
Supplementary Materials

S1 Derivations

S1.1 Normal Inverse-Gamma moments

We assume our data was drawn from a Gaussian with unknown mean and variance, (µ, σ2). We
probabilistically model these parameters, θ, according to:

µ ∼ N (γ, σ2υ−1) (S1)

σ2 ∼ Γ−1(α, β). (S2)

Therefore, the prior joint distribution can be written as:
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m

) = p(µ) p(σ2) (S3)
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The first order moments of this distribution represent the maximum likelihood prediction as well as
uncertainty (both aleatoric and epistemic).

E[µ] =

∫ ∞
µ=−∞

µ p(µ) dµ = γ (S6)

E[σ2] =

∫ ∞
σ2=0

σ2 p(σ2) dσ2 (S7)

=
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σ2 p(σ2) (2σ) dσ (S8)

=
β

α− 1
, ∀α > 1 (S9)

Var[µ] =

∫ ∞
µ=−∞

µ2 p(µ) dµ− (E[µ])2 (S10)
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υ
− (E[µ])2 (S11)
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In summary,

E[µ] = γ︸ ︷︷ ︸
prediction

, E[σ2] = β
α−1︸ ︷︷ ︸

aleatoric

, Var[µ] = β
υ(α−1)︸ ︷︷ ︸

epistemic

. (S14)
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S1.2 Model evidence & Type II Maximum Likelihood Loss

In this subsection, we derive the posterior predictive or model evidence (ie. Eq. 7) of a NIG distribution.
Marginalizing out µ and σ gives our desired result:

p(yi|m) =

∫
θ

p(yi|θ)p(θ|m) dθ (S15)
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p(yi|m) = St
(
yi; γ,

β(1 + υ)

υ α
, 2α

)
. (S23)

St
(
y;µSt, σ

2
St, υSt

)
is the Student-t distribution evaluated at y with location parameter µSt, scale

parameter σ2
St, and υSt degrees of freedom. Using this result we can compute the negative log

likelihood loss, LNLL
i , for sample i as:
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i = − log p(yi|m) (S24)
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where Ω = 2β(1 + υ).

S1.3 KL-divergence of the Normal Inverse-Gamma

The KL-divergence between two Normal Inverse-Gamma functions is given by [44]:

KL
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)
(S27)
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+ (α1 − α2)Ψ(α1)− (β1 − β2)
α1

β1
(S30)

Γ(·) is the Gamma function and Ψ(·) is the Digamma function. For zero evidence, both α = 0
and υ = 0. To compute the KL divergence between one NIG distribution and another with zero
evidence we can set either υ2 = α2 = 0 (i.e., reverse-KL) in which case, Γ(0) is not well defined, or
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υ1 = α1 = 0 (i.e. forward-KL) which causes a divide-by-zero error of υ1. In either approach, the
KL-divergence between an arbitrary NIG and one with zero evidence cannot be evaluated.

Instead, we briefly consider a naive alternative which can be obtained by considering an ε amount
of evidence, where ε is a small constant (instead of strictly 0-evidence). This approach yields a
well-defined KL-divergence (with fixed γ, β at the consequence of a hyper-sensitive ε parameter.

KL
(
NIG(γ, υ, α, β) || NIG(γ, ε, 1 + ε, β)

)
(S31)
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υ
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)
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In Fig. S1.3 we compare the performance of the KL-divergence regularizer compared to our more
direct evidence regularizer, for several realizations of the regularization coefficient, λ. We observed
extreme sensitivity to the setting of ε for different datasets such that we could not achieve the desired
regularizing effect for any regularization amount, λ. Unless otherwise stated, all results were obtained
using our direct evidence regularizer instead (Eq. 9).

S2 Benchmark regression tasks

S2.1 Cubic toy examples

S2.1.1 Dataset and experimental setup

The training set consists of training examples drawn from y = x3 + ε, where ε ∼ N (0, 3) in the
region −4 ≤ x ≤ 4, whereas the test data is unbounded (we show in the region −6 ≤ x ≤ 6).
This problem setup is identical to that presented in [20, 28]. All models consisted of 100 neurons
with 3 hidden layers and were trained to convergence. The data presented in Fig. S1 illustrates
the estimated epistemic uncertainty and predicted mean accross the entire test set. Sampling based
models [5, 9, 28] used n = 5 samples. The evidential model used λ = 0.01. All models were trained
with the Adam optimizer η =5e-3 for 5000 iterations and a batch size of 128.

S2.1.2 Baselines

Ensembles
n = 5
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Figure S1: Epistemic uncertainty estimation baselines on the dataset y = x3 + ε, ε ∼ N (0, 3).

S2.1.3 Impact of the evidential regularizer

In the following experiment, we demonstrate the importance of augmenting the training objective
with our evidential regularizer LR as introduced in Sec. 3.3. Fig. S2 provides quantitative results on
epistemic uncertainty estimation after training on the same regression problem presented in S2.1 with
different realizations of the regularization coefficients, λ. We show the performance of our ability to
calibrate uncertainty on OOD data is heavily related to our regularizer. As we decrease our regularizer
weight, uncertainty on OOD examples decays to zero. Stronger regularization inflates the uncertainty
(λ = 0.01 is a good choice for this problem) while aleatoric uncertainty is maintained constant.
Please refer to Fig. 3 for the regularization effect on both aleatoric and epistemic uncertainty.

S2.1.4 Disentanglement of aleatoric and epistemic uncertainty

In the following experiment, we provide results to suggest that the evidential regularizer is capable
of disentangling aleatoric and epistemic uncertainties by capturing incorrect evidence. Specifically,
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Figure S2: Impact of regularization strength on epistemic uncertainty estimates. Epistemic uncertainty
estimates on the dataset y = x3+ε, ε ∼ N (0, 3) for evidential regression models regularized with the evidential
regularizer LR (A) or with the KL divergence (B) between the inferred NIG and another with zero evidence, for
varying regularization coefficients λ.

we construct a synthetic toy dataset with high data noise (aleatoric uncertainty) in the center of
the in-distribution region. Rather than using the L1 error in the regularization term, as in previous
experiments, we use regularize the standard score and estimate epistemic and aleatoric uncertainty
(Fig. S3). This analysis suggests that the method is capable of disentangling epistemic and aleatoric
uncertainties in a region that is in-distribution but has high data noise.
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Figure S3: Disentangled uncertainties. Epistemic and aleatoric uncertainty estimates on a synthetic dataset
based on y = x3, where data noise increases towards the center of the in-distribution region. The evidential
regularizer LR is calculated based on the standard score.

S2.2 Benchmark regression problems

S2.2.1 Datasets and experimental setup

This subsection describes the setup to create Table 1. We follow an identical experimental setup
and training process as presented in [20]. All dataset features are normalized to have zero mean
and unit standard deviation. Features with no variance are only normalized to have zero mean. The
same normalization process is also performed on the target variables; however, this is undone at
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inference time such that predictions are in the original scale of the targets. Datasets are split randomly
into training and testing sets a total of 20 times. Each time we retrain the model and compute the
desired metrics (RMSE, NLL, and speed). The results presented in the table represent the average
and standard error across all 20 runs for every method and dataset. Following the lead of [28], we
also directly compare against the other training methods by directly using their reported results since
they followed an identical training procedure.

S3 Depth estimation evaluations

S3.1 Experimental details

We evaluate depth estimation on the NYU-Depth-v2 dataset [35]. For every image scan in the dataset
we fill in the missing holes in the depth using the Levin Colorization method. The resulting depth map
is converted to be proportional to disparity by taking its inverse. This is common in depth learning
literature as it ensures that far away objects result in numerically stable neural network outputs (very
large depths have close to zero disparity). Objects closer than 1/255 meters to the camera would
therefore be clipped due to the uint8 restriction on image precision. The resulting images are saved
and used for supervising the learning algorithm. Training, validation, and test sets were randomly
split (80-10-10) with no overlap in scans.

All trained depth models have a U-Net [41] backbone, with five convolutional and pooling blocks
down (and then back up). The input and target images had shape (160, 128) with inputs having 3
feature maps (RGB), while targets only had a single feature map (disparity). The dropout variants
were trained with spatial dropout [45] over the convolutional blocks (p = 0.1). Evidential models
additionally had four output target maps, one map corresponding to each evidential parameter
γ, υ, α, β, with activations as described in 3.3.

All models were trained with the following hyperparmeters: batch size of 32, Adam optimization
with learning rate 5e-5, over 60000 iterations. The best model according to validation set RMSE is
saved and used for testing. Evidential models additionally had λ = 0.1. Each model was trained 3
times from random initialization to produce all presented results.

S3.2 Depth estimation performance metrics

Table S1 summarizes the size and speed of all models. Evidential models contain significantly fewer
trainable parameters than ensembles (where the number of parameters scales linearly with the size
of the ensemble). Since evidential regression models do not require sampling in order to estimate
their uncertainty, their forward-pass inference times are also significantly more efficient. Finally, we
demonstrate comparable predictive accuracy (through RMSE and NLL) to the other models.

N # Parameters Inference Speed RMSE NLL
Absolute Relative Seconds Relative

Evidential (Ours) - 7,846,776 1.00 0.003 1.00 0.024 ± 0.032 -1.128 ± 0.290
Spatial Dropout 2 7,846,657 1.00 0.028 10.20 0.033 ± 0.037 -0.564 ± 0.231
Spatial Dropout 5 7,846,657 1.00 0.031 11.48 0.031 ± 0.033 -1.227 ± 0.374
Spatial Dropout 10 7,846,657 1.00 0.037 13.69 0.035 ± 0.042 -1.139 ± 0.379
Spatial Dropout 25 7,846,657 1.00 0.065 23.99 0.032 ± 0.035 -1.137 ± 0.327
Spatial Dropout 50 7,846,657 1.00 0.107 39.36 0.032 ± 0.036 -1.110 ± 0.381

Ensembles 2 15,693,314 2.00 0.005 1.94 0.026 ± 0.032 -1.080 ± 3.334
Ensembles 5 39,233,285 5.00 0.010 3.72 0.023 ± 0.027 -1.077 ± 0.298
Ensembles 10 78,466,570 10.00 0.019 6.82 0.025 ± 0.038 -0.980 ± 0.298
Ensembles 25 196,166,425 25.00 0.045 16.45 0.022 ± 0.029 -1.000 ± 0.259
Ensembles 50 392,332,850 50.00 0.112 41.26 0.022 ± 0.031 -0.996 ± 0.275

Table S1: Depth estimation performance metrics. Comparison of different uncertainty estimation algorithms
and predictive performance on an unseen test set. Dropout and ensembles were sampled N times on parallel
threads. The evidential method outperforms all other algorithms in terms of space (#Parameters) and inference
speed while maintaining competitive RMSE and NLL.

S3.3 Epistemic uncertainty estimation on depth

Fig. S4 shows individual trial runs for each method on RMSE cutoff plots as summarized in Fig. 4B.
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Fig. S5 shows individual trial runs for each method on their respective calibration plots as summarized
in Fig. 4C.

Fig. S6 shows individual trial runs for each method on their respective entropy (uncertainty) CDF
as a function of the amount of adversarial noise. We present the evidential portion of this figure in
Fig. 6C, but also provide baseline results here.
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Figure S4: Relationship between prediction confidence level and observed error for different uncertainty
estimation methods. A strong inverse trend is desired to demonstrate that the uncertainty estimates effectively
capture accuracy. Plots show results from depth estimation task.
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Figure S5: Uncertainty calibration plots for depth estimation. Calibration of epistemic uncertainty estimates
for dropout, ensembling, and evidential methods, assessed as the relationship between expected and observed
predictive confidence levels. Perfect calibration corresponds to the line y = x (black).
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Figure S6: Effect of adversarial noise on uncertainty estimates. Cumulative distribution functions (CDF) of
entropy (uncertainty) estimated by dropout, ensembling, and evidential regression methods, under the presence
of increasing adversarial noise ε.

S3.4 Aleatoric uncertainty estimation on depth

Fig. S7 compares the evidential aleatoric uncertainty to those obtained by Gaussian likelihood
optimization in several domains with high data uncertainty (mirror reflections and poor illumination).
The results between both methods are in strong agreement, identifying mirror reflections and dark
regions without visible geometry as sources of high uncertainty. These results are expected since
evidential models fit the data to a higher-order Gaussian distribution and therefore it is expected that
they can accurately learn aleatoric uncertainty (as is also shown in [42, 18]). While the main text
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Figure S7: Aleatoric uncertainty in depth. Visualizing predicted aleatoric uncertainty in challenging reflection
and illumination scenes. Comparison between evidential and [25] show strong semantic agreement.

focuses on the more challenging problem of epistemic uncertainty estimation (especially on OOD
data), we provide these sample aleatoric uncertainty examples for here for depth as supplemental
material.
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