We have cited published version of ref. [A1] in Section 5; on careful reading of ref. [A1], we found that trace class
as a consequence of these facts, we can only resort to an empirical cross-validation approach which we have used in
our experiments to ensure that the stabilizer of problem (4) is not far away from B_{KC}. (3) In contrast to scalar-valued indefinite kernels which arise
naturally in many scenarios, we are not aware of natural occurrences of operator valued kernels (both positive and
indefinite) in existing literature. Hence we motivate the use of generalized operator valued kernels from a function
estimation and learning methodology viewpoint, which allows us to relax the requirement of positive definite kernels in
learning function-valued functions. However, we will strive to improve the motivation.

Reviewer 2: Thank you for your encouraging comments. We will refine the references and include other related works.

Reviewer 3: Thank you for your inquisitive comments. Our replies follow. (1) Lemma 2.2 and 2.3 presented in our
paper are for function-valued RKHS and $L(Y)$-valued kernels, whereas the similar lemmas in [Alpay (1991)] are for
$C^\infty \times C^\infty$-valued kernels. Though our results are extensions of similar results in [Alpay (1991)], we point to the important
differences here. In the proof of Lemma 2.2, we require the results in [Carmeli et al. (2006)] and [Carmeli et al. (2010)] to prove that \mathcal{H} is a function-valued RKHS, which are not required in Alpay’s proof. In deriving Corollary 2.3.1 using
Lemma 2.2 and Lemma 2.3 we needed to establish arguments for operator valued kernels which were not obvious based
on the arguments in [Alpay (1991)]. (2) The derivation of representer theorem in our case requires using the definition of
generalized operator-valued kernel (in Section 2) to obtain Equations (24), (25) and (26) in Appendix E which yield the
required representer theorem in our setting. Our derivation in our case uses Gateaux derivative with variational function
approach to obtain necessary condition for stationary points for the stabilization problem (4), whereas the result in [Ong
et al. (2004)] uses subdifferential with respect to a vector $[f(x_1), \ldots, f(x_m)]^\top$ to obtain the representer theorem. (3)
However, the bound on Rademacher average in Section 5 is a natural extension of the result in [Maurer (2016)]. (4)
We have cited published version of ref. [A1] in Section 5; on careful reading of ref. [A1], we found that trace class
condition (Assumption 5.1) is used in [A1] as well. (5) The results for each dataset are provided for a single test dataset.
More replications might be needed to infer statistical significance of our results, which we can add. (6) Thank you for
the additional references. In contrast to scalar-valued indefinite kernels which arise naturally in many scenarios, we are
not aware of natural occurrences of operator valued kernels (positive and indefinite) in existing literature. Hence we
motivate the use of generalized operator valued kernels from a function estimation and learning methodology viewpoint,
which allows us to relax the requirement of positive definite kernels in learning function-valued functions. However, we
will strive to improve the motivation.

Reviewer 4: Thank you for your enlightening comments. Our replies follow. (1) Our stabilization problem (4) in
Section 3, inspired from [Ong et al. (2004)] helps in deriving the result in Representer Theorem 3.1. On the other hand, when the stabilizer F_{λ} from Eq. (4) belongs to the ball B_{KC} of fixed radius r (defined in Section 5 with $r = 1$), it enjoys the generalization
bounds in Eq. (8). At least to us it is not very clear how the stabilizer behaves when it does not belong to B_{KC}. One might suppose that the formulation similar to [Oglic and Gärtner (2018)] can be used here. However, adapting the minimization
problem formulation in [Oglic and Gärtner (2018)] would lead to integral variance constraints in our case. Further, using
a Gateaux derivative approach for the constrained or unconstrained minimization problem similar to that in [Oglic and
Gärtner (2018)], leads to difficulties in obtaining the Representer Theorem 3.1 in our paper. As a consequence of these
facts, we can only resort to an empirical cross-validation approach which we have used in our experiments to ensure
that the stabilizer of problem (4) is not far away from B_{KC}. (2) We will correct the typos.

References