
Bayesian Pseudocoresets

Dionysis Manousakas
Department of Computer Science & Technology

University of Cambridge
dm754@cam.ac.uk

Zuheng Xu
Department of Statistics

University of British Columbia
zuheng.xu@stat.ubc.ca

Cecilia Mascolo
Department of Computer Science & Technology

University of Cambridge
cm542@cam.ac.uk

Trevor Campbell
Department of Statistics

University of British Columbia
trevor@stat.ubc.ca

Abstract

Standard Bayesian inference algorithms are prohibitively expensive in the regime
of modern large-scale data. Recent work has found that a small, weighted subset
of data (a coreset) may be used in place of the full dataset during inference, taking
advantage of data redundancy to reduce computational cost. However, this approach
has limitations in the increasingly common setting of sensitive, high-dimensional
data. Indeed, we prove that there are situations in which the Kullback-Leibler (KL)
divergence between the optimal coreset and the true posterior grows with data
dimension; and as coresets include a subset of the original data, they cannot be
constructed in a manner that preserves individual privacy. We address both of these
issues with a single unified solution, Bayesian pseudocoresets—a small weighted
collection of synthetic “pseudodata”—along with a variational optimization method
to select both pseudodata and weights. The use of pseudodata (as opposed to the
original datapoints) enables both the summarization of high-dimensional data
and the differentially private summarization of sensitive data. Real and synthetic
experiments on high-dimensional data demonstrate that Bayesian pseudocoresets
achieve significant improvements in posterior approximation error compared to
traditional coresets, and that pseudocoresets provide privacy without a significant
loss in approximation quality.

1 Introduction

Large-scale data—which has become the norm in many scientific and commercial applications
of statistical machine learning—creates an inherently difficult setting for the modern data analyst.
Exploring such data is difficult because it cannot all be obtained and directly visualized at once; one
is typically limited to accessing potentially nonrepresentative random subsets of data. Exploring
models is similarly hard, as training even a single model can be a computationally expensive, slow,
and unreliable process. And as many sources of large-scale data contain sensitive information about
individuals (e.g., electronic health records and social network data), these challenges are coupled
with growing privacy concerns that preclude direct access to individual datapoints completely.
Large-scale data does offer one reprieve to the analyst: it often exhibits a significant degree of
redundancy. Most data are not unique or particularly informative for modelling and exploration.
Based on this notion, data summarization methods have been developed that provide the practitioner
with a compressed—but still statistically representative—version of the large dataset for analysis.
Summarizations have been developed for a variety of purposes, e.g., reducing the cost of computing
with kernel matrices via Nyström-type approximations [11, 32, 3] or sparse pseudo-input param-
eterizations [37], Bayesian inference [23, 22, 8, 9, 7], maximum likelihood parameter estimation
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[12, 30], linear regression [43, 20], geometric shape approximation [2], clustering [16, 29, 4, 6], and
dimensionality reduction [18].
A common form of summarization is that of a sparse, weighted subset of the original dataset—a
coreset [2]. Coresets have two distinct advantages over other possible summarization modalities:
they are easily interpreted, and can often be used as the input to standard data analysis algorithms
without modification. But as the dimensionality of a dataset grows, its constituent datapoints tend to
become more “unique” and cannot represent one another well. Indeed, in the context of Bayesian
inference—the focus of the present work—we show that the optimal coreset posterior approximation
to the true posterior has KL divergence that scales with the dimension of the data in a simple problem
setting (Proposition 1). Furthermore, directly releasing a subset of the original data precludes any
possibility of individual privacy under the current standard of differential privacy [14, 15]. Past work
addresses this issue in the context of clustering and computational geometry [17, 19], while the idea of
releasing private dataset compressions has been also pursued in kernel mean embeddings [5], sparse
regression [43], and compressive learning [36]—with the remarkable property that the privatized
compressed data may be queried ad infinitum without loss of privacy—but no such method exists for
Bayesian posterior inference.
In this work, we develop a novel technique for data summarization in the context of Bayesian
inference under the constraints that the method is scalable and easy to use, creates an intuitive
summarization, applies to high-dimensional data, and enables privacy control. Inspired by past work
[30, 43, 37], instead of using constituent datapoints, we use synthetic pseudodata to summarize
the large dataset, resulting in a pseudocoreset. We show that in the high-dimensional problem
setting of Proposition 1, the optimal pseudocoreset with just one pseudodata point recovers the exact
posterior, a significant improvement upon the optimal standard coreset of any size. As in past work
on Bayesian coresets [7], we formulate pseudocoreset construction as variational inference, and
provide a stochastic optimization method. As a consequence of the use of pseudodata—as well as
privacy-preserving stochastic gradient descent mechanisms [1, 34, 27]—we show that our method
can easily be modified to output a privatized pseudocoreset. The paper concludes with experimental
results demonstrating the performance of pseudocoresets on real and synthetic data.

2 Bayesian Coresets
In this work, the goal is to approximate expectations under a density π(θ), θ ∈ Θ expressed as the
product of N potentials (f(xn, θ))

N
n=1 and a base density π0(θ):

π(θ) :=
1

Z
exp

(
N∑

n=1

f(xn, θ)

)
π0(θ).

In the setting of Bayesian inference with conditionally independent data, the potentials are data
log-likelihoods, i.e. f(xn, θ) := log π(xn|θ), π0 is the prior density, π is the posterior, and Z is the
marginal likelihood of the data. Rather than working directly with π(θ) for posterior inference—
which requires a Θ(N) computation per evaluation—a Bayesian coreset approximation of the form

πw(θ) :=
1

Z(w)
exp

(
N∑

n=1

wnf(xn, θ)

)
π0(θ)

for w ∈ RN , w ≥ 0 may be used in most popular posterior inference schemes [33, 28, 35]. If the
number of nonzero entries ‖w‖0 of w is small, this results in a significant reduction in computational
burden. Recent work has formulated the problem of constructing a Bayesian coreset of size M ∈ N
as sparse variational inference [7],

w? = arg min
w∈RN

DKL (πw||π) s.t. w ≥ 0, ‖w‖0 ≤M, (1)

and showed that the objective can be minimized using stochastic estimates of ∇wDKL (πw||π) based
on samples from the coreset posterior πw.

2.1 High-dimensional data

Coresets, as formulated in Eq. (1), are limited to using the original datapoints themselves to sum-
marize the whole dataset. Proposition 1 shows that this is problematic when summarizing high-
dimensional data; in the common setting of posterior inference for a Gaussian mean, the KL diver-
gence DKL (πw? ||π) of the optimal coreset of any size scales with the dimension of the data. The
proof may be found in Supp. A.
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(a) (b)

Figure 1: Gaussian mean inference under pseudocoreset (PSVI) against standard coreset (SparseVI)
summarization for N = 1, 000 datapoints. (a) Progression of PSVI vs. SparseVI construction for
coreset sizes M = 0, 1, 5, 12, 30, 100, in 500 dimensions (displayed are datapoint projections on 2
random dimensions). PSVI and SparseVI coreset predictive 3σ ellipses are displayed in red and blue
respectively, while the true posterior 3σ ellipse is shown in black. PSVI has the ability to immediately
move pseudopoints towards the true posterior mean, while SparseVI has to add a larger number of
existing points in order to obtain a good posterior approximation. See Fig. 2b for the quantitative KL
comparison. (b) Optimal coreset KL divergence lower bound from Proposition 1 as a function of
dimension with δ = 0.5, and coreset size M evenly spaced from 0 to 100 in increments of 5.

Proposition 1. Suppose we use (Xn)Nn=1
i.i.d.∼ N (0, I) in Rd to perform posterior inference in a

Bayesian model with prior µ ∼ N (0, I) and likelihood (Xn)Nn=1
i.i.d.∼ N (µ, I). Then ∀M < d and

δ ∈ [0, 1], with probability at least 1− δ the optimal size-M coreset w? satisfies

DKL (πw? ||π) ≥ 1

2

N −M
1 +N

F−1d−M

(
δ

(
N

M

)−1)
,

where Fk is the CDF of a χ2 random variable with k degrees of freedom.

The bound in Proposition 1 depends on d through the χ2 distribution inverse CDF. Although difficult
to see directly, the bound is reasonably large for typical values of N,M, d, δ, and increasing linearly
in d; Fig. 1b visualizes the value of the lower bound as a function of dimension d for various coreset
sizes M . Note that the above bound requires the data to be high-dimensional such that d > M ; if
d ≤M the proof technique in Supp. A results in a vacuous DKL (πw? ||π) = 0 lower bound.

3 Bayesian Pseudocoresets

Proposition 1 shows that there is room for improvement in coreset construction in the high-
dimensional data regime. Indeed, consider again the same problem setting; the coreset posterior
distribution is a Gaussian with mean µw and covariance Σw,

Σw =

(
1 +

N∑
n=1

wn

)−1
I µw = Σw

N∑
n=1

wnXn. (2)

Examining Eq. (2), we can replicate any coreset posterior exactly by using a single synthetic

pseudodata point U =
(∑N

n=1 wn

)−1∑N
n=1 wnXn with weight

∑N
n=1 wn. In particular, the true

posterior is equivalent to the posterior conditioned on the single pseudodata point U = 1
N

∑N
n=1Xn

with weight N (with corresponding KL divergence equal to 0). This is not surprising; the mean of the
data is precisely a sufficient statistic for the data in this simple setting. However, it does illustrate that
carefully-chosen pseudodata may be able to represent the overall dataset—as “approximate sufficient
statistics”—far better than any reasonably small collection of the original data. This intuition has been
used before, e.g., for scalable Gaussian process inference [37, 38], privacy-preserving compression
in linear regression [43], herding [42, 10, 25], and deep generative models [39].
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In this section, we extend the realm of applicability of pseudopoint compression methods to the
general class of Bayesian posterior inference problems with conditionally independent data, resulting
in Bayesian pseudocoresets. Building on recent work [7], we formulate pseudocoreset construction as
a variational inference problem where both the weights and pseudopoint locations are parameters of
the variational posterior approximation, and develop a stochastic algorithm to solve the optimization.

3.1 Pseudocoreset variational inference

A Bayesian pseudocoreset takes the form

πu,w(θ) =
1

Z(u,w)
exp

(
M∑

m=1

wmf(um, θ)

)
π0(θ),

where u := (um)Mm=1 are M pseudodata points um ∈ Rd, (wm)Mm=1 are nonnegative weights,
f : Rd × Θ → R is a potential function parametrized by a pseudodata point, and Z(u,w) is the
corresponding normalization constant rendering πu,w a probability density. In the setting of Bayesian
posterior inference, um will take the same form as the data, while the potentials are the log-likelihood
functions, i.e., f(um, θ) = log π(um|θ). We construct a coreset by minimizing the KL divergence
over both the pseudodata locations and weights,

u?, w? = arg min
u∈Rd×M ,w∈RM

+

DKL (πu,w||π) . (3)

As opposed to previous Bayesian coreset construction optimization problems [8, 9, 7], we do not
need an explicit sparsity constraint; the coreset size is limited to M directly through the selection of
the number of pseudodata and weights.
Denote the vectors of original data potentials f(θ) ∈ RN and synthetic pseudodata potentials
f̃(θ) ∈ RM as f(θ) := [f1(θ) . . . fN (θ)]

T and f̃(θ) := [f(u1, θ) . . . f(uM , θ)]
T respectively, where

we suppress the (θ) for brevity where clear from context. Denote Eu,w and Covu,w to be the
expectation and covariance operator for the pseudocoreset posterior πu,w. Then we may write the KL
divergence in Eq. (3) as

DKL (πu,w||π) =Eu,w[log πu,w(θ)]− Eu,w[log π(θ)]

= logZ(1)− logZ(u,w)− 1TEu,w[f ] + wTEu,w[f̃ ], (4)
where 1 ∈ RN is the vector of all 1 entries, and w ∈ RM is the vector of pseudocoreset weights.
As we will employ gradient descent steps as part of our algorithm to minimize the variational objective
over the parameters u,w, we need to evaluate the derivative of the KL divergence Eq. (4). Despite
the presence of the intractable normalization constants and expectations, we show in Supp. B that
gradients can be expressed using moments of the pseudodata and original data potential vectors. In
particular, the gradients of the KL divergence with respect to the weights w and to a single pseudodata
location um are

∇wDKL = −Covu,w[f̃ , fT 1− f̃Tw], ∇um
DKL = −wm Covu,w

[
h(um), fT 1− f̃Tw

]
, (5)

where h(·, θ) := ∇uf(·, θ), and the θ argument is again suppressed for brevity.

3.2 Stochastic optimization

The gradients in Eq. (5) involve expectations of (gradient) log-likelihoods from the model. Although
there are a few particular Bayesian models where these can be evaluated in closed-form (e.g. the
synthetic experiment in Section 4; see also Supp. C.1), this is not usually the case. In order to
make the proposed pseudocoreset method broadly applicable, in this section we develop a black-box
stochastic optimization scheme (Alg. 1) for Eq. (3).
To initialize the pseudocoreset, we subsample M datapoints from the large dataset and reweight them
to match the overall weight of the full dataset,

um ← xbm , wm ← N/M, m = 1, . . . ,M

B ∼ UnifSubset ([N ],M) , B := {b1, . . . , bM} .
After initializing the pseudodata locations and weights, we simultaneously optimize Eq. (3) over
both. Each optimization iteration t ∈ {1, . . . , T} consists of a stochastic gradient descent step with a
learning rate γt ∝ t−1,

wm ← max
(

0, wm − γt(∇̂w)m

)
, um ← um − γt∇̂um

, 1 ≤ m ≤M.
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Algorithm 1 Pseudocoreset Variational Inference

1: procedure PSVI(f(·, ·), π0, x,M,B, S, T, (γt)
∞
t=1)

. Initialize the pseudocoreset using a uniformly chosen subset of the full dataset
2: N ← # datapoints in x, B ∼ UnifSubset ([N ],M) , B := {b1, . . . , bM}
3: um ← xbm , wm ← N/M, m = 1, . . . ,M
4: for t = 1, . . . , T do

. Take S samples from current pseudocoreset posterior
5: (θ)Ss=1

i.i.d.∼ πu,w where πu,w(θ) ∝ exp
(∑M

m=1 wmf(um, θ)
)
π0(θ)

6: B ∼ UnifSubset ([N ], B) . Obtain a minibatch of B datapoints from the full dataset
7: for s = 1, . . . , S do . Compute (gradient) log-likelihood discretizations
8: gs ←

(
f(xb, θs)− 1/S

∑S
s′=1 f(xb, θs′)

)
b∈B
∈ RB

9: g̃s ←
(
f(um, θs)− 1/S

∑S
s′=1 f(um, θs′)

)M
m=1

∈ RM

10: for m = 1, . . . ,M do
11: h̃m,s ← ∇uf(um, θs)− 1/S

∑S
s′=1∇uf(um, θs′) ∈ Rd

12: ∇̂w ← −1/S
∑S

s=1 g̃s
(
N/BgTs 1− g̃Ts w

)
. Compute Monte-Carlo gradients for w

13: for m = 1, . . . ,M do and (um)Mm=1

14: ∇̂um ← −wm
1/S
∑S

s=1 h̃m,s

(
N/BgTs 1− g̃Ts w

)
15: w ← max(w − γt∇̂w, 0) . Take stochastic gradient step in w
16: for m = 1, . . . ,M do and (um)Mm=1

17: um ← um − γt∇̂um

18: return w, (um)Mm=1

The stochastic gradient estimates ∇̂w ∈ RM and ∇̂um ∈ Rd are based on S ∈ N samples θs
i.i.d.∼ πu,w

from the coreset approximation and a minibatch of B ∈ N datapoints from the full dataset,

∇̂w := − 1

S

S∑
s=1

g̃s

(
N

B
gTs 1− g̃Ts w

)
, ∇̂um

:= −wm
1

S

S∑
s=1

h̃m,s

(
N

B
gTs 1− g̃Ts w

)
,

where

h̃m,s := ∇uf(um, θs)−
1

S

S∑
s′=1

∇uf(um, θs′), gs :=

(
f(θs)−

1

S

S∑
s′=1

f(θs′)

)∣∣∣∣∣
B

g̃s := f̃(θs)−
1

S

S∑
s′=1

f̃(θs′), B ∼ UnifSubset ([N ], B) ,

and (·)|B denotes restriction of a vector to only those indices in B ⊂ [N ]. Crucially, note that this
computation does not scale with N , but rather with the number of coreset points M , the sample
and minibatch sizes S and B, and the dimension d. Obtaining θs

i.i.d.∼ πu,w efficiently via Markov
chain Monte Carlo sampling algorithms [21, 26] is (roughly) O(M) per sample, because the coreset
is always of size M ; and we need not compute the entire vector gs ∈ RN per sample s, but rather
only those B � N indices in the minibatch B, resulting in a cost of O(B). Aside from that, all
computations involving g̃s ∈ RM and h̃m,s ∈ Rd are at most O(Md). Each of these computations
are repeated S times over the coreset posterior samples.

3.3 Differentially Private Scheme

Beyond better summarizations of high-dimensional data, pseudocoresets enable the generation of a
data summarization that ensures the statistical privacy of individual datapoints under the model of
(approximate) differential privacy. In this setting, a trusted curator holds an aggregate dataset of N
datapoints, x ∈ XN , X ⊆ Rd, and builds and releases a pseudocoreset (u,w), u ∈ XM , w ∈ RM

+
via a randomized mechanism satisfying Definition 2 [14, 13].

Definition 2 ((ε, δ)-Differentially Private Coreset). Fix ε ≥ 0, δ ∈ [0, 1]. A pseudocoreset construc-
tion algorithmM : XN → RM

+ × XM is (ε, δ)-differentially private if for every pair of adjacent
datasets x ≈ x′ and all events A ⊆ RM

+ ×XM , P[M(x) ∈ A] ≤ eεP[M(x′) ∈ A] + δ.
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We consider two datasets x, x′ as adjacent (denoted x ≈ x′) if x′ can be obtained from x by adding
or removing an element. ε controls the effect that removal or addition of an element can have on the
output distribution ofM, while δ captures the failure probability, and is preferably o(1/N).
In this section, we develop a differentially private version of pseudocoreset construction. Beyond
modifying our initialization scheme, private pseudocoreset construction comes as natural extension
of Alg. 1 via replacing gradient computation involving points of the true dataset with its differentially
private counterpart.

Pseudodata points initialization In the standard (nonprivate) pseudocoreset construction (Alg. 1),
pseudopoints are initialized from the dataset itself, incurring a privacy penalty. In differentially
private pseudocoreset construction, we simply initialize pseudopoints by generating synthetic data
from the statistical model at no privacy cost.

Optimization Examining lines 4–19 of Alg. 1, the only steps that involve handling the original
data occur at lines 8, 12, and 14, when we use the minibatch subsample to compute log-likelihoods
and gradients. Due to the post-processing property of differential privacy [15], all of the other
computations in Alg. 1 (e.g. sampling from the pseudocoreset posterior, computing pseudopoint
log-likelihoods, etc.) incur no privacy cost. Therefore, we need only to control the influence of private
data entering the gradient computation through the vector of (gTs 1)Ss=1 terms.
To accomplish this we do repeated applications of the subsampled Gaussian mechanism, since this
also allows us to use a moments accountant technique to keep tight estimates of privacy parameters [1,
41]. As in the nonprivate scheme, in each optimization step we uniformly subsample a minibatch
B = {x1, . . . , xB} of private datapoints. We then replace the gTs 1 term in lines 12 and 14 with a
randomized privatization:

replace (gTs 1)Ss=1 with Z +

B∑
i=1

Gi

max
(

1, ||Gi||2
C

) , Z ∼ N (0, σ2C2I), (6)

where Gi :=
(
f(xi, θs)− 1

S

∑S
s′=1 f(xi, θs′)

)S
s=1
∈ RS ∀xi ∈ B, and C, σ > 0 are parameters

controlling the amount of privacy. This modification to Alg. 1 has been shown in past work to
obtain the privacy guarantee provided in Corollary 3; crucially, the privacy cost of our construction
is independent of the pseudocoreset size. It also does not introduce any significant amount of
additional computation. No sensitivity computation for privatisation noise calibration is required, as
boundedness is enforced via clipping in Eq. (6). Finally, a manageable number of privacy specific
hyperparameters is introduced: the clipping bound C and noise level σ.

Corollary 3 ([1]). There exist constants c1, c2 such that Alg. 1 modified per Eq. (6) is (ε, δ)-
differentially private for any ε < c1q

2T , δ > 0, and σ ≥ c2q
√
T log(1/δ) /ε, where q := B

N is
the fraction of data in a minibatch and T is the number of optimization steps.

4 Experimental Results

In this section, we evaluate the posterior approximation quality achieved by pseudocoreset sparse VI
(PSVI) compared against uniform random subsampling (Uniform), Hilbert coresets (GIGA [8]) and
SparseVI greedy coreset construction [7]. For black-box constructions of SparseVI and PSVI we
used S = 100 Monte Carlo samples per gradient estimation. For GIGA we used a 100-dimensional
random projection from a Gaussian approximate posterior π̂ with two choices for mean and covariance:
one set to the exact posterior (Optimal), which is not tractable to obtain in practice and forms an
optimistic estimate of achievable approximation quality; and one with mean and covariance set to
a random point on the interpolant between the prior and the exact posterior point estimates, and
subsequently corrupted with 75% additive relative noise (Realistic). Notably, Hilbert coresets and
SparseVI develop incremental schemes for construction, while PSVI relies on batch optimization
with random initialization (Alg. 1), and does not use any information from pseudocoresets of smaller
size. An incremental scheme for SparseVI is included in Supp. C. Code for the presented experiments
is available at https://github.com/trevorcampbell/pseudocoresets-experiments.

Gaussian mean inference We first evaluate the performance of PSVI on a synthetic dataset of
N = 103 datapoints, where we aim to infer the posterior mean θ ∼ N (µ0,Σ0) of a d-dimensional
Gaussian conditioned on Gaussian observations (Xn)Nn=1

i.i.d.∼ N (θ,Σ). In this example, the exact
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(a) Gauss. mean inf., d = 200 (b) Gauss. mean inf., d = 500 (c) Bayes. lin. regr., d = 100

Figure 2: Comparison of (pseudo)coreset approximate posterior quality for experiments on synthetic
datasets over 10 trials. Solid lines display the median KL divergence, with shaded areas showing 25th

and 75th percentiles of KL divergence. In Fig. 2c, KL divergence is normalized by the prior.

pseudocoreset posterior for any set of weights (wm)Mm=1 and pseudopoint locations (um)Mm=1 is
available in closed-form:

Σu,w = (Σ−10 +

M∑
m=1

wmΣ−1)−1 µu,w = Σu,w(Σ−10 µ0 + Σ−1
M∑

m=1

wmum).

Using the exact posterior, we derive the exact moments used in the gradient formulae from Eq. (5) in
closed form (see Supp. C.1),

Covu,w[fn, fm] = vTn Ψvm + 1/2 tr ΨT Ψ, Covu,w[f̃n, fm] = ṽTn Ψvm + 1/2 tr ΨT Ψ,

Covu,w[h(ui), fn] = Q−T Ψvn, Covu,w[h(ui), f̃n] = Q−T Ψṽn,

where Q is the lower triangular matrix of the Cholesky decomposition of Σ (i.e. Σ = QQT ),
Ψ := Q−1Σu,wQ

−T , vn := Q−1(xn − µu,w), and ṽm := Q−1(um − µu,w). We vary the pseudo-
coreset size from M = 1 to 200, and set the total number of iterations to T = 500. We use learning
rates γt(M) = α(M)t−1, where α(M) = 1 for SparseVI and α(M) = max(1.1− 0.005M, 0.2)
for PSVI. As verified in Figs. 2a and 2b, Hilbert coresets provide poor quality summarizations
in the high-dimensional regime, even for large coreset sizes. Despite showing faster decrease of
approximation error for a larger range of coreset sizes, SparseVI is also fundamentally limited by
the use of the original datapoints, per Proposition 1. Furthermore, we observe that the quality of
all previous coreset methods when d = 500 is significantly lower compared to d = 200. On the
other hand, the KL divergence for PSVI decreases significantly more quickly, giving a near perfect
approximation for the true posterior with a single pseudodata point, regardless of data dimension. As
shown earlier in Fig. 1a, PSVI has the capacity to move the pseudodata points in order to capture the
true posterior very efficiently.

Bayesian linear regression In the second experiment, we use a set of N = 2, 000 101-dimen-
sional datapoints (xn, yn)Nn=1 generated as follows:

(xn)Nn=1
i.i.d.∼ N (0, I), (yn)Nn=1 ∼ [1, xn]T θ + εn, (εn)Nn=1

i.i.d.∼ N (0, σ2),

and aim to infer θ ∈ R101. We assume a prior θ ∼ N (µ0, σ
2
0I), where µ0, σ

2
0 are the dataset

empirical mean and second moment, and set the noise parameter σ to the variance of (yn)Nn=1.
We apply stochastic optimization for PSVI construction (also see Supp. C.2.1). We use learning
rates γt = t−1 for SparseVI, and γt = 0.1t−1 for PSVI, B = 200, T = 1000, while selection
step for SparseVI is carried out over the full dataset. Fig. 2c shows that Hilbert coresets cannot
improve posterior approximation in this setting with 100 random projections (see Supp. C.2.2), while
PSVI achieves the fastest decay rate over sizes 100 ≤M < 250, surpassing SparseVI.

Bayesian logistic regression Finally, we compare (pseudo)coreset construction methods on
Bayesian logistic regression applied to 3 large (8.4–100K datapoints, 50–237 dimensions) datasets.
For brevity, equations and gradients for the logistic regression model, additional experiments on
3 smaller-scale datasets, full dataset descriptions, hyperparameter selection, time performance evalu-
ation and results on an incremental scheme for pseudocoreset construction are deferred to Supp. C.3.
For PSVI and SparseVI we use minibatch size B = 200, number of gradient updates T = 500,
and learning rate schedules γt = αt−1. For TRANSACTIONS, CHEMREACT100 and MUSIC, α
is respectively set to 0.1, 0.1, 10 for SparseVI, and 1, 10, 10 for PSVI. In the selection step of
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(a) TRANSACTIONS (d = 50) (b) CHEMREACT100 (d = 100) (c) MUSIC (d = 237)

Figure 3: Comparison of (pseudo)coreset approximate posterior quality vs coreset size for logistic
regression over 10 trials on 3 large-scale datasets. Presented differentially private pseudocoresets
correspond to (0.2, 1/N)-DP. Reverse KL divergence is displayed normalized by the prior.

(a) TRANSACTIONS (b) CHEMREACT100 (c) MUSIC

Figure 4: Approximate posterior quality over decreasing differential privacy guarantees for private
pseudocoresets of varying size (DP-PSVI) plotted against private variational inference (DP-VI, [27]).
δ is always kept fixed at 1/N . Markers on the right end of each plot display the errorbar of
approximation achieved by the corresponding nonprivate posteriors. Results are displayed over 5
trials for each construction.

SparseVI we use a uniform subsample of 1, 000 datapoints. For the differentially private pseudocore-
set constructions (DP-PSVI), we use a subsampling ratio q = 2× 10−3. At each iteration we adapt
the clipping norm value C to the median norm of (f(um, θs)− 1

S

∑S
s′=1 f(um, θs′))

S
s=1 computed

over pseudodata point values um, and use noise level σ = 5. Our hyperparameters choice implies
privacy parameters ε = 0.2 and δ = 1/N for each of the datasets. We initialise each pseudocoreset
of size M via sampling (xm)Mm=1

i.i.d.∼ N (0, I), and sampling θ, (ym)Mm=1 from the statistical model.
Results presented in Fig. 3 demonstrate that PSVI achieves consistently the smallest posterior approx-
imation error in the small coreset size regime, offering improvement compared to SparseVI and
being competitive with GIGA (Optimal), without the requirement for specifying a weighting func-
tion. In Fig. 3a, for M ≥ d GIGA (Optimal) follows a much steeper decrease in KL divergence,
reflecting the dependence of its approximation quality on dataset dimension per Proposition 1. In
contrast, PSVI typically reaches its minimum at M < d. The difference in approximation quality
becomes clearer in higher dimensions (e.g. MUSIC, where d = 237). Perhaps surprisingly, the private
pseudocoreset construction has only marginally worse approximation quality compared to nonprivate
PSVI and generally achieves better peformance in comparison to the other state-of-the-art nonprivate
coreset constructions.
In Fig. 4 we present the achieved posterior approximation quality via DP-PSVI, against a competitive
state-of-the-art method for general-purpose private inference (DP-VI, [27]). The plots display the
behaviour of methods over a wide range of ε values, achieved using varying levels of privatization
noise, and δ always set to 1/N . For logistic regression, DP-VI infers an approximate posterior
from the family of Gaussians with diagonal covariance via ADVI [28], followed by an additional
Laplace approximation. Note that by design, DP-VI is constrained by the usual Gaussian varia-
tional approximation, while DP-PSVI is more flexible and can approach the true posterior as M
increases—this effect is reflected in nonprivate posteriors as well, as data dimensionality grows (see
for example Fig. 4c). Indeed, we verify that in the high-privacy regime DP-PSVI, for sufficient
pseudocoreset size (which is typically small for tested real-world datasets), offers posterior approxi-
mation with better KL divergence compared to DP-VI. Our findings indicate that private PSVI offers
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efficient releases of big data via informative pseudopoints, which enable arbitrary post processing
(e.g. running any nonprivate black-box algorithm for Bayesian inference), under strong privacy
guarantees and without reducing the quality of inference.

5 Conclusion

We introduced a new variational formulation for Bayesian coreset construction, which yields efficient
summarizations for big and high-dimensional datasets via simultaneously learning pseudodata points
locations and weights. We proved limitations of existing variational formulations for coresets
and demonstrated that they can be resolved with our new methodology. We proposed an efficient
construction scheme via black-box stochastic optimization and showed how it can be adapted for
differentially private Bayesian summarization. Finally, we demonstrated the applicability of our
methodology on synthetic and real-world datasets, and practical statistical models.

Broader Impact

Pseudocoreset variational inference is a general-purpose Bayesian inference algorithm, hence shares
implications mostly encountered in approximate inference methods. For example, replacing the
full dataset with a pseudocoreset has the potential to cause inferential errors; these can be partially
tempered by using a pseudocoreset of larger size. Note also that the optimization algorithm in this
work aims to reduce KL divergence: however the proposed variational objective might be misleading
in many applications and lead to incorrect conclusions in certain statistical models (e.g. point
estimates and uncertainties might be far off despite KL being almost zero [24]). Moreover, Bayesian
inference in general is prone to model misspecification. Therefore, a pseudocoreset summarization
based on a wrong statistical model will lead to non-representative compression for inferential purposes.
Constructing the coreset on a statistical model suited for robust inference instead of the original
one [31, 40], can offer protection against modelling mismatches. Naturally, the utility of generated
dataset summary becomes task-dependent, as it has been optimized for a specific learning objective,
and cannot be fully transferable to multiple different inference tasks on the same dataset.
Our learnable pseudodata are also generally not as interpretable as the points of previous coreset
methods, as they are not real data. And the level of interpretability is model specific. This creates a
risk of misinterpretation of pseudocoreset points in practice. On the other hand, our optimization
framework does allow the introduction of interpretability constraints (e.g. pseudodata sparsity) to
explicitly capture interpretability requirements.
Pseudocoreset-based summarization is susceptible to reproducing potential biases and unfairness
existing in the original dataset. Majority-group datapoints in the full dataset which capture information
relevant to the statistical task of interest are expected to remain over-represented in the learned
summary; while minority-group datapoints might be eliminated, if their distinguishing features are
not related to inference. Amending the initialization step to contain such datapoints, or using a prior
that strongly favors a debiased version of the dataset, could both mitigate these concerns; but more
study is warranted.
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