
Appendix

A Implementation details of flow indication embedding

In this section, we describe the implementation details of flow indication embedding used in this study,
depending on the architecture. We used additive bias and multiplicative gating for WaveFlow-based
experiments and concatenative embedding and multiplicative gating for Glow-based experiments.

Concatenative embedding. At the start of each flow, we concatenated the input X with ek as the
augmented representation as follows:

Xcat = Concatenate(X, ek). (8)

The ek was reshaped to match the shape of the input for each flow. For Glow-based experiments,
we reshaped ek as ek ∈ RĈ×height×width, where Ĉ = D

height×width , and performed concatenation
along the channel-axis.

Additive bias. We used the notation hk,l ∈ RH,· as the hidden representation of the l-th layer from
the k-th flow, where H is the number of hidden channels of the neural network. We applied the
channel-wise additive bias to hk,l using a single fully connected layer for projection as follows:

h̃k,l = hk,l +W lek, (9)

where W lek ∈ RH . After training, we can cache the projected bias from the embedding as the final
network parameters and discard the projection weights. The reported parameter count in Table 2 is
obtained from the trained model with the projection weights discarded.

Multiplicative gating. We performed multiplicative gating to hk,l by employing a vector δk,l ∈ RH
as follows:

ĥk,l = exp(δk,l) · hk,l. (10)

δk,l was initialized to zero to initially perform the identity. For WaveFlow-based experiments, we
applied additive bias followed by multiplicative gating. For Glow-based experiments, we applied
multiplicative gating before applying the ReLU activation.

B Additional experimental results

In this section, we provide additional experimental results.

Effect of the number of shared layers. We measured a tolerance to the decreased network capacity
of NanoFlow by varying the number of the shared layers of the network. We used the 8-layer
WaveFlow with 64 residual channels as the non-shared baseline, and trained NanoFlow-naive and
NanoFlow by partially replacing the layers from the bottom (i.e. closer to the input) with the shared
weights. We trained all models with the batch size of two for 600 K iterations under the same learning
rate schedule as described in Section 4.1. We used D = 128 for ek of NanoFlow.

Figure 2 shows differences in the performance drop from the varied amount of the decreased network
capacity. We can see that NanoFlow-naive degraded its performance more significantly than our
final model, which indicates that the proposed technique provided better tolerance to the decreased
capacity of the network.

Compatibility beyond the affine coupling. Our main experiments used WaveFlow [25] and Glow
[19], where both models used affine coupling for the transformation. We show that NanoFlow is not
restricted to a specific choice of the bijection by replacing the affine coupling for WaveFlow-based
models with rational-quadratic splines (RQ-NSF) [7]. We trained both WaveFlow and NanoFlow with
the same training strategy as described in Section 4.1. We used the the following hyperparameters
for the rational-quadratic spline: the number of bins of 32 and the tail bound of 5. We experienced
unpleasing popping sounds from the generated audio for all models if we set these values lower.

The likelihood results from Table 5 show that NanoFlow + RQ-NSF performed slightly better than
the default affine coupling, whereas the high-capacity WaveFlow scored worse likelihood. We are
not drawing any conclusive claim regarding the different classes of the bijection based on these

11

5.04

5.05

5.06

5.07

5.08

5.09

5.1

5.11

5.12

1 2 3 4 5 6 7
Lo

g-l
ik

el
ih

oo
d

of shared layers

NanoFlow-naive
NanoFlow
Non-shared Baseline

Figure 2: Analysis on the effect of the number of shared layers.

Table 5: Additional results of using non-affine
coupling with rational-quadratic splines.

Method Params (M) LL

WaveFlow 22.336 5.2059
NanoFlow 2.819 5.1586

WaveFlow + RQ-NSF 22.432 5.1866
NanoFlow + RQ-NSF 2.915 5.1614

Table 6: Results when applying the method to
the reference network topology of Glow model
(NanoFlowAlt), evaluated at 600 epochs.

Method (600 epochs) Params (M) bpd

Glow (256 channels) 15.973 3.44
NanoFlowAlt-naive 0.778 3.75
NanoFlowAlt-decomp 6.783 3.54
NanoFlowAlt 6.961 3.53
NanoFlowAlt (K=48) 10.319 3.51

observations as we have not performed an exhaustive hyperparameter search and training schedule.
However, the results indicate that NanoFlow is not restricted to the particular coupling and can be
applied to various other classes of flows.

Caveats. As demonstrated in the main experimental results, NanoFlow is designed for leveraging the
rich representational power of the deep neural network. In other words, a careful allocation of the
parameters is required under NanoFlow framework, where the shared estimator should have sufficient
capacity, while keeping the non-shared projection layers lightweight.

We additionally show a negative result when the aforementioned caveats are not met. We trained
the NanoFlow variants of Glow with the exact same network topology: from 3 × 3 conv→ 1 × 1
conv→ 3× 3 projection conv layers per flow, NanoFlowAlt shared the first two layers and used the
separate 3× 3 projection conv. Results showed that the model performed significantly worse than the
baseline architecture, even though NanoFlowAlt (K=48) has similar network size (10 M) to our main
result. This indicates that we have to assure that the shared neural density estimator possesses the
sufficient capacity.

12

C Samples generated from image models

(a) Glow (bpd = 3.40) (b) Glow-large (bpd = 3.30)

(c) NanoFlow-naive (bpd = 3.40) (d) NanoFlow (K = 48) (bpd = 3.25)

Figure 3: Unconditional samples generated from image models in Section 4.3 trained on CIFAR10. The
temperature was set to 1.0. Models with lower bpd tended to generate sharper and detailed textures, which is
consistent with the existing literature.

13

