA agreement, then dec(Z) recovers
the rooted version of T .

Lemma D.3. Let Z be an embedding and T be a binary tree on (n + 1) leaves (not rooted) such
that (Z ∪ {z0 = o}, T) are in LCA agreement. Let T ′ be the rooted binary tree on n leaves that is
obtained by removing the leaf 0 from T . Then dec(Z) = T ′.

Proof. To be a little more formal, define dec(·) to depend on three things: a set of points (Z or T), a
base point (z0 = o or 0), and a LCA construction (∨B2

or ∨T).

Let T ′ be the rooted binary tree that is obtained by removing the leaf 0 from T , and relabelling
its neighbor r in T as 0, the root of T ′ (see Fig. 7c and Fig. 7d). Because Z and T are in LCA
agreement, the tree constructed from dec(Z; o,∨B2) is exactly the same as the tree constructed from
dec(T ; 0,∨T). Thus we only have to show that T ′ = dec(T ; 0,∨T).

We use an induction argument to show that T ′ = dec(T ; 0,∨T). Let r be the unique neighbor of 0 in
T , and let T0 and T1 be the two trees on the other edges of r aside from the one pointing to 0 (Fig. 7e).
Note that any distances dT (0, i ∨ j) for any i, j both contained in T0 or T1 are strictly smaller than
distances dT (0, i ∨ j) for any i ∈ T0, j ∈ T1. Therefore the decoding algorithm merges all pairs
(i, j) ∈ T0 and (i, j) ∈ T1 first. Inductively, this decoding algorithm will exactly return T0 and T1.

Finally, the decoding algorithm will merge any two i ∈ T0, j ∈ T1. This creates a new parent and
connects them to the roots of T0, T1 (Algorithm 1, line 7). The structure of this tree is therefore the
same as the tree rooted at r, in other wise T ′, as desired.

D.1.2 Any spread embedding is in LCA agreement with some binary tree

Lemma D.3 shows that under the LCA agreement condition, the decoding algorithm will produce a
discrete tree that preserves the ordering of triplets (in terms of LCAs’ depths), thus the continuous
and discrete costs are close. Furthermore, we know by Proposition B.1 that any embedding has a
corresponding quasi-isometric binary tree. Using this, we seek a condition under which a quasi-
isometric pair (Z, T) is in LCA agreement.

First, we show that under a quasi-isometric embedding (Definition B.1), the hyperbolic LCA depth
do(zi ∨ zj) is close to the tree LCA depth d0(i ∨ j) (Lemma D.4). Next, we derive a condition under
which a quasi-isometric pair (Z, T) is in LCA agreement (Lemma D.5). Finally, we show that any
spread embedding satisfies this condition, and more specifically, we show that any spread embedding
is in LCA agreement with some binary tree, such that the “deepest” LCA is always distinguishable
from the embeddings (Lemma D.6).

19

z1
z2

z3

z0

(a)

z1
z2

z3

z0

(b)

0

r

3

2 1

(c)

0

3

2 1

(d)

0

r

T0 T1

(e)

Figure 7: (a): Leaves embeddings and the origin in B2. (b): Binary tree that is a quasi-isometry of
the leaves embeddings and the origin (Proposition B.1) and corresponding discrete binary tree (not
rooted) in (c). (d): Rooted binary tree obtained by decoding hyperbolic leaves embeddings. Observe
that the quasi-isometric tree in (c) and the decoded tree in (d) are LCA equivalent with respect to 0.
(e): Figure used in induction proof in Lemma D.3.

Lemma D.4 (Hyperbolic LCA depth is close to Tree LCA depth). Let Z ⊂ Bn+1
2 be an embedding

with z0 = o and T a binary tree (not rooted) on (n+ 1) leaves such that (Z, T) is (1 + ε, κ)-quasi-
isometric. If M is the diameter of T , then for any leaves 1 ≤ i, j, k, l ≤ n:

|(do(zi ∨ zj)− do(zk ∨ zl))− (d0(i ∨ j)− d0(k ∨ l))| ≤ 3ε

2
M +

3

2
κ+ δ. (19)

Proof. We bound the hyperbolic LCA depth by the corresponding tree depths:

do(zi ∨ zj) ≥ 〈zi, zj〉

=
1

2
(do(zi) + do(zj)− d(zi, zj))

≥ 1

2
(d0(i) + d0(j)− (1 + ε)d(i, j)− κ)

= d0(i ∨ j)− ε

2
d(i, j)− 1

2
κ.

The first line is Lemma B.1, the second line is Definition B.2, and the third applies Definition B.1.

In the other direction, again using Lemma B.1, Definition B.2, and Definition B.1:

do(zi ∨ zj) ≤ 〈zi, zj〉+ δ

=
1

2
(do(zi) + do(zj)− d(zi, zj)) + δ

≤ (1 + ε) (d0(i) + d0(j)) + 2κ

2
− d(i, j)

2
+ δ

≤ 1

2
(d0(i) + d0(j)− d(i, j)) +

ε

2
(d0(i) + d0(j)) + κ+ δ

= d0(i ∨ j) +
ε

2
d0(i) +

ε

2
d0(j) + κ+ δ.

Finally, Eq. (19) follows by adding these inequalities with d(i, j) ≤M for any 0 ≤ i, j ≤ n.

Lemma D.4 allows us to provide a concrete condition for when (Z, T) are in LCA agreement, which
will be our main tool for showing the consistency of our relaxation.

Lemma D.5. Let Z ⊂ Bn+1
2 be an embedding with z0 = o and T a binary tree (not rooted) on

(n+ 1) leaves, such that (Z, T) is (1 + ε, κ)-quasi-isometric. Define M to be the diameter of T and
m to be the length of the smallest edge not including a leaf of T . If m > 3ε

2 M + 3
2κ+ δ, then (Z, T)

are in LCA agreement.

Proof. Consider an arbitrary triple (i, j, k), and suppose {ij|k}T holds. It suffices to show
that {zi, zj |zk}B2

holds to show that (Z, T) are in LCA agreement (Definition D.3). Applying

20

Lemma D.4,

do(zi ∨ zj)− do(zi ∨ zk) ≥ d0(i ∨ j)− d0(i ∨ k)−
(

3ε

2
M +

3

2
κ+ δ

)
≥ m− 3ε

2
M − 3

2
κ− δ > 0.

In the second line, we used the fact that since i ∨ j and i ∨ k are both internal nodes in T , their
distance is at least m by assumption (also, i ∨ j is deeper than i ∨ k by assumption, so the sign of the
difference is positive). Similarly do(zi ∨ zj)− do(zj ∨ zk) > 0, so zi ∨ zj is the deepest out of the 3
LCAs, as desired.

Lemma D.5 gives a technical condition for when an embedding Z is in LCA agreement with a
tree T . Next, we claim that the constrained set of spread embeddings Z ⊆ Bn2 is such that for
every embedding Z ∈ Z , there is always a corresponding tree T satisfying Lemma D.5. Intuitively,
Lemma D.5 says that m should be large, i.e. the internal edges of the tree should be spread far apart.
Using our notion of hyperbolic LCA, we can codify this by enforcing that different LCAs should be
far from each other. By leveraging global properties of hyperbolic space, this is in fact sufficient.
Lemma D.6. Suppose that embedding Z ∈ Z ⊂ Bn2 is spread. Then there exist a binary tree (not
rooted) on (n+ 1) leaves T such that (Z ∪ {z0 = o}, T) are in LCA agreement. In particular, for
any 1 ≤ i, j, k ≤ n such that {i, j|k}T holds, then:

do(zi ∨ zj) > max{do(zi ∨ zk), do(zj ∨ zk)}+ 1.

Proof. Append the origin z0 to Z (so we have a collection of n+ 1 points). By Proposition B.1, there
is a binary tree T (not rooted) on (n+ 1) leaves that is (1, Cn)-quasi-isometric for Z ∪ {z0}, where
Cn = δ · O(n). Consider an internal edge e ∈ T , i.e. an edge connecting non-leaf nodes. Since T is
binary, e has endpoints i ∨ j, i ∨ j ∨ k for some triplet {ij|k}T with 1 ≤ i, j, k ≤ n.10

Let a, b, c be the ordering of i, j, k such that do(za ∨ zb) > do(zb ∨ zc) > do(za ∨ zc). Consider:

d0(a ∨ b)− d0(a ∨ c) ≥ do(za ∨ zb)− do(za ∨ zc)−
(

3

2
Cn + δ

)
>

3

2
Cn + δ + 1,

where the first line applies Lemma D.4 with ε = 0, κ = Cn, and the second uses the definition of
spread (Definition D.1), which holds for any 1 ≤ a, b, c ≤ n. In particular, d0(a∨ b)−d0(a∨ c) > 0,
so clearly {a, b|c}T holds since T is binary, and we must have:

d0(a ∨ b)− d0(a ∨ c) = d0(i ∨ j)− d0(i ∨ j ∨ k) = d(i ∨ j, i ∨ j ∨ k),

which is the length of the edge e we are considering. Since this holds generically for any edge e
among internal nodes of T , this also holds for the minimum edge length m:

m >
3

2
Cn + δ + 1. (20)

In particular, the conditions of Lemma D.5 apply; that is, m satisfies m > 3ε
2 M + 3

2κ + δ for
ε = 0, κ = Cn. Applying Lemma D.5, we get that (Z ∪ {z0}, T) are in LCA agreement.

We now turn to the second part of Lemma D.6 which bounds the difference in LCA depth. Let
1 ≤ i, j, k ≤ n such that {i, j|k}T holds. Since (Z, T) are in LCA agreement, we can assume
WLOG that do(zi ∨ zj) > do(zi ∨ zk) > do(zj ∨ zk). Applying Lemma D.4 again, we have:

do(zi ∨ zj)− do(zi ∨ zk) ≥ d0(i ∨ j)− d0(i ∨ k)− (
3

2
Cn + δ)

≥ m− 3

2
Cn − δ

> 1,

where we used Eq. (20) in the last inequality.
10Note that triplets here are defined on leaves [n], excluding 0. The reason is that, since the LCA is computed

with respect to 0 which is a leaf in T , 0 ∨ i = 0 ∀i, and therefore there is no internal edge whose endpoint is an
LCA on 0.

21

D.1.3 The tree decoded from any spread embedding has a cost close to the HYPHC cost

We now have all the tools to show that any spread embedding decodes to a tree such that the discrete
and continuous costs are close (Lemma D.1).

Lemma D.1. Let Z ∈ Z ⊂ Bn2 be a spread embedding. Then:

|CDasgupta(dec(Z);w)− CHYPHC(Z;w, τ)| ≤ 4e−1/τ
∑
ijk

max{|wij|, |wik|, |wjk|}

Proof. Let Z ∈ Z ⊂ Bn2 be a spread embedding. Using Lemma D.6, we know that there exists a
binary tree (not rooted) on (n + 1) leaves T , such that (Z ∪ {z0 = o}, T) are in LCA agreement.
Let T ′ be the rooted binary tree that is obtained by removing the leaf 0 from T , and relabelling its
neighbor r in T as 0, the root of T ′. Using Lemma D.3, we know that T ′ = dec(Z) and:

|CDasgupta(dec(Z);w)− CHYPHC(Z;w, τ)| ≤
∑
ijk

|wijk(T ′;w)− wHYPHC,ijk(Z;w, τ)|.

Let δijk := |wijk(T ′;w)− wHYPHC,ijk(Z;w, τ)|. WLOG, assume that {i, j|k}T ′ holds for a triplet
(i, j, k) ∈ T ′. T and T ′ are equivalent in the LCA agreement sense with respect to 0, since LCA
agreement in defined over leaves in [n]. That is, the LCA of any pair i, j ∈ [n] with respect to 0 in T
is the same as the LCA with respect to 0 in T ′. Therefore using the definition of LCA agreement, we
have:

d1 := do(zi ∨ zj) ≥ max{do(zi ∨ zk), do(zj ∨ zk)} := d2.

Denote w∗ijk := max{|wij |, |wik|, |wjk|} and Σijk := edo(zi∨zj)/τ + edo(zi∨zk)/τ + edo(zj∨zk)/τ .
Then:

δijk =

∣∣∣∣wij(1− edo(zi∨zj)/τ

Σijk

)
+ wik

(
edo(zi∨zk)/τ

Σijk

)
+ wjk

(
edo(zj∨zk)/τ

Σijk

)∣∣∣∣
≤ 2w∗ijk

(
edo(zi∨zk)/τ + edo(zj∨zk)/τ

Σijk

)
≤ 4w∗ijke

(d2−d1)/τ

≤ 4w∗ijke
−1/τ .

(21)

In the last line, we applied the second part of Lemma D.6.

D.2 Proof of Lemma D.2

We have shown in Lemma D.6 that any spread embedding gets decoded into a tree such that the
continuous and discrete costs are close. We now show the other direction, that any rooted binary tree
has a corresponding spread embedding which decodes back to it (Lemma D.2), and therefore the
discrete and continuous costs are close.

We first recall a result by Sarkar for low-distortion hyperbolic embeddings of trees [46].

Proposition D.1. Any unit-weight tree T can be embedded into Z with scale ζ = O(1/ε) and
worst-case distortion at most 1 + ε, i.e.

ζdT (i, j) ≤ d(zi, zj) ≤ ζ(1 + ε)dT (i, j).

In our terminology, this says that if every edge of T is weighed with a scalar ζ = O(1/ε), then there
is an embedding Z such that (Z, T) is (1 + ε, 0)-quasi-isometric, that is:

dT (i, j) ≤ d(zi, zj) ≤ (1 + ε)dT (i, j).

We now rely on Sarkar’s result to find a spread embedding for a given rooted binary tree.

Lemma D.7. Let T be any unit-weight binary tree (not rooted) on (n+ 1) leaves. Then there is a
spread embedding Z ∈ Z ⊂ Bn+1

2 with z0 = 0, such that (Z, T) are in LCA agreement.

22

(a) First split (red). (b) Second split (blue). (c) Third split (green).

Figure 8: An illustration of the greedy decoding algorithm.

Proof. Let ε > 0. Put a weight ζ (ζ to be decided later) on every edge of T . Using Proposition D.1,
embed T to an embedding Z ⊂ Bn+1

2 , such that (Z, T) is (1 + ε, 0)-quasi-isometric, and WLOG
reflect the embeddings (isometric transformation) so that z0 is at the hyperbolic origin.

Consider any triplet 1 ≤ i, j, k ≤ n, and WLOG let {ij|k}T . Applying Lemma D.4 with κ = 0,

do(zi ∨ zj)− do(zi ∨ zk) ≥ d0(i ∨ j)− d0(i ∨ k)− 3ε

2
ζn− δ

≥ ζ
(

1− 3ε

2
n

)
− δ

In the second line we used the fact that the diameter of T is at most ζn (since there are n+ 1 nodes
and all edges are equally weighted), and in the third that i∨ j 6= i∨ k and the minimum tree distance
between any distinct nodes is ζ.

Finally, we could choose ε ≤ 1
3n and ζ > 6Cn + 6δ + 2. Note that choosing such ζ = Θ(n) works

since Proposition D.1 says ζ = Θ(1/ε) = Θ(n) is possible for the embedding, and Proposition B.1
says it is sufficient since Cn = O(n). Then:

max{do(zi ∨ zj), do(zi ∨ zk), do(zj ∨ zk)} −min{do(zi ∨ zj), do(zi ∨ zk), do(zj ∨ zk)}
≥ do(zi ∨ zj)− do(zi ∨ zk)

≥ ζ
(

1− 3ε

2
n

)
− δ

> 3Cn + 2δ + 1.

Since i, j, k were arbitrary, this shows that Z is spread (as defined in Definition D.1). Finally, note that
the min edge length of T ism = ζ , the maximum path length is at mostM = nζ , and ζ > 3

2ε(nζ)+δ
by choice of ε and ζ. Since (Z, T) were a (1 + ε, 0)-quasi-isometry, Lemma D.5 then implies that
(Z, T) are in LCA agreement.

Finally, we show Lemma D.2 using the previous Lemma and Lemma D.3.
Lemma D.2. For any unit-weight rooted binary tree T on n leaves, there exists a spread embedding
Z ∈ Z ⊂ Bn2 such that dec(Z) = T .

Proof. Attach a leaf 0 to the root of T , apply Lemma D.7, then apply Lemma D.3.

E Experimental details

E.1 More experimental details

Datasets In our experiments, we compute similarities using the cosine similarity measure on the
datapoints’ features. For all datasets in the UCI machine learning repository, we use the available
features and normalize them so that each attribute has mean zero and standard deviation one. For
CIFAR-100, where the raw data comes in the form of images, we used a pretrained BiT [33]
convolutional neural network to compute 2048-dimensional image features (one to last layer).

23

Zoo Iris Glass Segmentation Spambase
Points 101 150 214 2310 4601
Clusters 7 3 6 7 2

Discrete

SL 97.7 76.7 50.3 51.1 61.2
AL 90.1 73.7 46.3 58.2 73.4
CL 96.6 76.1 46.9 55.1 69.1
WL 90.0 74.9 48.3 61.3 68.3

BKM 86.5 66.1 43.5 57.2 74.9

Continuous
UFit 97.2 76.8 51.0 61.2 61.6
gHHC - - 46.3 - 61.4

HYPHC 98.7 77.3 49.2 55.9 79.2

Table 2: Clustering quality results measured in dendrogram purity (DP). Best score in bold, second
best underlined. gHHC scores are directly taken from [38].

Baselines To compute numbers for agglomerative clustering methods, we used the corresponding
implementation in the scipy Python library.11 We implemented our own version of BKM following
the description in [40] since no open-source version was available. For UFit, we used the open-source
implementation and reused the same hyper-parameters as in the original paper [19].12

Evaluation metrics Dasgupta’s cost is a well-studied objective with known guarantees when there
is an underlying ground-truth hierarchy [21] (such results have not been established for metrics like
dendrogram purity (DP) [30]). We therefore measure the clustering quality in terms of the discrete
Dasgupta Cost.13 For randomized algorithms and our method (which produce a different solution
for every run), we report the best cost over five random seeds. This is standard since all methods
can be viewed as search algorithms for the latent minimizer of the Dasgupta cost, analogous to how
standard combinatorial search algorithms for NP-hard problems rely on random restarts and global
perturbations when they reach local optima.

Cost Bounds We also report upper and lower bounds on the discrete Dasgupta cost, computed as:

UB(w) :=
∑
ijk

max(wij + wik, wij + wjk, wik + wjk) + 2
∑
ij

wij ≥ CDasgupta(T ;w)

LB(w) :=
∑
ijk

min(wij + wik, wij + wjk, wik + wjk) + 2
∑
ij

wij ≤ CDasgupta(T ;w),
(22)

for all rooted binary tree T . For datasets with more than a thousand of nodes, we sample triplets
uniformly at random for both the lower and upper bounds, and report the average over 10 random
seeds.

Note that datasets where the relative gap between the upper and lower bound is larger indicate datasets
where similarities induce a more hierarchical structure. As noted in [50], an instance for which the
lower bound can be achieved by a tree, is a “perfect” HC instance (termed “perfect HC-structure”
in [50]), in the sense that for every three points, the tree decomposes them in the most preferred way,
i.e., by cutting the highest similarity weight last, towards the bottom of the tree. As the optimum tree
gets higher costs, approaching the upper bound above, the instance loses its hierarchical structure; for
example, if the given graph is a unit weight clique with no hierarchy to be found, both upper and
lower bounds coincide and actually this implies that any tree gets the same cost, as was shown in
Dasgupta [25].

In Table 1, we note that on dataset where there is a large relative gap between the upper and lower
bounds (e.g. Iris or Segmentation), the relative improvement of HYPHC compared to the best baseline

11https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
12https://github.com/PerretB/ultrametric-fitting
13For completeness, we also report DP scores in Table 2, observing that this metric does not correlate well

with DC on some datasets (see Appendix E.3 for a discussion of the results).

24

https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
https://github.com/PerretB/ultrametric-fitting

is more important compared to datasets with a smaller gap (e.g. CIFAR-100). This suggest that when
there is a good underlying HC in the data, HYPHC is able to get closer to it than heuristic algorithms.

E.2 Greedy decoding

To provide more intuition about the greedy decoding, we illustrate different steps of greedy decoding
on a small example in Fig. 8. The first split is computed using the two largest angles splits (red lines
in Fig. 8a). Then, the algorithm recurses on the two created subsets and uses the largest angle in each
subset to split the data (blue and green lines in Fig. 8b and Fig. 8c).

E.3 Comparison with gHHC

Models’ comparison For completeness, we discuss in more details the comparison between HY-
PHC and the gHHC model. Monath et al. [39] propose a differentiable HC objective, which yields
improvements in scalability and downstream task performance. This model learns representations for
a fixed number of intermediate nodes using hyperbolic embeddings, and optimizes such embeddings
for the HC task. Once learned, the embeddings can be decoded into a discrete tree using heuristics
and post-processing rules. gHHC differs from the traditional similarity-based HC setting, assuming
additional information about the optimal clustering, in the form of hyperbolic leaves’ embeddings.
These are computed using normalized Euclidean features, which is mismatched to the geometry of
the data. In contrast, HYPHC does not rely on input leaves’ embeddings and directly optimizes the
entire tree structure, via the hyperbolic LCA construction. The HYPHC decoding does not require
post-processing and directly produces a dendrogram which matches the underlying geometry of the
embeddings.

Experiments While we compare to similarity-based HC methods in our main experiments, we also
include a comparison to gHHC (which uses features) for completeness in Table 2. gHHC evaluates
the clustering quality using the dendrogram purity (DP) measure [30]. Given ground truth flat clusters,
DP measures how well the clusters are preserved in the hierarchy. Note that this metric will only be a
good indicator for clustering quality when the ground truth flat clusters correlate with the hierarchy.
A proxy to measure such a correlation is analyzing if methods that do well on DC also do well on DP.
On Spambase, HYPHC and BKM have the best DC and DP scores, while SL does poorly for both
metrics. This suggests that ground truth flat clusters do correlate well with the optimal hierarchy on
this dataset, and we note that HYPHC significantly outperforms gHHC for the DP metric. On Glass,
the correlation is not so obvious; for instance SL performs poorly on DC but does very well on DP.
We conjecture that the ground truth flat clusters in glass are not directly correlated with the optimal
clustering on this dataset.

25

