
Meta-Consolidation for Continual Learning

K J Joseph and Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology Hyderabad, India
{cs17m18p100001,vineethnb}@iith.ac.in

Abstract

The ability to continuously learn and adapt itself to new tasks, without losing
grasp of already acquired knowledge is a hallmark of biological learning systems,
which current deep learning systems fall short of. In this work, we present a
novel methodology for continual learning called MERLIN: Meta-Consolidation for
Continual Learning. We assume that weights of a neural network ! , for solving
task t , come from a meta-distribution p(! |t). This meta-distribution is learned
and consolidated incrementally. We operate in the challenging online continual
learning setting, where a data point is seen by the model only once. Our experiments
with continual learning benchmarks of MNIST, CIFAR-10, CIFAR-100 and Mini-
ImageNet datasets show consistent improvement over five baselines, including a
recent state-of-the-art, corroborating the promise of MERLIN.

1 Introduction
The human brain is able to constantly, and incrementally, consolidate new information with existing
information, allowing for quick recall when needed [5, 78]. In this natural setting, it is not common
to see the same data sample multiple times, or even twice at times. Human memory capacity is also
limited which forbids memorizing all examples that are seen during its lifetime [39]. Hence, the
brain operates in an online manner, where it is able to adapt itself to continuously changing data
distributions without losing grasp of its previously acquired knowledge [33]. Unfortunately, deep
neural networks have been known to suffer from catastrophic forgetting [53, 25], where they fail to
retain performance on older tasks, while learning new tasks.

Continual learningis a machine learning setting characterized by its requirement to have a learning
model incrementally adapt to new tasks, while not losing its performance on previously learned tasks.
Note that ‘task’ here can refer to a set of new classes, new domains (e.g. thermal, RGB) or even
new tasks in general (e.g. colorization, segmentation) [63, 68, 89]. The last few years have seen
many efforts to develop methods to address this setting from various perspectives. One line of work
[88, 38, 47, 2, 16, 71, 56, 13, 79, 42] constrains the parameters of the deep network trained on Task
A to not change much while learning a new Task B, while another - replay-based methods - store
[63, 48, 14, 66, 9, 3, 4, 22] or generate [74, 81, 46, 45] examples of previous tasks to finetune the final
model at evaluation time. Another kind of methods [51, 72, 69, 19, 68, 62, 87] attempt to expand the
network to increase the capacity of the model, while learning new tasks. Broadly speaking, all these
methods manipulate the data space or the weight space in different ways to achieve their objectives.

In this work, we propose a different perspective to addressing continual learning, based on the
latent space of a weight-generating process, rather than the weights themselves. Studies of the
human brain suggest that knowledge and skills to solve tasks are represented in a meta-space of
concepts with a high-level semantic basis [28, 10, 50]. The codification from tasks to concepts,
and the periodic consolidation of memory, are considered essential for a transferable and compact
representation of knowledge that helps humans continually learn [11, 85, 5]. Current continual
learning methods consolidate (assimilate knowledge on past tasks) either in the weight space [13,

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

38, 47, 16, 88, 56, 2, 71] or in the data space [14, 63, 74, 48, 3, 4, 45, 66]. Even meta-learning based
continual learning methods that have been proposed in the recent past [34, 24, 6, 64], meta-learn an
initialization amenable for quick adaptation across tasks, similar to MAML [23], and hence operate in
the weight space. We propose MERLIN: Meta-Consolidation for Continual Learning, a new method
for continual learning that is based on consolidation in a meta-space, viz. the latent space which
generates model weights for solving downstream tasks.

We consider weights of a neural network ! , which can solve a specific task, to come from a meta-
distribution p(! |t), where t is a representation for the task. We propose a methodology to learn
this distribution, as well as continually adapt it to be competent on new tasks by consolidating this
meta-space of model parameters whenever a new task arrives. We refer to this process as “Meta-
Consolidation”. We find that continually learning in the parameter meta-space with consolidation
is an effective approach to continual learning. Learning such a meta-distribution p(! |t) provides
additional benefits: (i) at inference time, any number of models can be sampled from the distribution
! t ! p(! |t), which can then be ensembled for prediction in each task (Sec 4.1.5); (ii) it is easily
adapted to work in multiple settings such as class-incremental and domain-incremental continual
learning (Sec 4); and (iii) it can work in both a task-aware setting (where the task is known at test time)
and task-agnostic setting where the task is not known at test time (achieved by marginalizing over
t , Sec 5.2). Being able to take multiple passes through an entire dataset is an assumption that most
existing continual learning methods make [2, 38, 47, 88, 63, 12]. Following [4, 3, 14, 48], we instead
consider the more challenging (and more natural) online continual learning setting where ‘only a
single pass through the data’ is allowed. We compare MERLIN against a recent state-of-the-art GSS
[4], as well as well-known methods including GEM [48], iCaRL [63] and EWC [38] on Split MNIST
[13], Permuted MNIST [88], Split CIFAR-10 [88], Split CIFAR-100 [63] and Split Mini-Imagenet
[15] datasets. We observe consistent improvement across the datasets over baseline methods in Sec 4.

The key contributions of this work can be summarized as: (i) We introduce a new perspective to
continual learning based on the meta-distribution of model parameters, and their consolidation over
tasks arriving in time; (ii) We propose a methodology to learn this distribution using a Variational
Auto-encoder (VAE) [37] with learned task-specific priors, which also allows us to ensemble models
for each task at inference; (iii) We show that the proposed method outperforms well-known benchmark
methods [48, 63, 38], as well as a recent state-of-the-art method [4], on five continual learning datasets;
(iv) We perform comprehensive ablation studies to provide a deeper understanding of the proposed
methodology and showcase its usefulness. To the best of our knowledge, MERLIN is the first effort
to incrementally learn in the meta-space of model parameters.

2 Related Work
In this section, we review existing literature that relate to our proposed methodology from two
perspectives: continual learning and meta-learning. We also discuss connections to neuroscience
literature in the Appendix.

Continual learning methods: In continual learning, when a new task t k comes by, the weights of
the associated deep neural network, ! t k

, get adapted for the new task causing the network to perform
badly on previously learned tasks. To overcome this issue (called catastrophic forgetting [53, 25]),
one family of existing efforts [2, 38, 47, 88] force the newly learned weight configuration ! t k

, to be
close to the previous weight configuration ! t k ! 1

, so that the performance on both tasks are acceptable.
This approach, by design, can restrict the freedom of the model to learn new tasks. Another set of
methods [14, 63, 48, 12] store a few samples (called exemplars) in a fixed-size, task-specific episodic
memory, and use strategies like distillation [31] and finetuning to ensure that ! t k

performs well on
all tasks seen so far. These methods work at the risk of memorization. Shin et al. [74] instead used a
generative model to synthesize examples for all the previous tasks, which allows generating infinite
data for the seen tasks. However, as more tasks are added, the capacity of the model reduces, and the
generative model does not work well in practice. A recent group of methods [51, 72, 69] attempt to
expand the network dynamically to accommodate learning new tasks. While this is an interesting
approach, the model size in such methods can increase significantly, hampering scalability.

The aforementioned methods operate in an offline fashion, wherein once data for a specific task is
available, it can be iterated over multiple times to learn the task. In contrast, online continual learning
methods [4, 3, 14, 48] tackle a more challenging setting, closer to how humans operate, where all
datapoints are seen only once during the lifetime of the model. [4, 3] proposes methods to choose

2

!"#$%"#&'%(#&)*+#,(-#%".&/%(0&$%"%)#/#"&+1(/"1'2/1*.&%.+&3*.(*,1+%/# 45%,2%/#

!"#$%&'()# ! ! "#! *+,&#! "
#$

! ! #!

$!

%# & $ %"$ &"' $! "' ("$ '

- "#.+%/0#1%2)#0)34,+5

) (*+,$ "-. /) *$,+"-.$ * $0 *

6+/,+#*,++1/) *+,-.

+

7"#8,02,(/9%3)#:2/0;#<(;,+/3=&#-

>"#?)%+0#3=)#'%+%&)3)+#9/23+/1:3/,0 @"#$%&'()#&,9)(#'%+%&)3)+2#%09#)02)&1()

$! (2 (/ + $ +"- 3+(2 / +*+,-.

$ %1

$ &1

$, 1

4

A02)&1()#%09#'+)9/B3

Figure 1: Overview of MERLIN. While learning a new task ! k at time k, B models are trained and saved to
! t . These weights are used to learn a task-specific parameter distribution with task-specific priors in Step 3.
In Step 4, the model is consolidated by replaying parameters generated using earlier task-specific priors as in
Algorithm 2. At test time, model parameters are sampled from p! (" |z , t) and ensembled.

optimal training datapoints for learning continually, which they found is critical in an online continual
learning setting, while [14, 48] constrains the learning of the new task, such that the loss on the
previously learned class should not increase. We refer the interested reader to [17, 59] for a detailed
survey of current continual learning methods and practices. Contrary to these methods, we propose a
new perspective to continual learning based on meta-consolidation in the parameter space which has
its own benefits as mentioned earlier.
Meta-learning methods: Meta-learning encapsulates a wide variety of methods that can adapt to
new tasks with very few training examples. Meta-learning algorithms - which mostly have focused
on the standard learning setting (not continual learning) - can be broadly classified into black-box
adaptation based methods [70, 55], optimization based [23, 57, 90] and non-parametric methods
[83, 75, 77]. Hypernetworks [27] is one black-box adaptation method where a meta-neural network
is used to predict the weights of another neural network. This opened up an interesting research
direction, in exploiting the meta-manifold of model parameters for multi-task learning [67], neural
architecture search [8], zero-shot learning [58, 82] and style transfer [73] in recent years. One
can view our approach as having a similar view to online continual learning (which has not been
done before), although our methodology of learning the distribution of weights of the network
is different from [27] and allows more flexibility in sampling and generating multiple models at
inference. Mandivarapu et al. [52] auto-encode the weights in a continual setting, but the size of
their meta-model is many times the size of the task network and does-not operate in an online setting.
The work closest to ours is by Johannes et al. [84], which recently tried using HyperNetworks in the
context of continual learning. We differ from [84] in the following ways: (i) we operate in the more
natural and challenging onlinecontinual learning setting, while they use multiple passes over the data
(ii) they learn a deterministic function which when conditioned on a task embedding, generates target
weights, while we model the weight distribution itself, which allows us to sample as many model
parameters at inference time and ensemble them.

3 MERLIN: Methodology
We begin by summarizing the overall methodology of MERLIN, as in Algorithm 1 and Fig 1. We
consider a sequence of tasks " 1, " 2, á á á" k ! 1 that have been seen by the learner, until now. A new
task " k is introduced at time instance k. (Note that task can refer to a new class or a domain,
both of which are studied in Sec 4.) Each task, " j , j " { 1, á á á, k} consists of " tr

j , " val
j and " test

j
corresponding to training, validation and test samples for that task. Each task " j is also represented
by a corresponding vector t j , as described in Sec 3.1. As the first step, we train a set of B base
models on random subsets of " tr

k (sampled without replacement, note that this does not violate the
online setting as this is done by choosing each streaming point with a certain probability in each
base model) to obtain a collection of models ! k = { ! 1

k , á á á, ! B
k } (as in first section of Fig 1, line 2

in Algorithm 1). ! k is then used to learn a task-specific parameter distribution p! (! k |t k) using a
VAE-like strategy further described in Sec 3.1. This is followed by a meta-consolidation phase, where
we sample model parameters for all tasks seen so far, from the decoder of the VAE, each conditioned
on a task-specific prior, and use them to refine the overall VAE, as described in Sec 3.2. At inference,
we sample models from the parameter distributions for each task, and use them to evaluate on the test
data following the methodology described in Sec 3.3. A set of ! s are sampled from p! (! |z, t) for
task t and ensembled to obtain the final result. We now describe each of the components below.
3.1 Modeling Task-speciÞc Parameter Distributions:Each task " j is represented by a corre-
sponding vector representation t j . Our framework allows any fixed-length vector representation

3

Algorithm 1 MERLIN: Overall Methodology

Input: Tasks: T = { ! 1 á á á! k } ; Task training data: ! tr
j = { (x i , yi)}

N j
tr

i =1 ; # of base models: B
1: for j = 1 to |T | do
2: ! j ! Train B models by randomly sub-sampling training data from ! tr

j .
3: Learn task parameter distribution and task specific prior using methodology in Sec 3.1 and ! j .
4: Consolidate using methodology in Sec 3.2, Algorithm 2.
5: Perform inference on T , using methodology in Sec 3.3, Algorithm 3.

for this task descriptor, including semantic embeddings such as GloVe [61] or Word2Vec [54], or
simply a one-hot encoding of the task. A richer embedding such as Task2Vec [1], which takes into
account task correlations, may also be used. Details of our implementation are deferred to Sec 4. We
consider ! t , the weights of a neural network which can solve a task t , as generated by a random
process given by a continuous latent variable z , i.e. ! t is generated from p! " (! |z, t), where z is
sampled from a conditional prior distribution p! " (z|t) (We denote the j th task, t j as t for simplicity
of explaining the model in this subsection). #" refers to the unknown optimal parameters of the
weight-generating distribution, which we seek to find. We achieve this objective using a VAE-like for-
mulation [37], adapted for this problem. Computing the marginal likelihood of the weight distribution
p! (! |t) =

!
p! (! |z, t)p! (z|t)dz is intractable as its true posterior p! (z|! , t) = p! (" |z ,t)p! (z |t)

p! (" |t)

is intractable to compute. We introduce the approximate posterior q# (z|! , t), parametrized by $,
as a variational distribution for the intractable true posterior p! (z|! , t). The marginal likelihood
of the parameter distribution, logp! (! |t), can then be written as (please refer the Appendix for the
complete derivation):

logp! (! |t) = DKL (q# (z|! , t) || p! (z|! , t)) +
"

z
q# (z|! , t) log

p! (z, ! |t)
q# (z|! , t)

$% &
L (! ,# |" ,t)

(1)

Similar to a VAE, we can maximize the log likelihood by maximizing the lower bound. L (#, $ |! , t)
can hence be rewritten as (complete derivation in the Appendix):

L (#, $ |! , t) = # DKL (q# (z|! , t) || p! (z|t)) + Eq" (z |" ,t) [logp! (! |z, t)] (2)

where the second term is the expected negative reconstruction error. The KL divergence term on the
RHS forces the approximate posterior of weights to be close to a task-speciÞc priorp! (z|t). Note
that this differentiates this formulation from a conditional VAE [36], where the latents are directly
conditioned. In our model, the latents are conditioned indirectly through priors that are conditioned
on task vectors. Assuming q# (.) and p! (.) to be Gaussian distributions, the KL divergence term can
be computed in closed form. The second term requires sampling, and the model parameters, $ and #,
are trained using the reparameterization trick [37], backpropagation and Stochastic Gradient Descent.

Instead of choosing the prior to be an isotropic multivariate Gaussian p! (z) = N (z|0, I) as in a
vanilla VAE, we use a learned task-specific prior, p! (z|t), given by:

p! (z|t) = N (z|µ t , " t); where µ t = W T
µ t and " t = W T

! t (3)

Here, W µ and W ! are parameters which are learned alongside $ and #, when maximizing the
lower bound (Eqn 2) using backpropagation. We find that a simple linear model is able to learn W µ
and W ! effectively, as revealed in our experiments.

As already stated, the probabilistic encoder q# (z|! , t) and decoder p! (! |z, t) are materialized
using two neural networks parametrized by $ and # respectively. To train these, we consider
! j = { ! i

j } B
i =1 , a set of B model parameters that are obtained by training on the j th task by sampling

the corresponding training data without replacement. These models are now used to learn the
“meta-parameters” $ and #, as well as µ j and " j of the Gaussian prior, specific to the task. At
inference, one can sample as many ! s (task-specific models) as needed from the decoder using
different samples from the task-specific prior. Obtaining a model ! for each task t from the parameter
distribution p! (! |z, t), is a two-step process: (i) Sample z from task-specific prior distribution
i.e. z ! N (z|µ t , " t); (ii) Sample ! from the probabilistic decoder, using z i.e. ! ! p! (! |z, t).
Note that we have only a single VAE model, which can generate network parameters for each task
individually by conditioning the VAE on the corresponding task-specific prior.

4

3.2 Meta-consolidation:When the continual learner encounters the kth task and receives the set
of optimal model parameters for this task ! k = { ! i

k } B
i =1 , directly updating the VAE on ! k alone

causes a distributional shift towards the kth task. We address this by “meta-consolidating” the encoder
and decoder, after accommodating the new task. Algorithm 2 summarizes the steps involved in
this consolidation. We assume that all the learned task-specific priors are stored and available to us.
This adds negligible storage complexity as it involves storing only means and covariances. For each
task " 1, á á á, " k seen so far, a task-specific zt is sampled from the corresponding task-specific prior
distribution. Next, P pseudo-models are sampled from the decoder p! (! |z t , t). These generated
pseudo-models are used to finetune the parameters of the encoder and the decoder by maximizing
the lower bound, L (#, $ |! , t) defined in Eqn 2. Note that we update only # and $, and not the
parameters of the task-specific priors, which are fixed. One could consider this as a “replay” strategy,
only using the meta-parameter space. This ensures that after learning each new task, the encoder
and decoder are competent enough to generate model parameters for solving all tasks seen till then.
Importantly, we do not learn separate encoder-decoders per task and do not store weight parameters
(! j) for any task, which makes our proposed method storage-efficient. The consolidation in this step
takes place in the task parameter meta-space (unlike earlier methods), which we find to be effective
for continual learning, as validated by our experimental results in Sec 4.
Algorithm 2 META-CONSOLIDATION IN MERLIN

Input: Encoder: q" (z |# , t); Decoder: p! (# |z , t); Last seen task: ! k ; Task priors: { P i } k
i =1 , P i = (µ i , " i);

of psuedo-models: P
Output: Consolidated encoder-decoder parameters: " and $

1: for j = 1 to k do
2: µ j , " j ! P j

3: z j " N (z |µ j , " j) ! Task speciÞcz j

4: Loss !
! P

i =1 L ($, " |# i , t); where # i " p! (# |z t , t) ! L (.) is deÞned in Equation 2.
5: g ! # ! ," Loss
6: " , $! Update parameters " , $, using gradient g.
7: return " , $

3.3 Inference:Having learned the distribution to generate model parameters for each task seen until
now, the learned task-specific priors give us the flexibility to sample any number of models from this
distribution at inference/test time. This allows for ensemblingmultiple models at test time (none of
which need to be stored a priori), which is a unique characteristic of the proposed method.

Ideally, a continual learning algorithm should be able to solve all tasks encountered so far, without
access to any task-specific information at inference time. While a handful of existing methods
[29, 63] take this into consideration, many others [48, 38, 88] assume availability of task-identifying
information during inference. This is also referred as single-head or multi-head evaluation in literature
[13, 80, 21]. Our methodology works with both evaluation settings, which we refer to as task-agnostic
and task-awareinference, as described below. Algorithm 3 outlines the inference steps. We use the
Algorithm 3 MERLIN INFERENCE

Input: Decoder: p! (# |z , t); Last seen task: ! k ; Task priors: P = { P i } k
i =1 , P i = (µ i , " i); Exemplars:

E = { Ex i } m
i =1 , Ex i = { (x i , y i)} ; Number of base models to ensemble from: E

1: if Task-agnostic inferencethen ! Task-agnostic inference
2: z " N (z |µ , ") where µ ! 1

k

! k
i =1 µ i and " ! 1

k

! k
i =1 " i

3: ! ! Sample E models from p! (# |z)
4: ! ! Fine-tune ! on E
5: Ensemble results from ! to solve all tasks (! 1 , á á á, ! k)
6: if Task-aware inferencethen ! Task-aware inference
7: for j = 1 to k do
8: z j " N (z |µ j , " j) where µ j , " j ! P j

9: ! j ! Sample E models from p! (# |z j , t j)
10: ! j ! Fine-tune ! j on Ex j

11: Ensemble results from ! j to solve task ! j .

consolidated decoder p! (! |z, t), and task-specific priors P at test time. In a task-agnosticsetting,
a single overall prior distribution is aggregated from all task-specific priors. We find that a simple
averaging of parameters of the prior distributions works well in practice. The latent variable z is
sampled from this aggregated prior. The model parameters sampled from the decoder using z has the

5

capability to solve all tasks seen till then. The generated ! is amenable for quick adaptation to each
task similar to MAML [23] to obtain task-dependent model parameters. To leverage this, we store a
small set of randomly selected exemplars for each task, which is used to finetune ! for each task. E
such models are sampled from the decoder, each of which is finetuned on all tasks. An ensemble of
these models is used to predict the final output. Task-awareinference works very similarly, with the
only change that zj is sampled from each task-specific prior. The task-specific model parameters ! j
are then sampled from p! (! |z j , t j), finetuned on task exemplars Ex j and finally ensembled. The
ensembling step adds minimal inference overhead as explained in Sec 4.1.5.

4 Experiments and Results
We evaluate MERLIN against prominent methods for continual learning: GEM [48], iCaRL [63],
EWC [38], a recent state-of-the-art GSS [4], and a crude baseline where a single model is trained
across tasks (referred to as ‘Single’ in our results). GSS and GEM are inherently designed for online
continual learning, while iCaRL and EWC are easily adapted to this setting following [48, 14]. These
baselines consolidate in different spaces: EWC [38], a regularization-based method, consolidates
in the weight space; GEM [48], GSS [4], and iCaRL [63] use exemplar memory and consolidate in
the data space; while MERLIN consolidates in the meta-space of parameters. We used the official
implementations of each of these baseline methods for fair comparison. Five standard continual
learning benchmarks, viz. Split MNIST [13], Permuted MNIST [88], Split CIFAR-10 [88], Split
CIFAR-100 [63] and Split Mini-Imagenet [15], are used in the experiments, following recent continual
learning literature [12, 4, 63, 51, 13].
4.1 Experimental Setup:We describe the datasets, evaluation metrics and other implementation
details below, before presenting our results. Our code1 is implemented in PyTorch [60] and runs on a
single NVIDIA V-100 GPU.
4.1.1 Datasets:We describe the datasets considered briefly below (a detailed description is presented
in the Appendix):

Split MNIST and Permuted MNIST:Subsequent classes in the MNIST [43] dataset are paired together
and presented as a task in Split MNIST, a well-known benchmark for continual learning. This results
in 5 incremental tasks. In Permuted MNIST, each task is a unique spatial permutation of 28$ 28
images of MNIST. 10 such permutations are generated to create 10 tasks. We use 1000images per
task for training and the model is evaluated on the all test examples, following the protocol in [48].

Split CIFAR-10 and Split CIFAR-100:5 and 10 tasks are created by grouping together 2 and 10classes
from CIFAR-10 [41] and CIFAR-100 [41] datasets respectively. Following [48], 2500 examples are
used per task for training. Trained models are evaluated on the whole test set.

Split Mini-Imagenet:Mini-Imagenet [83] is a subset of ImageNet [18] with a total of 100classes
and 600images per class. Each task consists of 10 disjoint subset of classes from these 100classes.
Similar to CIFAR variants, 2500examples per task is used for training, as in [15].

We note a distinction between tasks in “Split” versions of the datasets and Permuted MNIST. In “Split”
datasets, the label space expands with tasks, while for Permuted MNIST, the data space changes with
tasks without changing the label space. The former is referred to as the Class-Incrementalsetting,
while the latter as Domain-Incrementalsetting in literature [32, 80]. MERLIN works on both settings.

4.1.2 Base ClassiÞer Architecture:For CIFAR and Mini-ImageNet datasets, a modified ResNet
[30] architecture is used, which is 10 layers deep and has fewer number of feature maps in each of
the four residual blocks (5, 10, 20, 40). This reduces the number of parameters from 0.27M to 34997.
In spite of using a weaker base network (owing to computing constraints), our method outperforms
baselines, as shown in our results. For the MNIST dataset, we use a two-layer fully connected neural
network with 100neurons each, with ReLU activation, following the experimental setting in GEM
[48]. To train these base models (which are then used to train the VAE in MERLIN), batch size is set
to 10 and Adam [35] is used as the optimizer, with an initial learning rate of 0.001and weight decay
of 0.001. To ensure the online setting, the model is trained only for a single epoch, similar to baseline
methods [48, 4, 3]. For class-incremental experiments, we follow earlier methods [48, 4] to assume
an upper-bound on the number of classes to expect, and modify the loss function to consider only
classes that are seen so far. This is done by setting the final layer classification logits of the unseen
class to a very low value (# 1010), as in [48, 14, 62].

1https://github.com/JosephKJ/merlin

6

Datasets % Split MNIST Permuted MNIST Split CIFAR-10 Split CIFAR-100 Split Mini-ImageNet
Methods & A (') F (&) A (') F (&) A (') F (&) A (') F (&) A (') F (&)
Single 44.8 ± 0.3 98.3 ± 0.5 73.1 ± 2.2 15.7 ± 1.9 73.2 ± 3.1 12.6 ± 4.4 30.8 ± 3.5 20.5 ± 2.6 27.5 ± 2.6 17.1 ± 2.7
EWC [38] 45.1 ± 0.1 98.4 ± 0.2 74.9 ± 2.1 12.4 ± 2.5 74.2 ± 2.2 14.5 ± 3.4 29.2 ± 3.3 22.5 ± 4.1 28.1 ± 2.5 18.0 ± 4.6
GEM [48] 86.7 ± 1.5 23.4 ± 1.8 82.5 ± 4.9 0.8 ± 0.4 79.1 ± 1.6 5.9 ± 1.7 40.6 ± 1.9 1.3 ± 1.8 34.1 ± 1.2 4.7 ± 0.9
iCaRL [63] 89.9 ± 0.9 1.7± 1.3 - - 72.6 ± 1.3 4.1 ± 1.5 27.1 ± 2.9 1.2± 1.3 38.8 ± 1.6 3.5 ± 0.6
GSS [4] 88.3 ± 0.8 33.3 ± 2.4 81.4 ± 1.2 8.8 ± 1.1 57.9 ± 2.6 49.2 ± 7.6 19.1 ± 0.7 42.7 ± 1.5 14.8 ± 0.9 31.3 ± 3.2
MERLIN 90.7± 0.8 6.4 ± 1.2 85.5± 0.5 0.4± 0.4 82.9± 1.2 -0.9± 1.9 43.5± 0.6 2.9 ± 3.7 40.1± 0.9 2.8± 3.2

Table 1: Average accuracy (A) and average forgetting measure (F) of five baseline methods and MERLIN,
across five datasets. MERLIN consistently outperforms the baselines across datasets.

4.1.3 Task Descriptors:The inputs to train models for each task are training data points " tr
k =

{ (x i , yi)}
N k

tr
i =1 , corresponding to task " k . As in Sec 3.1, in order to condition the prior distribution

p! (z|t) on a task, each task, " k , is represented by a corresponding fixed-length task descriptor
t k " RD . We use the simplest approach in our experiments: one-hot encoding of the task sequence
number. Using semantic task descriptors such as GloVe or Word2Vec can allow our framework to
be extended to few-shot/zero-shot continual learning. The label embedding of a zero/few-shot task
can be used to condition the prior, which can subsequently generate help decoder models for the
zero/few-shot task. We leave this as a direction of future work at this time.

4.1.4 Training the VAE: The first step of MERLIN is to train task-specific classification models
from training data " tr

j using the abovementioned architectures. The weights of these models are
used to train the VAE. 10 models are learned for each task by random sampling of subsets (with
replacement) from " tr

k . Considering that base classification models can be large, in order to not
make the VAE too large, we use a chunking trick proposed by Johannes et al. in [84]. The weights
of the base classification models are flattened into a single vector and split into equal sized chunks
(last chunk zero-padded appropriately). We use a chunk size of 300for all experiments, and show a
sensitivity analysis on the chunk size in Sec 5.6. The VAE is trained on the chunks (instead of the
full models) for scalability, conditioned additionally on the chunk index. At inference, the classifier
weights are assembled back by concatenating the chunks generated by the decoder, conditioned on
the chunk index. We observed that this strategy worked rather seamlessly, as shown in our results.
The approximate posterior q# (z|! , t), is assumed to be a 2-D isotropic Gaussian, whose parameters
are predicted using a encoder network with 1 fully connected layer of 50 neurons, followed by two
layers each predicting the mean and the covariance vectors. The decoder p! (! |z, t) mirrors the
encoder’s architecture. The network that generates the mean and diagonal covariance vectors of the
learned prior, as in Eqn 3, is modeled as a linear network. AdaGrad [20] is used as the optimizer with
an initial learning rate of 0.001. Batch size is set to 1 and the VAE network is trained for 25 epochs.

4.1.5 Inference:At test time, we sample 30 models from the trained decoder p! (! |z, t) to solve
each task. Algorithm 3 shows how these are obtained for task-aware and task-agnostic settings. These
models are ensembled using majority voting. An ablation study varying the number of sampled
models at inference is presented in Sec 5.4. We ensure that this adds minimal inference overhead by
loading sampled weights into the model sequentially and saving only the final logits for ensembling.
Hence, only one model is stored at a given time in memory, allowing our framework to scale up
effectively. Any additional steps in our methodology is offset by the choice of very small models
to train, and our chunking strategy, leading to minimal overhead in training time over the baseline
methods. At test time, our method is real-time, and has no difference from baseline methods.

4.1.6 Evaluation Metrics: For all experiments, we consider the average accuracyacross tasks and
average forgetting measureas the evaluation criteria, following previous works [13, 48]. Average
accuracy (A " [0, 100]) after learning the kth task (" k), is defined as Ak = 1

k

' k
j =1 ak,j ; where ak,j

is the performance of the model on the test set of task j , after the model is trained on task k. Forgetting
is defined as the difference in performance from the peak accuracy of a model learned exclusively for
a task and the accuracy of the continual learner on the same task. Average forgetting measure (F "
[# 100, 100]) after learning the kth task can be defined as Fk = 1

k ! 1

' k ! 1
j =1

(
max

l #{ 1,ááá,k ! 1}
al,j # ak,j

)
.

We ran each experiment with five different seed values and report the mean and standard deviation.

4.2 Results:Table 1 shows how MERLIN compares against baseline methods on all the considered
datasets. iCaRL [63] results are not reported for Permuted MNIST as it is not a Domain-Incremental
methodology. We see that the average accuracy (higher is better) obtained by MERLIN shows
significant improvement over baseline methods across datasets and settings. The difference is larger

7

with increasing complexity of the dataset. MERLIN also shows strong improvement in the forgetting
metric on most datasets, including a negative value (showing improved performance on earlier tasks,
known as positive backward transfer [14]) on Split CIFAR10. While learning a new task, iCaRL
uses distillation loss [31] to enforce that logits of exemplars from the previous tasks, do not alter
much with the current task learning. This, we believe, helps iCaRL achieve lower forgetting, when
compared to other methods. MERLIN is able to outperform iCaRL too, in two out of four datasets,
with reduced forgetting. GSS [4] failed on CIFAR-100 and Mini-ImageNet, even after we tried
different hyperparameters. The original paper does not report results on these datasets. We did not
include comparison with A-GEM [14] as it reports only marginal improvement over GEM [48]. The
evolution of test accuracy with addition of tasks, which showed improvement in accuracy over the
baselines from the very first task, is presented in the Appendix due to space constraints.

5 Discussions and Analysis

We analyze the effectiveness of MERLIN using more studies, as described below.

5.1 Is the Probabilistic Decoder Learning the Parameter Distribution?The key component of
MERLIN is the decoder that models the parameter distribution p! (! |z t , t). Should the decoder
fail to learn, then each model ! i ! p! (! |z t , t) would be an ineffective sample from an untrained
decoder. In such a scenario, the only reason why inference (Algo 3) would work would be due to
finetuning of these sampled models on the exemplars (L4, L10; Algo 3). In order to study this, we run
an experiment where we intentionally skip training the VAE and the consolidation step that follows.
With all other components the same, this corresponds to only finetuning with exemplars. The ‘w/o
training VAE’ row in Tab 2 shows the results. Consistently, on all datasets, the performance drops
significantly while removing this key component. This suggests that the proposed meta-consolidation
through the VAE is actually responsible for the performance in Tab 1.

5.2 Task Agnostic vs Task Aware Inference:All results of MERLIN in Tab 1 do not assume task
information during evaluation, and hence operate in the task-agnostic setting. MERLIN can work
in both task-agnostic and task-aware settings, as shown in the last two rows of Tab 2. Expectedly,
access to task information during inference boosts performance for simple datasets like Split MNIST.
For other datasets, average accuracy and forgetting measure is almost similar for both. This supports
our choice of aggregation strategy of priors across tasks, which captures the task-agnostic setting
quite well.
Datasets % Split MNIST Permuted MNIST Split CIFAR-10 Split CIFAR-100 Split Mini-ImageNet
Methods & A (') F (&) A (') F (&) A (') F (&) A (') F (&) A (') F (&)
w/o training VAE 44.8 ± 5.7 19.9 ± 2.3 29.9 ± 4.7 5.8 ± 0.2 53.5 ± 6.6 3.8 ± 1.3 15.7 ± 1.63 3.8 ± 0.6 16.1 ± 1.9 3.4 ± 3.1
Task Agnostic 90.7 ± 0.8 6.4 ± 1.2 85.5 ± 0.5 0.4 ± 0.4 82.9 ± 1.2 -0.9 ± 1.9 43.5 ± 0.6 2.9 ± 3.7 40.1 ± 0.9 2.8 ± 3.2
Task Aware 97.4 ± 0.3 0.1 ± 0.3 85.1 ± 0.4 1.1 ± 0.8 82.3 ± 1.1 -0.4 ± 1.2 44.4 ± 2.8 1.7 ± 0.7 41.8 ± 1.5 1.1 ± 0.8

Table 2: MERLIN variants: (i) without training VAE and subsequent consolidation (ii) Task-agnostic (iii)
Task-aware MERLIN. Task-agnostic MERLIN performs almost well as Task-aware MERLIN on several datasets.

Figure 2: (Left) Plot of 20 samples drawn from each
task-specific prior zt " p! (z |t). (Right) t-SNE plot
of weights obtained from decoder using corresponding
zt ; # i " p! (# |z t , t). Each color corresponds to 10
diff tasks from split CIFAR100.

5.3 Visualization of Task-speciÞc Priors and
Sampled Models: In Fig 2, we visualize the
latent variables sampled from the learned prior
distribution zt ! p! (z|t) (left) - which are two-
dimensional themselves, and the 2D t-SNE em-
beddings [49] of their corresponding model pa-
rameters generated using zt : ! i ! p! (! |z t , t)
(right). The model is trained on a 10 task split
CIFAR-100 dataset. The separation of the latent
samples and the task parameters of different mod-
els in the learned meta-space supports the useful-
ness of our method in overcoming catastrophic
forgetting in continual learning.

of models % 1 30 50 100

Split MNIST 86.6 ± 1.4 90.6 ± 0.8 91.4 ± 0.3 91.6 ± 0.3
Permuted MNIST 79.7 ± 3.9 85.4 ± 0.4 85.6 ± 0.3 85.7 ± 0.2
Split Mini-ImageNet 30.1 ± 1.8 39.1 ± 2.1 40.5 ± 2.9 40.9 ± 1.3

Table 3: Test accuracy with varying number of models
in our inference ensemble.

5.4 Varying Number of Models for Ensem-
bling: In Sec 4, we sampled 30 models for each
task from the decoder used in MERLIN. We

8

now vary the number of models in Tab 3. We observe a 3.98%, 6.34%and 8.99%improvement on
Split-MNIST, Permuted-MNIST and Split Mini-Imagenet, when using 30 models for ensembling,
over using only 1. The performance improvement however is not very significant on further increase
beyond 30 models. This suggests that while ensembling is required, the number of models need
not be very large. Improving our ensembling strategy (beyond majority voting) is a direction of our
future work.

of params in % Clf VAE

Split MNIST 89610 31426
Permuted MNIST 89610 31446
Split CIFAR-10 31307 17910
Split CIFAR-100 34997 33810
Mini-ImageNet 34997 33810

Table 4: Num of params in
classifier and VAE.

5.5 Storage Requirements:MERLIN requires only parameters of task-
specific prior p! (z|t) and decoder of the VAE, at inference time. The
encoder is required only if we need to continually learn further tasks.
None of the components in the architecture grows with number of tasks,
making MERLIN scalable. Quantitative analysis on the size of classifier
and VAE (meta-model) is presented in Tab 4. We note that meta-model
size is always smaller than classifier, and is 8$ smaller than the storage
requirement of GSS, GEM, EWC and iCaRL which use ResNet-18 with 272,260 parameters. Similar
to GEM, we maintain an exemplar buffer of 200 and 400 for MNIST and other datasets respectively.

Chunk Size % 100 300 1000 2000

Split MNIST 90.8 ± 0.4 90.6 ± 0.8 87.5 ± 3.7 87.4 ± 2.2
Permuted MNIST 85.6 ± 0.4 85.5 ± 0.5 83.7 ± 2.8 82.5 ± 3.6
Split Mini-ImageNet 40.9 ± 1.2 40.5 ± 2.9 38.8 ± 2.8 37.8 ± 2.1

Table 5: Avg test accuracy when varying chunk size.

5.6 Varying Chunk Size: As in Sec 4.1.4, we
split the weight vector into equal-sized chunks
before encoding it using VAE. We vary chunk
size and report the average accuracy in Tab 5.
As chunk size increases, the accuracy drops - we
hypothesize this is to do with the capacity of VAE. We use simple architectures in our encoder-decoder,
and modeling larger weight chunks (or whole models) may require more complex VAE.

Memory Size % 100 500 1000 2000

GEM 77.4 ± 2.6 79.9 ± 1.9 80.9 ± 1.9 80.5 ± 1.5
iCaRL 72.5 ± 2.6 73.6 ± 1.3 73.7 ± 2.6 74.8 ± 1.3
MERLIN 77.9 ± 1.3 81.9 ± 0.3 86.9 ± 0.6 88.4 ± 0.8

Table 6: Results of varying memory size of exemplar
buffer for MERLIN, GEM [48] and iCaRL [63].

5.7 Varying Exemplar Memory SizeWe vary
the memory size of the exemplar buffer for
MERLIN, and compare the performance against
our best competitors in Table 1 of the main pa-
per: GEM [48] and iCaRL [63] in CIFAR-10
experiments. The results in Table 6 show that
the increase in performance for MERLIN is sig-
nificantly better when compared to GEM and iCaRL. We hypothesize this is because the weights
sampled from our parameter distribution use these exemplars better, similar to how other meta-
learning approaches like MAML [23] finetune on just a few samples. Using better exemplar selection
methods other than random sampling (used in this work) can further enhance MERLIN, and is a
direction of our future work.

6 Conclusion

We introduce MERLIN, a novel approach for online continual learning, based on consolidation in
a meta-space of model parameters. Our method is modeled based on a VAE, however adapted to
this problem through components such as task-specific learned priors. Our experimental evaluation
on five standard continual learning benchmark datasets against five baseline methods brings out
the efficacy of our approach. MERLIN can handle both class-incremental and domain-incremental
settings, and can work with or without task information at test time. Understanding the dynamics of
the latent space of the parameter distribution to further enhance memory retention and extending the
methodology to a few-shot setting can be immediate follow-up efforts to MERLIN.

Acknowledgements

We thank TCS for funding Joseph through its PhD fellowship, and DST, Govt of India, for partly
supporting this work through the IMPRINT program (IMP/2019/000250). We also thank the members
of Lab1055, IIT Hyderabad and the ContinualAI community for the engaging and fruitful discussions,
which helped to shape MERLIN. Last but not the least, we thank all our anonymous reviewers for
their insightful comments and suggestions, which helped to improve the quality and presentation of
the paper.

9

Broader Impact
Continual learning is a key desiderata for Artificial General Intelligence (AGI). Hence, this line of
research has the benefits as well as the pitfalls of any other research effort geared in this direction.
In particular, our work can help deliver impact on making smarter AI products and services, which
can learn and update themselves on-the-fly when newer tasks and domains are encountered, without
forgetting previously acquired knowledge. This is a necessity in any large-scale deployments of
machine learning and computer vision, including in social media, e-commerce, surveillance, e-
governance, etc - each of which have newer settings, tasks or domains added continually over time.
Any negative effect of our work, such as legal and ethical concerns, are not unique to this work - to
the best of our knowledge, but are shared with any other new development in machine learning, in
general.

References
[1] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji,

Charless Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-
learning. arXiv preprint arXiv:1902.03545, 2019.

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 139–154, 2018.

[3] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min
Lin, and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In
Advances in Neural Information Processing Systems, pages 11849–11860, 2019.

[4] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems, pages
11816–11825, 2019.

[5] Pablo Alvarez and Larry R Squire. Memory consolidation and the medial temporal lobe: a
simple network model. Proceedings of the national academy of sciences, 91(15):7041–7045,
1994.

[6] Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O Stanley, Jeff Clune, and
Nick Cheney. Learning to continually learn. arXiv preprint arXiv:2002.09571, 2020.

[7] Sören Becker, Marcel Ackermann, Sebastian Lapuschkin, Klaus-Robert Müller, and Wojciech
Samek. Interpreting and explaining deep neural networks for classification of audio signals.
CoRR, abs/1807.03418, 2018.

[8] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model
architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

[9] Lucas Caccia, Eugene Belilovsky, Massimo Caccia, and Joelle Pineau. Online learned continual
compression with adaptative quantization module. arXiv preprint arXiv:1911.08019, 2019.

[10] Alfonso Caramazza and Bradford Z Mahon. The organization of conceptual knowledge: the
evidence from category-specific semantic deficits. Trends in cognitive sciences, 7(8):354–361,
2003.

[11] Alfonso Caramazza and Jennifer R Shelton. Domain-specific knowledge systems in the brain:
The animate-inanimate distinction. Journal of cognitive neuroscience, 10(1):1–34, 1998.

[12] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek
Alahari. End-to-end incremental learning. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 233–248, 2018.

[13] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 532–547, 2018.

[14] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In ICLR, 2019.

[15] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. Continual learning with tiny episodic
memories. arXiv preprint arXiv:1902.10486, 2019.

[16] Yu Chen, Tom Diethe, and Neil Lawrence. Facilitating bayesian continual learning by natural
gradients and stein gradients. arXiv preprint arXiv:1904.10644, 2019.

[17] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis,
Gregory Slabaugh, and Tinne Tuytelaars. Continual learning: A comparative study on how to
defy forgetting in classification tasks. arXiv preprint arXiv:1909.08383, 2019.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern

10

recognition, pages 248–255. Ieee, 2009.
[19] Tom Diethe, Tom Borchert, Eno Thereska, Borja de Balle Pigem, and Neil Lawrence. Continual

learning in practice. In NeurIPS Continual Learning Workshop, 2018.
[20] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.
[21] Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach. Uncertainty-

guided continual learning with bayesian neural networks. In International Conference on
Learning Representations, 2020.

[22] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for
continual learning, 2019.

[23] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1126–1135. JMLR. org, 2017.

[24] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 1920–1930, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[25] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135, 1999.

[26] Oscar C Gonzalez, Yury Sokolov, Giri Krishnan, and Maxim Bazhenov. Can sleep protect
memories from catastrophic forgetting? BioRxiv, page 569038, 2019.

[27] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106,
2016.

[28] Giacomo Handjaras, Emiliano Ricciardi, Andrea Leo, Alessandro Lenci, Luca Cecchetti, Mirco
Cosottini, Giovanna Marotta, and Pietro Pietrini. How concepts are encoded in the human
brain: a modality independent, category-based cortical organization of semantic knowledge.
Neuroimage, 135:232–242, 2016.

[29] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Remind
your neural network to prevent catastrophic forgetting. arXiv preprint arXiv:1910.02509, 2019.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[31] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[32] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating con-
tinual learning scenarios: A categorization and case for strong baselines. arXiv preprint
arXiv:1810.12488, 2018.

[33] Almut Hupbach, Rebecca Gomez, Oliver Hardt, and Lynn Nadel. Reconsolidation of episodic
memories: A subtle reminder triggers integration of new information. Learning & memory,
14(1-2):47–53, 2007.

[34] Khurram Javed and Martha White. Meta-learning representations for continual learning. In H.
Wallach, H. Larochelle, A. Beygelzimer, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 1818–1828. Curran Associates, Inc., 2019.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[36] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Advances in neural information processing systems,
pages 3581–3589, 2014.

[37] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[38] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[39] Carolin Konrad, Nora D Dirks, Annegret Warmuth, Jane S Herbert, Silvia Schneider, and
Sabine Seehagen. Sleep-dependent selective imitation in infants. Journal of sleep research,
28(1):e12777, 2019.

[40] Mark A Kramer. Autoassociative neural networks. Computers & chemical engineering,
16(4):313–328, 1992.

[41] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Citeseer, 2009.

11

[42] Richard Kurle, Botond Cseke, Alexej Klushyn, Patrick van der Smagt, and Stephan Günnemann.
Continual learning with bayesian neural networks for non-stationary data. In International
Conference on Learning Representations, 2020.

[43] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[44] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture
model for task-free continual learning. In International Conference on Learning Representations,
2020.

[45] Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Jean-François Goudou, and
David Filliat. Generative models from the perspective of continual learning. In IJCNN -
International Joint Conference on Neural Networks, Budapest, Hungary, Jul 2019.

[46] Timothée Lesort, Alexander Gepperth, Andrei Stoian, and David Filliat. Marginal replay vs
conditional replay for continual learning. In International Conference on ArtiÞcial Neural
Networks, pages 466–480. Springer, 2019.

[47] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2935–2947, 2018.

[48] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
In Advances in Neural Information Processing Systems, pages 6467–6476, 2017.

[49] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[50] Bradford Z Mahon, Stefano Anzellotti, Jens Schwarzbach, Massimiliano Zampini, and Al-
fonso Caramazza. Category-specific organization in the human brain does not require visual
experience. Neuron, 63(3):397–405, 2009.

[51] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by
iterative pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7765–7773, 2018.

[52] Jaya Krishna Mandivarapu, Blake Camp, and Rolando Estrada. Self-net: Lifelong learning via
continual self-modeling. Frontiers in ArtiÞcial Intelligence, 3:19, 2020.

[53] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[54] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[55] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. arXiv preprint arXiv:1707.03141, 2017.

[56] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual
learning. arXiv preprint arXiv:1710.10628, 2017.

[57] Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2, 2018.

[58] Arghya Pal and Vineeth N Balasubramanian. Zero-shot task transfer. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2189–2198, 2019.

[59] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 2019.

[60] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

[61] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, 2014.

[62] Jathushan Rajasegaran, Munawar Hayat, Salman H. Khan, Fahad Shahbaz Khan, and Ling Shao.
Random path selection for incremental learning. CoRR, abs/1906.01120, 2019.

[63] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5533–5542. IEEE, 2017.

[64] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Ger-
ald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing
interference. arXiv preprint arXiv:1810.11910, 2018.

[65] Anthony Robins. Consolidation in neural networks and in the sleeping brain. Connection
Science, 8(2):259–276, 1996.

12

[66] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Expe-
rience replay for continual learning. In Advances in Neural Information Processing Systems,
pages 348–358, 2019.

[67] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection
of non-linear functions for multi-task learning. arXiv preprint arXiv:1711.01239, 2017.

[68] Amir Rosenfeld and John K. Tsotsos. Incremental learning through deep adaptation, 2018.
[69] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,

Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[70] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In ICML, pages 1842–1850, 2016.

[71] Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework
for continual learning. arXiv preprint arXiv:1805.06370, 2018.

[72] Joan Serrà, Dídac Surís, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. arXiv preprint arXiv:1801.01423, 2018.

[73] Falong Shen, Shuicheng Yan, and Gang Zeng. Neural style transfer via meta networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
8061–8069, 2018.

[74] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep
generative replay. In Advances in Neural Information Processing Systems, pages 2990–2999,
2017.

[75] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pages 4077–4087, 2017.

[76] Larry R Squire, Lisa Genzel, John T Wixted, and Richard G Morris. Memory consolidation.
Cold Spring Harbor perspectives in biology, 7(8):a021766, 2015.

[77] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1199–1208, 2018.

[78] Jakke Tamminen, Jessica D Payne, Robert Stickgold, Erin J Wamsley, and M Gareth Gaskell.
Sleep spindle activity is associated with the integration of new memories and existing knowledge.
Journal of Neuroscience, 30(43):14356–14360, 2010.

[79] Michalis K Titsias, Jonathan Schwarz, Alexander G de G Matthews, Razvan Pascanu, and
Yee Whye Teh. Functional regularisation for continual learning with gaussian processes. In
International Conference on Learning Representations, 2019.

[80] Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

[81] Michiel van der Ven and Andreas S. Tolias. Generative replay with feedback connections as a
general strategy for continual learning. ArXiv, abs/1809.10635, 2018.

[82] Vinay Kumar Verma, Dhanajit Brahma, and Piyush Rai. A meta-learning framework for
generalized zero-shot learning. arXiv preprint arXiv:1909.04344, 2019.

[83] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. In Advances in neural information processing systems, pages 3630–3638,
2016.

[84] Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F. Grewe. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.

[85] Matthew A Wilson and Bruce L McNaughton. Reactivation of hippocampal ensemble memories
during sleep. Science, 265(5172):676–679, 1994.

[86] John T Wixted. The psychology and neuroscience of forgetting. Annu. Rev. Psychol., 55:235–
269, 2004.

[87] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Oracle: Order robust adaptive
continual learning. arXiv preprint arXiv:1902.09432, 2019.

[88] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 3987–3995. JMLR. org, 2017.

[89] Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning:
Network adaptation via additive side networks. arXiv preprint arXiv:1912.13503, 2019.

[90] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast
context adaptation via meta-learning. In International Conference on Machine Learning, pages
7693–7702, 2019.

13

