
Appendices
A Overview

Appendix B presents additional experimental results of the paper. In Appendix B.1 we compare
how well the predicted trajectories conserve energy as a function of time. In Appendix B.2 we show
the relative error on the N -Pendulum systems on a linear scale, which emphasizes that trajectories
predicted by CHNNs and CLNNs have lower variance. In Appendix B.3 we quantify constraint drift
and passively enforced constraints. In Appendix B.4 we investigate the complexity of the learning
task through the lens of effective dimension [16].

Appendix C presents the derivation of constrained Hamiltonian and Lagrangian mechanics, and the
derivations used to embed 3D motion in Cartesian coordinates.

Appendix D presents the implementation and training details for our method and the baselines,
including documentation of the constraint Jacobians in Appendix D.4.

Appendix E details the 3D systems that make up the new benchmark datasets, including their Hamil-
tonians.

Finally, Appendix F further demonstrates the complexity of generalized coordinates by deriving the
Hamiltonians in generalized coordinates for each of these systems.

B Additional results

B.1 Energy Conservation

When models approximate the true Hamiltonian or the true Lagrangian, they are able to approx-
imately conserve energy. We compare conservation of the true energy of the system of tra-
jectories predicted by each model over time in Figure 8, showing the relative error |H(z) −
H(ẑ)|/ (|H(z)|+ |H(ẑ)|). CHNNs and CLNNs outperform Neural ODEs, HNNs, and DeLaNs
on all systems. All models are able to approximately conserve the true energy of the system on the
simple 1-pendulum task but the energy of the trajectories predicted by the baseline models quickly
diverge as we transition to the chaotic 3-pendulum and 5-pendulum systems.

0 1 2 3
10 8

10 5

10 2

Re
l.

er
r.

in
 tr

ue
 e

ne
rg

y

1-Pendulum

0 1 2 3

2-Pendulum

0 2 4

3-CoupledPendulum

0 1 2 3

3-Pendulum

0 2 4
Time (seconds)

10 8

10 5

10 2

Re
l.

er
r.

in
 tr

ue
 e

ne
rg

y

4-CoupledPendulum

0 1 2 3
Time (seconds)

5-Pendulum

0 1 2
Time (seconds)

Gyroscope

0 2 4
Time (seconds)

MagnetPendulum

CHNN CLNN DeLaN HNN NeuralODE

Figure 8: Absolute relative error between the true energy of the predicted trajectories given initial condition z0
and the true energy of the ground truth trajectories starting at z0. Curves are averaged over Ntest = 100 initial
conditions and shaded regions are 95% confidence intervals.

11

0 2
Time (seconds)

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
er

ro
r

1-Pendulum

0 2
Time (seconds)

2-Pendulum

0 2
Time (seconds)

3-Pendulum

0 2
Time (seconds)

5-Pendulum

Tminibatch CHNN CLNN DeLaN HNN NeuralODE

Figure 9: Here we show the linear scale version of Figure 5 which better visually demonstrates the performance
difference between our method and the baseline comparisons. The 95% confidence interval is only perceptively
larger for CHNNs and CLNNs in log-scale because they have lower relative error. As shown here, CHNNs and
CLNNs in fact have lower variance than the baseline models.

B.2 Relative error in linear scale

We show the relative error of each model on the pendulum systems in linear scale in Figure 9. We
presented the same data in log scale in the main text. By presenting the relative errors in linear
scale, it is more visually obvious that CHNNs and CLNNs have lower variance in error than the
other methods.

B.3 Removed constraints and constraint violation.

Our method uses Lagrange multipliers to enforce constraints since Cartesian coordinates do not en-
force constraints by themselves. In Figure 10(a), we verify that performance rapidly degrades when
these constraints are not explicitly enforced for CHNN and CLNNs. In principle the learned Hamil-
tonian of the model can compensate by approximately enforcing constraints such as with springs,
however in practice this does not work well. We compare the performance of our CHNN and CLNN
models on the 3-Pendulum (still in Cartesian coordinates) but where the distance constraints are suc-
cessively removed starting from the bottom. While performance of the base models are >100 times
better than HNN, removing even a single constraint results in performance that is slightly worse
than an HNN. This experiment shows that both Cartesian coordinates and the explicit enforcement
of constraints are necessary for the good performance.

Although the continuous time dynamics of Equation 6 and Equation 7 exactly preserve the con-
straints, numerical integration can cause small drifts in the violation of these constraints. The amount
of violation can be controlled by the tolerance on the integrator, and we found it to be only a small
contribution to the rollout error. Symplectic methods for constrained Hamiltonian systems where
both phase space area (the symplectic form) and the constraints are exactly preserved by the discrete
step integrator have been developed in the literature [11] and may prove helpful for very long roll-
outs. Figure 10(b) shows the amount of constraint violation (measured by RMSE on Φ) over time of
our models as they predict forward in time. Figure 10(c) shows the amount of constraint violating
as a function of the integrator relative tolerance. As expected, the amount of violation decreases as
we make the tolerance more strict.

B.4 Effective Dimension

We empirically evaluate the complexity of the parameterized Hamiltonian Hθ learned by CHNN
and HNN using effective dimensionality [15, 16]. The effective dimensionality of parameterized
modelHθ is given by

ED(Hθ) =

L∑

i=1

λi
λi + z

(10)

where z is a soft cutoff hyperparameter and λi are eigenvalues of the Hessian of the loss function
with respect to the parameters θ. Effective dimensionality characterizes the complexity of a model

12

10 3 10 2 10 1

Geom. mean. of rel. err.

0

1

2

3
Re

m
ov

ed
 C

on
st

ra
in

ts

CHNN CLNN HNN

(a)

0.0 2.5 5.0 7.5 10.0
Time(s)

10 6

10 4

10 2

100

Co
ns

tra
in

t V
io

la
tio

n

CHNN
CLNN

(b)

10 7 10 6 10 5 10 4 10 3

Tolerance
10 6

10 4

10 2

100

Vi
ol

at
io

n CLNN
CHNN

(c)

Figure 10: Left: We sequentially remove the enforced constraints from the CHNN and CLNN models for the
3-pendulum and evaluate the geometric mean of the relative error against that of a HNN which has all con-
straints enforced implicitly. Performance degrades rapidly showing that embedding into Cartesian coordinates
without explicit constraints is insufficient. Middle: The figure shows how constraint drift leads to a small but
increasing constraint violation over time (at rtol = 10−6). Right: The geometric mean of the violation over
the trajectory is plotted against the relative tolerance of the integrator. By adjusting the tolerance the violation
can be controlled.

0 200 400
Order of eigenvalue

10−7

10−6

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

ei
ge

nv
al

ue

1-Pendulum

0 200 400
Order of eigenvalue

2-Pendulum

0 200 400
Order of eigenvalue

3-Pendulum

0 200 400
Order of eigenvalue

4-Pendulum

0 200 400
Order of eigenvalue

5-Pendulum

CHNN HNN

Figure 11: Normalized eigenvalues λi/
∑L

i=1 λj for the top N = 500 eigenvalues. Shaded region is 95%
confidence interval averaged over 3 independently trained models. The eigenvalues of CHNN decays more
rapidly than those of HNN as the tasks become more difficult, corresponding to a lower effective dimensionality.

by the decay of its eigenspectrum. Small eigenvalues with λi � z do not contribute to ED(Hθ), and
eigenvalues above the soft threshold set by z contribute approximately 1 to ED(Hθ). More complex
models have higher effective dimensionality corresponding to slower eigenvalue decay with more
eigenvalues greater than the threshold z.

The loss function differs in scale between CHNN and HNN, with one computing the L1 error be-
tween Cartesian coordinates and the other computing the L1 error between angular coordinates,
which affects the scale of the eigenvalues. Thus we normalize each eigenvalue by

∑L
i=1 λi before

computing the effective dimensionality. In otherwords, we compute effective dimensionality using
λi ← λi/

∑L
j=1 λj . Figure 11 shows the eigenspectra of CHNN and HNN on the N -Pendulum

systems averaged over 3 runs. Since the models have 133,636 and 269,322 parameters respectively,
we only compute the top 500 eigenvalues using the Lanczos algorithm. Based on the elbow in the
eigenspectra in Figure 11, we set z = 10−3 when computing the effective dimensionality shown
in Figure 12. Figure 12 shows that the effective dimensionality of HNNs are higher than that of
CHNNs which may correspond to the more complex Hamiltonian that HNNs must learn.

C Supporting derivations

C.1 Constrained Hamiltonian and Lagrangian Mechanics

Derivation of Hamiltonian mechanics. Let z = (x, p) and assume that the Hamiltonian H has no
explicit dependence on time. The true trajectory z of a Hamiltonian system is a stationary point of
the action functional

S[z] = −
∫ [1

2
z(t)>Jż(t) +H(z)

]
dt. (11)

13

1 2 3 4 5
N-pendulums

300

350

400

450

E
ff

ec
ti

ve
di

m
en

si
on

al
it

y

CHNN

HNN

Figure 12: Effective dimensionality of CHNN and HNN on the N -Pendulum tasks with z = 10−3 computed
using normalized eigenvalues. Shaded region is 95% confidence interval averaged over 3 independently trained
models.

Finding the stationary point by varying the action δS = 0, one recovers the Hamiltonian equations
of motion ż = J∇H [4]:

δS = −
∫ [1

2
δz>Jż +

1

2
z>Jδż + δH(z)

]
dt

= −
∫ [1

2
δz>(J − J>)ż + δz>∇H

]
dt (12)

= −
∫
δz>

[
Jż +∇H

]
dt = 0

Jż = −∇H
ż = J∇H

where we use J = J> and integrate by parts in Equation 12. We use J2 = −I to obtain the final
equation. In fact, the action is the exact same as the one used to derive the Lagrangian equations of
motion. Splitting apart z = (q, p), we have S =

∫
1
2 (p>q̇ − q>ṗ) − H(q, p)dt and integrating by

parts S =
∫
p>q̇ −H(q, p)dt =

∫
L(q, q̇)dt. See the main text for how this approach generalizes

in the case of constrained Hamiltonian mechanics.

Derivation of constrained Lagrangian mechanics. We can follow a similar derivation for the
constrained Lagrangian formalism. Here, the state is z = (x, ẋ) for a Lagrangian L(z(t)) =
L(q(t), q̇(t)). Although the constrained Lagrangian formalism allows for q̇ dependent constraints,
known as pfaffian constraints, we will assume a set of m holonomic constraints Φ(q) for simplic-
ity. Like before, since the constraints are not implicit in the coordinate choice, we must enforce
them explicitly using Lagrange multipliers. Given a set of m holonomic constraints on the position
Φ(x)a = 0 for a = 1, 2, ...,m collected as a column vector Φ(x) = 0, one adds a set of time depen-
dent Lagrange multipliers λa(t) collected as a column vector λ(t) to the state with the augmented
action:

S[z, λ] =

∫ [
L(x, ẋ)− Φ(x)>λ(t)

]
dt. (13)

Enforcing δS/δx = 0 and δS/δλ = 0 with vanishing boundary conditions gives Φ(x) = 0 and

ẍ = M−1[f − (DΦ)>λ] (14)

whereM = ∇ẋ∇ẋL is the mass matrix and f = fu+fc is the sum of conservative forces fu(x, ẋ) =
∇xL and Coriolis-like forces fc(x, ẋ) = −(∇ẋ∇xL)ẋ which vanish in Cartesian coordinates. Here
DΦ is the Jacobian of Φ with respect to x.

In order to solve for λ, we can multiply Equation 14 on the left by DΦ̇ to get:

(DΦ)ẍ = (DΦ)M−1f − (DΦ)M−1(DΦ)>λ. (15)

Since the constraints are preserved, dΦ/dt = (DΦ)ẋ = 0, and taking time derivatives a second
time gives (DΦ)ẍ = −(DΦ̇)ẋ which we can substitute into Equation 15. Rearranging terms and

14

inverting the matrix
[
(DΦ)M−1(DΦ)>

]
, we get the solution for λ:

λ =
[
(DΦ)M−1(DΦ)>

]−1[
(DΦ)M−1f + (DΦ̇)ẋ

]
. (16)

Combining equations Equation 16 and Equation 14 then gives the equations of motion in the con-
strained Lagrangian formalism. Notably, this derivation holds not just for Cartesian coordinates but
in any coordinate system. The difference is that in other coordinate systems, the mass matrix may
not be constantM(x, ẋ) and the Coriolis term fc(x, ẋ) may be nonzero. Additionally, the derivation
is not specialized to mechanical systems with quadratic kinetic energies, but also applies to more
general Lagrangians such as in electrodynamics or special relativity as explored in Cranmer et al.
[3].

C.2 3D systems derivation

Given an extended object with mass density ρ where the coordinates of points in the body frame y
are related to the coordinates in the inertial frame x by x = Ry + xcm, we can split up the kinetic
energy into a translational component depending on ẋcm and a rotational component depending on
Ṙ. The mass and center of mass of the object are given by m =

∫
dρ, xcm = (1/m)

∫
xdρ(x). The

kinetic energy of the body is then:

T = (1/2)

∫
ẋ>ẋdρ(x) = (1/2)

∫
(‖ẋcm‖2 + 2ẋ>cmṘyi + ‖Ṙyi‖2)dρ (17)

= (1/2)m‖ẋcm‖2 + (1/2)

∫
Tr(yy>Ṙ>Ṙ)dρ(y) (18)

= (1/2)m‖ẋcm‖2 + (1/2)mTr(ṘΣṘ>) = Ttrans + Trot (19)

where we have defined the matrix of second moments in the body frame Σ = E[yy>] =
1
m

∫
yy>dρ(y), the covariance matrix of the mass distribution, which is a constant. The middle

term in Equation 17 vanishes since E[y] = (1/m)
∫
ydρ(y) = 0. This decomposition is exactly

mirrors the usual decomposition into rotational energy Trot = ω>Iω but is written out differently to
avoid angles and specialization to 3D. In 3D, the angular velocity is ω = ∗(ṘR−1) where ∗ pulls out
the components above the diagonal, and the inertia matrix is related to Σ by I = m(Tr(Σ)I3×3−Σ).

Since the configuration space of a rigid body in d dimensions is SE(3), we can embed it in
a Cartesian space by choosing any d linearly independent points {yi}di=1 that are fixed in the
body frame and for convenience an additional point for the center of mass ycm = 0. We may
choose these vectors to lie along the principal axis of the object: yi = Qi from the eigen-
decomposition Σ = QΛQ>. Collecting these points expressed in the body frame into a ma-
trix X = [xcm,x1, . . . ,xd] ∈ Rd×(d+1), we can express the constraint relating the two frames
Ry = x− xcm as a linear system:

RQ = X

[
−1>
I

]
= X∆

R = X∆Q>

Ṙ = Ẋ∆Q>

for the matrix ∆ = [−1, I]>. Combining with Equation 17, the kinetic energy can be rewritten as

T = m‖ẋcm‖2/2 +mTr(Ẋ∆[Q>ΣQ]∆>Ẋ>)/2

T = mTr(Ẋ
[
e0e
>
0 + ∆Λ∆>

]
Ẋ>)/2,

where we have made use of Q>ΣQ = Q>QΛQ>Q = Λ. Or alternatively, we can choose the
coordinate system in the body frame so that Q = I . Defining Λ = diag(λ) we can collect terms
into a single matrix M :

T (X) = Tr(ẊMẊ>)/2 where M = m

[
1 +

∑
i λi −λ>

−λ diag(λ)

]
. (20)

15

Forces on extended bodies. Given a point with components c ∈ Rd in the body frame, the vector
xc in the inertial frame has components

xc = xcm +
∑

i

ci(xi − xcm) = X[e0 + ∆c] = Xc̃,

where c̃ = e0 + ∆c. Forces f ∈ Rd that are applied at that location yield generalized forces on the
point collection Fkα = fk c̃α for k = 1, 2, ..., d and α = 0, 1..., d (in the sense that the unconstrained
equations of motion would be F = ẌM). To see this, consider a potential that depends on the
location of a certain point xc of the rigid body V = V (xc) = V (Xc̃). Potentials depending on
the xc can be expressed by simply substituting Xc̃ in for xc in the form of the potential. The
(generalized) forces can then be derived via chain rule: Fkα =

∑
j
∂V (xc)
∂(xc)j

∂(xc)j
∂Xkα

= fk c̃α.

Rotational axis restrictions. Not all joints allow free rotation in all dimensions. Instead it may be
that a joint connecting bodies A,B can only rotate about a single axis u. In this case, the axis u is
fixed in the two frames, and is related by a fixed change of basis when expressed in the body frame
of A and the body frame of B. This setup gives the constraint Φ(XA, XB) = RAu

A − RBuB =
XA∆uA − XB∆uB = 0, since RA = XA∆, similar to the joint constraint but without the extra
e0.

D Implementation details

D.1 Dataset generation

We generate synthetically datasets using by plugging in known Hamiltonians from a variety of test
systems to the framework described above. For each experiment and each system in Figure 5,
Figure 7, Figure 8, and Figure 9, we create a training set by samplingNtrain = 800 initial conditions
and evaluate the dynamics at 100 timesteps separated by ∆t specific to the system. We integrate the
dynamics using an adaptive ODE solver, Runge-Kutta4(5), implemented by Chen et al. [1] with a
relative tolerance of 10−7 and an absolute tolerance of 10−9. We divide each trajectory into 20
non-overlapping chunks each with 5 timesteps. Finally, we choose a chunk at random from each
trajectory, resulting in an aggregate training set of Ntrain = 800 trajectories each with 4 timesteps.
At training time, we create a minibatch by sampling m = 200 of these shortened trajectories. We
also create a separate set of Ntest = 100 trajectories following the above procedure except that each
test trajectory contains the full 100 timesteps without chunking.

For the data-efficiency experiments in Figure 1 (Middle) and Figure 6, we generate N = 10000
training trajectories each with 4 timesteps following the same procedure as the previous paragraph.
We then choose the first Ntrain trajectories among these N trajectories as we vary Ntrain on the
x-axis. This ensure that the the sequence of training trajectories for each Ntrain is a sequence of
monotone increasing sets as Ntrain increases.

D.2 Architecture

For the baseline models which are trained on angular data, care must be taken to avoid discontinuities
in the training data. In particular, we unwrap (π − ε → −π + ε) to (−∞,∞) for the integration
and embed each angle θ into sin θ, cos θ before passing into the network as in Zhong et al. [20] and
Cranmer et al. [3], to improve generalization. For all neural networks, we use 3 hidden layers each
with 256 hidden units and tanh activations. We use this architecture to parametrize the potential
energy V for all models. We also use this architecture to parametrize the dynamics for the baseline
Neural ODE.

The kinetic energy term p>M(q)−1p/2 = q̇>M(q)q̇/2 is handled differently between our explic-
itly constrained models and the baselines. For the baseline HNNs and DeLaNs, we use the above
neural network to parameterize the lower triangular matrix L(q) from the Cholesky decomposition
L(q)L(q)> = M−1(q), as done in Lutter et al. [14] and Zhong et al. [20] since the mass matrix
in general is a function of q. For CHNNs and CLNNs we parameterize M and M−1 using learned
parameters m, {λi}di=1 as described in Equation 9 since M and M−1 are constant in Cartesian
coordinates.

16

D.3 Model selection and training details

We tune all models on the 3-Pendulum system, which is of intermediate difficulty, using the inte-
grated trajectory loss evaluated on a separate validation set of 100 trajectories. We find that using
AdamW [13] with a learning rate of 3 × 10−3 and weight decay of 10−4 along with learning rate
cosine annealing [12] without restarts generally works the best for all models across systems. To en-
sure convergence of all models, we train all models for 2000 epochs even though CHNN and CLNN
usually converge within a few hundred epochs. With the exception of the magnetic pendulum and
the rigid rotor, which require a lower learning rate and fewer epochs, we use these settings for all
experiments. Despite our best efforts to circumvent this issue, HNN and DeLaN encounter gimbal
lock for 3D systems due to their choice of angular coordinates, which causes the loss function to ex-
plode if trained for too long. Thus we could only train HNN and DeLaN for 200 epochs on the rigid
rotor, which was empirically sufficient to flatten the training loss. We circumvent the coordinate
singularity for these baseline models by rotating the coordinate system by π/2 so that the straight
up/straight down configurations do not correspond to a coordinate singularity.

D.4 Constraint Jacobians

Distance constraints For each of the position constraints Φij = ‖xi − xj‖2, there is a conjugate
constraint on the velocity:

φ̇ij = 2(xi − xj) · (ẋi − ẋj) = 0 (21)

Collecting the constraints: Φ = [φ, φ̇] and taking derivatives with respect to xk` and ẋk`, the Jaco-
bian matrix Dx,ẋΦ ∈ R2nd×2E takes the simple form:

(DΦ)(k`)(nm) =

[
∂φnm
∂xkl

∂φ̇nm
∂xkl

∂φnm
∂ẋkl

∂φ̇nm
∂ẋkl

]
=

[
2(xkn − xkm)(δn` − δm`) 2(ẋkn − ẋkm)(δn` − δm`)

0 2(xkn − xkm)(δn` − δm`)
]

In ẋ is related to p by ẋk` = ∂H
∂pk`

which in general could be a nonlinear function of x, p; however, in
mechanics ẋk` =

∑
n pknM

−1
`n or in matrix form Ẋ = PM−1. This allows relating the derivatives:

∂Φ
∂p n`

=
∑
nM

−1
`n

∂Φ
∂ẋ kn

. In matrix form: DpΦ = (I3×3 ⊗M−1)DẋΦ.

Joint constraints

For a joint constraint Φ(XA, XB) = XAc̃
A −XB c̃

B connecting bodies A and B, there is a similar
constraint on the velocities. The Jacobian matrix Dx,ẋΦ ∈ R2nd(d+1)×2d takes the form:

(DΦ)(kαn)(i) =

∂φij
∂xnkα

∂φ̇ij
∂xnkα

∂φij
∂ẋnkα

∂φ̇ij
∂ẋnkα

 =

[
c̃AαδkiδnA − c̃Bα δkiδnB 0

0 c̃AαδkiδnA − c̃Bα δkiδnB

]

for k, j = 1, .., d labeling dimensions, α = 0, ..., d labeling the extended coordinates, and n =
a, b, ... labeling the extended bodies. Similarly for the rotational axis restriction.

E Benchmark systems

Below we detail a series of more challenging synthetic physical systems to benchmark our approach
and the baselines. While the information of the Hamiltonian is withheld from our model, we detail
the true Hamiltonians below that can be used to generate the data. Even though the equations of
motion are very complex, the Hamiltonians in Cartesian coordinates are very simple, again demon-
strating why this approach simplifies the learning problem.

E.1 N -Pendulum

N point masses are connected in a chain with distance constraints (0,x1), (x1,x2), ..., (xN−1,xN)
and the Hamiltonian is just the contributions from the kinetic energy and gravity in 2 dimensions:

H =
∑

n

p>npn/2mn + gmnxn,2. (22)

17

E.2 N -Coupled pendulums

In this 3 dimensional system, N point masses are suspended in parallel and springs connect the
neighbors horizontally. The distance constraints are (v,x1), (2v,x2), (3v,x3), ..., (Nv,xN) where
v = [1, 0, 0]> is a horizontal translation (of the origin). The Hamiltonian is:

H =

N∑

n=1

(p>npn/2mn + gmnxn,2) +

N−1∑

n=1

1

2
k(‖xn − xn+1‖ − `0)2 (23)

where `0 = ‖v‖ = 1.

E.3 Magnetic pendulum

A magnet is suspended on a pendulum (in 3-dimensions) over a collection of magnets on the ground.
The pendulum chaotically bounces between the magnets before finally settling on one of them.

Each of the magnets are modeled as dipoles with moments mi ∈ R3. The Hamiltonian for the
system is

H(x, p) = p>p/2m−m0(x)>B(x) (24)

where
B(x) =

∑

i

L(x− ri)mi and L(r) =
µ0

4π‖r‖5 (3rr> − ‖r‖2I), (25)

m0(x) = −q x
‖x‖ , mi = qẑ for some magnet strength q. ri are the spatial arrangements of the

magnets placed on the plane. The constraints are just the distance constraint (0,x).

E.4 Gyroscope

Consider a spinning top that contacts the ground at a single point. To simplify the learning problem,
we choose the control points xi as unit vectors from the center of mass along the principle axes of
the top. The Hamiltonian for the system isH(x, p) = T +V = Tr(PM−1P>)/2+mgX30. where

M−1 =
1

m

1 1 1 1
1 1 + 1/λ1 1 1
1 1 1 + 1/λ2 1
1 1 1 1 + 1/λ3

 . (26)

Here we calculate the ground truth moments from the object mesh shown in Figure 4(d). In addition
to the rigid body constraints, we simply need to add a universal joint connected to the origin.

E.5 Rigid rotor

The Hamiltonian of this system in Cartesian coordinates is just the kinetic energy: H(X,P) =
Tr(PM−1P>)/2. Like for the Gyroscope, we compute the ground truth moments from the object
mesh shown in Figure 4(e).

F Simplicity of Cartesian coordinates

F.1 Gyroscope

The Hamiltonian of a gyroscope in Euler angles (φ, θ, ψ) is given by

H =
1

2
pTM(φ, θ, ψ)−1p+mg` cos θ (27)

where the matrix M can be derived by expanding out
∑
i Iiω2

i using the angular velocity

ω = [φ̇ sin θ sinψ + θ̇ cosψ, φ̇ sin θ cosψ − θ̇ sinψ, φ̇ cos θ + ψ̇]>

18

yielding the matrix

M =

sin2 θ(I1 sin2 ψ + I2 cos2 ψ) + cos2 θI3 (I1 − I2) sin θ sinψ cosψ I3 cos θ
(I1 − I2) sin θ sinψ cosψ I1 cos2 ψ + I2 sin2 ψ 0

I3 cos θ 0 I3

 . (28)

Meanwhile, the Hamiltonian in Cartesian coordinates is given by the simpler form H(x, p) = T +
V = Tr(PM−1P>)/2 +mgX30, where

M−1 =
1

m

1 1 1 1
1 1 + 1/λ1 1 1
1 1 1 + 1/λ2 1
1 1 1 1 + 1/λ3

 . (29)

F.2 N -Pendulum

Suppose we have N linked pendulums in two dimensions indexed from top to bottom with the top
pendulum as pendulum j. Each pendulum j has mass mj and is connected to pendulum j − 1 by a
rigid rod of length lj . Let positive y correspond to up and positive x correspond to right. Then

xj =

j∑

k=1

lk sin θk =

N∑

k=1

1[k≤j]lk sin θk

yj = −
j∑

k=1

lk cos θk = −
N∑

k=1

1[k≤j]lk cos θk

ẋj =

j∑

k=1

lkθ̇k cos θk =

N∑

k=1

1[k≤j]lkθ̇k cos θk

ẏj =

j∑

k=1

lkθ̇k sin θk =

N∑

k=1

1[k≤j]lkθ̇k sin θk

∂ẋj

∂θ̇i
= 1[i≤j]li cos θi

∂ẏj

∂θ̇i
= 1[i≤j]li sin θi

19

Then given that T =
∑N
j=1

1
2mj(ẋ

2
i + ẏ2

i), we have that

pi =
∂T

∂θ̇i

=

N∑

j=1

mj

(
ẋj
∂ẋj

∂θ̇i
+ ẏj

∂ẏj

∂θ̇i

)

=

N∑

j=1

mj

(
(

N∑

k=1

1[k≤j]lkθ̇k cos θk)(1[i≤j]li cos θi) + (

N∑

k=1

1[k≤j]lkθ̇k sin θk)(1[i≤j]li sin θi)

)

=

N∑

j=1

mj1[i≤j]

(
N∑

k=1

1[k≤j]lkli(cos θk cos θi + sin θk sin θi)θ̇k

)

=

N∑

j=1

N∑

k=1

mj1[k≤j]1[i≤j]lilk cos(θi − θk)θ̇k

=

N∑

k=1

N∑

j=1

mj1[k≤j]1[i≤j]lilk cos(θi − θk)θ̇k

=

N∑

k=1

lilk cos(θi − θk)

N∑

j=1

mj1[k≤j]1[i≤j]

 θ̇k

=

N∑

k=1

lilk cos(θi − θk)

N∑

j=max(i,k)

mj

 θ̇k

where we made use of the fact that cos θk cos θi + sin θk sin θi = cos(θi− θk). To obtain the entries
of the mass matrix, we match the above equation to for pi with the expected form

pi =

N∑

k=1

Mikθ̇k

which gives

Mik = lilk cos(θi − θk)

N∑

j=max(i,k)

mj .

Equations of motion for the N -Pendulum. For the N = 2 case, the equations of motion in
generalized coordinates are

q̇1 =
`2p1 − `1p2 cos(q1 − q2)

`21`2(m1 +m2 sin2(q1 − q2))
q̇2 =

−m2`2p1 cos(q1 − q2) + (m1 +m2)`1p2

m2`1`22(m1 +m2 sin2(q1 − q2))

ṗ1 = −(m1 +m2)g`1 sin θ1 − C1 + C2 ṗ2 = −m2g`2 sin q2 + C1 − C2

where

C1 =
p1p2 sin(q1 − q2)

`1`2(m1 +m2 sin2(q1 − q2))
C2 =

m2`
2
2p

2
1 + (m1 +m2)`21p

2
2 − 2m2`1`2p1p2 cos(q1 − q2)

2`21`
2
2(m1 +m2 sin2(q1 − q2))2/ sin(2(q1 − q2))

.

For N = 3, the equations of motion would stretch over a full page.

On the other hand the equations of motion in Cartesian coordinates are described simply by

ẋi,1 =
pi,1
mi

ẋi,2 =
pi,2
mi

ṗi,1 = 0 ṗi,2 = gmi

which maintain the same functional form irrespective of N .

20

	Appendices
	Overview
	Additional results
	Energy Conservation
	Relative error in linear scale
	Removed constraints and constraint violation.
	Effective Dimension

	Supporting derivations
	Constrained Hamiltonian and Lagrangian Mechanics
	3D systems derivation

	Implementation details
	Dataset generation
	Architecture
	Model selection and training details
	Constraint Jacobians

	Benchmark systems
	N-Pendulum
	N-Coupled pendulums
	Magnetic pendulum
	Gyroscope
	Rigid rotor

	Simplicity of Cartesian coordinates
	Gyroscope
	N-Pendulum

