Promoting Stochasticity for Expressive Policies via
a Simple and Efficient Regularization Method

(Supplemental Material)

A Proof for Section

A.1 Proof for Theorems in Section 3.2]

In this part, we show the relationship between Q},, 7%, and Qg:. Specifically, we show that under

assumption[T]and 2]

1. the optimal Q-function Q}, := sup,. <y @, is Lipschitz continuous on A;

* .

2. the optimal policy 77, exists, i.e., 377 € I s.t. Qa* = QF;

3. the relationship between 7, and Q7 is

7. (+]s) = argmaxE,q [Q4 (s, a)] + aF(q).
geA

Lemma 1. Under assumption|l| the set A is weakly compact.
Proof. Denote
P(A) := all Borel probability measures on .4,

where A is the compact action space. Then it comes from Theorem 9.4 in [[50] that P(A) is weakly
compact. By assumption A is a weakly closed subset of P(.A), so A is also weakly compact. [

Lemma 2. Under assumption|l| if the regularized Q-function Q. (s, a) is continuous on the action
space A, then the optimization problem

max Jy(q) := max (Eqnq[Qa(s, a)] + o (Eang [f(a)] + Ea,arng [9(a, a)])) (11)
geEA qeEA
always admits an optimal solution for all state s € S, where f, g are defined in Equation (3.

Proof. As QQ,, f, g are all bounded, we have

ax .J, < 4o00.
max s(q) 00

Then we can find a sequence (¢;)52,¢; € A s.t.

lim J,(g;) = sup Ju(q).
i——+00 geEA

By Lemmal(l} A is weakly compact, so we can find a subsequence (g, );";1 that weakly converges to
some ¢°° € A. Then by Theorem 2.8 in [5]], we have

Gi; X qi; = 47 X q%.
As @, f are both continuous on A and g is continuous on A x 4, we obtain

Js(q ) = ]EIJ’I}OO Js(qzj) - 21612 Js(q)a

which means that ¢° is an optimal solution to max,ea J5(q). O

Lemma 3. Under Assumption the optimal Q-function Q}, := sup,.c; @, is L-Lipschitz continu-
ous on A forall s € S.
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Proof.

|QZ(S,G1) - QZ(Saa2)| = | sup Qg(sval) — sup Qg(saa2)|

well mell
< sup |Qg (s, a1) — Qg (s, a2)|
well

< L|lay — az||z.

Thus, @, is Lipschitz continuous on A with Lipschitz constant L.

Theorem 1. Under Assumption |Z|and |Z| the optimal policy m}, must exist and satisfy the following

condition for all states:

To(s) = argmax Eqnq [QF (5, a)] + aF(q).
geEA

Proof. By Lemma@ we have that ()7, is Lipschitz continuous. Then by Lemma |Z| there must exist

some policy 7, s.t.

75 (-]s) = argEIrAlax (EanglQrh(s,a)] + @ (F(q))), Vs €S.

Then we have
Qa(s,a) = max Q3 (s, a)

= T(57 CL) + ’YES"VP(-\s,a) meal—}I{ VJ(S):l

=7r(s,a) + YEyp(|s,a) | Max (EQINQ[mgﬁ( Qr(s',a")] + a]-'(q))]

_qEA

= (5, 0) 4 9By 105 B[ Q1 ' )]+ 07(0)|

*

= Qa%(s,a), V(s,a) € S x A.

Hence 77, is the optimal policy of the regularized RL problem.

A.2 Proof for Theorems in Section

In this part, we prove all the theorems in Section @for dg.

=1(5,a) + YEsup(ls,0) [Earmmz (1s) [@n (8, a")] + aF (77 (-]s'))]

Theorem 2. Assume that any distribution ¢ € A is a product of its margin distributions. Then J¢ is

a distance metric on the set of probability measures A.
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where the third equation comes from that ¢, u are both products of their own margin distributions.

Previous work [3]] has shown that d([g];, [u];) is a metric on [A]; forall ¢ = 1,2,--- ,n. Thus,
1

dy(q,u) = (Z?zl di([q]i, [u]l)) ® is also a metric on A. O

Theorem 3. Assume the uniform distribution v € A. If F(q) = —di(q, u), then 7k (-|s) o, u for
all states when o — 0.

Proof. By Theorem|[I] we have
Vo (5) = Eanmy (19)|Qa(s, 0)] — adg(m5(-]s), v).

Define 7y, : 7y, (+|s) = u. Then we have

0<

2[|@Q7 oo .
< A9l _ g2 (r 15), ).
As @} is bounded, when oo — oo, we have

. 2[|Qalloo

. d
which means 77 (-|s) —= w for all states. O

Theorem 4. Suppose the action space A is convex and the set A contains all Borel probability
measures on A. Under Assumption 2| if we use the regularizer F(q) = —di(q, u) and choose

function ¢ such that lim,_,o+ 2c/x¢’(z) > L, then % (-|s) will never be a Dirac delta distribution.

Proof. Suppose that |.A| > 1. (Otherwise the problem is trivial.) Suppose b € A is an arbitrary
0, b¢4 isa
1, be A
Dirac delta distribution on A, and ¢; = % (0p + Jp, ) is a Dirac mixture distribution on A.

action. Choose another action b; € A such that ||b — b;||2 = ¢ > 0. Then §,(A) = {
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To prove that 7% (-|s) will never be a Dirac delta distribution for any state s, we only need to prove
Vbe A, 3b € A st J(q) > Jo(6),

where J5(¢) = Eqng[QL (s, )| +a (Equg [f(a)] + Eq o ~g [9(a, a')]) is the regularized RL objective
at state s and ¢, is defined above.

Define

f(@) == =2Ey o]z — yl13)],
9(z,y) = (= — yl3),

AQ(t) = + (Bumgs [Q4(5,0)] — B, [QL(5,a)])
(Ea~qt [f(a)} —Ea~s, [f(a)]) ,

Ay(t) = n (Eq,ar~q. 9(a, a')] — Eq,a~6,[9(a, al),

[l N I ey

then we have

J(q) = () = 1 (Aq(t) + a (Af(t) + Ay (1)) -

For Ag: by Lemmawe have @7, is Lipschitz, hence

Aq(t) = 5 (Qa(sb) — Q45.)
L
> =,
- 2
For Ay: we have
Asl) = - (f(b) — FB)).

Note that f(x) is continuous differentiable on .A. We discuss the value of Af(t) in three conditions.

1. If Vf(b) = 0, then we have Af(t) = @ ie., tlir& A(t) =0.
2. If Vf(b) # 0and b € int(A), then let by = b + t%, we have A¢(t) > 0 for small
enough ¢.

3. If Vf(b) # 0 and b € bdry(.A), then we can find some b; s.t. V£ T (b)(b; —b) > 0. To prove
this, suppose Vf T (b)(a —b) < 0 forall a € A. Then define b, = b+ eV f(b) (€ > 0), with
small enough €, we have f(b.) > f(b). However, as ||be — a|l2 > ||b — a||2 forall a € A,
we have f(b.) < f(b) for all e > 0 by the definition of f, which results in a contradiction.
Thus, we can find some b; s.t. V£ (b)(b; — b) > 0, and so we have lim, o+ As(t) > 0.

Thus, Ve > 0, we can always find some b; and 61 s.t. VO < ¢ < 61 we have Ay (t) > —e.

For A: note that ¢’ is continuous and lim, o+ 2c\/z¢’ () > L, then for small enough ¢, we have
1
Ap(t) = o (9(b,be) — 6(0))

_ 1() = 6(0)
2 t

=e¢/(¢") (e €(0,1))

-
2a°
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Therefore, we can always find some direction (b; — b) and some 6 > 0 s.t. forall 0 < ¢t < 4, we have
J(gr) — J () =t (Aq(t) + a (Af(t) + Ag(t)))

>t <_§ +a(Af(t) — e)>

1 (g T (2La)>

= 0’
which means d, can never be the optimal policy at state s. Thus, the optimal policy 7% (+|s) at any
state s € S will never be a Dirac distribution. O

Lemma 4. Assume the regularization function F maps A to a closed interval [Lx,Uz|. Then for
any policy m € 11, we have

UJ—‘

Lr
VT +a <VI<V™+a
1—7 1-—

S():S‘|

+aE, lz Y F (m(+s¢))

50281.

Proof. According to the definition of V7 (s), we have

Zv (50, 1)+ oF (x(]s.)))
Z'ytr(st,at)
ZV F(m \St

As Ly < F(m(-|s)) < Ur for all state s, we have

Sgo = S§

0]

=V"(s) 4+ o,

1 o0
1fL}- E, Z’yth So = s]
<E, Z'yt}' (|st))| so = 31
<E, Z'thJ: So = S‘|
L t=
1
Thus, we obtain
V(s)—i—al <VI(s) <VT7(s)+ 17 VseS.
— _

O

Theorem 5. Assume that the optimal policy 7}, exists and the action space satisfies diam(A) < U.
If we use the regularizer F(q) = —di(q7 u), then we have

12_a,y <¢(U2) - ¢)(0)) < V™ <V (13)

*

Proof. The right side of the inequality is obvious, as 7* is the optimal policy of the original problem.
For the left side, by Lemmad] we have
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Hence we obtain

V< O:T*_ Lr
l—n
< Ve — Lif
< -~
x L U
<V™—a—L 4 z
1—7~ 1—7v

The second inequality follows from that 7, is the optimal policy of the regularized problem. Define
9(x) = —Eanu[d(z, a)];
then g(x) is continuous on A, where A is a compact set. Let

ap = argmin g(z),
T

then we have
*di((gaoau) S ‘F(q) S —di(u,u) =0.
Note that

—d2 80y, 1) = Eq,arns,, [0(la = @ [[3)] + Earmu[d([la = a'][3)] = 2Eans,, armuld(lla = a[|3)]
= ¢(0) + Eqw~uld(lla — d'[3)] = 2Ea~ulé(la — aol[3)]
> 2 (¢(0) — ¢(U?)).
Thus, we obtain
2a
L=n

*

(6(U?) — ¢(0)) < V™ < V™.

A.3 Results for J¢,

In this part, we provide similar results for d,. The proofs for these results are similar to that for d.
All results are under the assumptions

1. the action space A is a product space, i.e., 4 = A; X Ay x -+ x Ay;

2. any distribution ¢ € A is a product of its margin distributions, i.e., ¢ = [g]1 X [g]2 X - - X [q]n,
where [¢]; is the marginal distribution of ¢ on A4;.

Theorem 6. Assume the uniform distribution uw € A. If F(q) = —Jg(q, u), then 75 (-|s) Lo, u for
all states when o — 0.

Theorem 7. Suppose the action space A is comvex and A = {q = [q]1 X [g]2 X -+ X
[q] | [q]i is a Borel probability measure on A;} . Under Assumption 2| if we use the regularizer
F(q) = fdi(q, u) and choose function ¢ such that lim,_,o+ 2a\/xd’ (x) > L, then the optimal
policy distribution 7, (|s) for any state s € S will never be a Dirac delta distribution.

Theorem 8. Assume that the optimal policy 75 exists and the action space satisfies diam(A;) < U
fori=1,2,--- n.Ifwe use the regularizer F(q) = —di(q, w), then we have

2no
1—y

*

(6(U?) = ¢(0)) < V7™ < V™, (14)

A.4 Policy Iteration for Regularized RL

In this section, we show the convergence of policy iteration for Regularized RL. All results in this
section are under the Assumption [T]and
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Lemma 5. The regularized Bellman operator and the regularized optimal Bellman operator are
respectively defined by

(EWQ) (37 a) = T(S, a) + fYEs’NP(~|s,a) [(V;TQ) (SI)} ) (15)
(T2 Q) (s,a) :=7r(s,a) + VEonp(|s,a) [81613 (V2Q) (s’)} ; (16)
where (VEQ) () = By [Q(s' )] + aF (15, a7

Then both 1T and T are contraction operators.

Proof. Let (1, Q2 be two regularized Q-functions, then
|7:Q1(87 a) - 7;*622(57 a’)‘

r(600) 4 (Buerreay 300 05Q0) ()] ) = 5:0) =7 (Earmron |sup (7202 )] ) '

=7

Egnp(.|s,a) {SUE (Va@Q1 —ViQ2) (5/)] ‘
TE

< AEyp( ey | sup [(VIQL = VI Q) <s’>|}

Lrell

=7Ey~p(s,0) sup ([Earng [Q1(5",a") — Qa(s, a/)]l)]
Lqe

S ’YES’NPHS,a) sup (Ea’Nq [|Q1(sla al) - QQ(S/a a/)l]):|
LgeA

< (s S0 (B ]G — Q2||oo1>]
S

=[Q1 — Q2]|,
and
T3 Q1(s,a) — Ty Q2(s, a)
= [r(s,0) + 7 (Bsmp(s,a) [(VEQ1) (51)]) = 7(s,0) =7 (Ewmp(s.a) [(VAQ2) ()]
=7 |Egap(is,a) [(VEQ1 — VIQ2) (s)]]|
<AEwnp(lsa) [[(VaQr = V5Q2) ()]
=Eg~p(is,a) [(|Barmrs [Q1(s',a") — Qa(s',a")]])]
<VEgnp(ls,a) [(Bamn(ls) 1Q1(8,a') = Qa(s', a')])]
<AEgap(s,a) [(Barmr(1sn [1Q1 — Q2llo0])]
=7Q1 — Q2llcos

Thus, we have

|75 Q1 — T3 Qalloc <V[1Q1 — Q2]loo and |77 Q1 — T Q2o < 7I|Q1 — Q2[oo,
which means both 77 and 7. are contraction mappings. O
Lemma 6. Suppose 7,y € 1l. Let

Tnew(:]8) = argmax E, ., [Q2(s,a)] + aF(q), Vs € S. (18)
geEA

Then we have Q7 > T Qo > (Qrod,

Proof. First we prove that Q7r > Q7o4. As

Ea"’ﬂ'new("s) [qum(sv a)] + aF (Toew(+]5)) > Ea""ﬂ'old [de (s, a)] + Oéf(ﬁold('|5))
= Vo™ (s),
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we have
ngd(sv a) = T(Sv a) + fy]Es’NPHs,a) [V(;Tow(s)]
< 7(s,0) + VEy o p(s,0) [Eanme (15) Qe (55 0)] + F (Tnew (+]5))]

A

< Q™ (s,0).
Thus, we have Q7 > Q7. Now we start to prove that Q7 > T *Qnod > QTod,

For the latter inequality, we have

TaQz(5.0)

r(s,a) +7 (ES’NP('S7a) [Sug (Earng Q1 (5", a)] + cvf(ﬂow(-IS’)))])
qe
7’(8, a) + vy (ES’NPHS,(I) []:E(LINW\)M("S/) [ngm(s/7 a‘/)] + QI(WOM('|S/))D
= QM (s,a), ¥ (s,a) € S x A.
For the former inequality, we have
anew(s7 (l) = T(S, CL) + (Es/wP(-\s,a) [Ea’wwncw(-|s’)[anew(s/ﬂ a’/)] + a]—"(wnew(~|s/))])
> 7(5,0) + 7 (Egmp([5,0) (B (51 @07 (5", @")] + @F (Tnew (-]5"))])
= 5:0) + (Bt 500 (Burmg Q3450 + 070
qe

= anold(s,a), V(s,a) cS x A.
Thus, we have anew > ﬁngm > qum. 0

Y

Lemma 7. Q,, is the optimal Q-function of the regularized RL if and only if Q) satisfies the Bellman
optimality condition. That is,

Qoz = sup QZ < Qa = 7::Qo¢~ (19)
mell

Proof. Suppose Qo = sup,cr @n. By Lemma@, we have
7o Qals,a) = Qals, a).
By T heorem there must exist some policy 7, € IT s.t. ng? = Q. Then
T: Quls. ) = TQT (5.0) < Q3 (5.0) < sup QF(s,0) = Qu(s,0),

where the first inequality comes from Lemmal6] Thus, we have 77 Qa(s,a) = Qa (s, a).
Note that 7_F is a contraction mapping, so the solution to ¢ = 7. is unique. Thus, we have
Qo =sup Qy & Qo =T Qa-
mell
O
Lemma 8 (Policy Evaluation). Let Q% : S x A — R be an arbitrary bounded function. For any
policy € 11, define Q¥+ .= TTQF. Then we have ||QT — Q% ||oo < V*||QT — Q|| co-

Proof. According to the definition of ()7, we have
T3 Qo = Qq-
That is, Q)7 is the fixed point of 7. Hence
1% — Qallee = 177Q% — Tor Q& oo
< ’YHQZ - Qlccy_lnoc
<M1QE — Qalle-

19



Theorem 9 (Policy Iteration). Suppose my € II, and a sequence of policies (my,)72 , is obtained by
repeatedly updating the policy via Equation . Then we have ||Q, — Q7" |00 < Y*(|Q% — Q|| so-
Proof. By Lemma[6]and Lemma[7] we have

1Qn — QaF oo < [1Q5 — Ta QG oo
= [[TaQa — Ta Qe oo
<QL — Q3o
< ...

<MQa — Q3o

B Details of Algorithm Implementation and Experiment Settings

B.1 Regularization Term
Here we provide details of our regularizers used in this paper, including Gini mean difference (GMD),

generalized energy distance (GED) , and internal energy (IE).

Table 5: Expressions of f, g for our regularizers. In this table, [§]; denotes |[a]; — [a'];], [b]; denotes
1+ [a]; and [¢]; denotes 1 — [a];. In practice, we impose a small € > 0 on [0];, [b]; and [c];

Flg) ¢(z) f(a) 9(a,d’)
GMD 05 - > i [0);
GED 205 2% ([a]2+1) > 10)i
205 a5 ([ + [e]) 2ot VL
logz =23 ([c]ilog[cli — [b]; log[bl:) -, log[d]?
IE 2025 . >ic1 V10)i

B.2 Policy Networks

Here, we introduce the policy architectures used in the Section[5] For each policy architecture, we
apply the function tanh to the outputs since the action spaces are bounded in [—1, 1]™.

Squashed Gaussian (SG) We use the same policy architecture as that used in SAC [20]. The
actions are sampled from a Gaussian whose means and covariances are given by a neural network.

Noisy network (NN) The policy is represented by a neural network [[11] with parametric noise
added to its weights. In our experiments, we use the factorised Gaussian noise. We refer the interested
readers to the paper [[L1] for more details.

Dirac mixtures (DM) Each dimension of the action is randomly selected from 32 possible values
with equal probability. Therefore, for each state, the network outputs a vector with 32 x n dimensions.
Moreover, each dimension of action is independent of other dimensions.

Generator Model (GM) The policy is represented by a neural network with noise added to its last
layer. Moreover, all dimensions of the actions are also sampled independently.

Normalizing flow (NF) We use the same policy architecture as that used in SAC-NF [28]. We use
the radial [38]] flows since it achieves better performance than planar [38] and IAF flows.

B.3 Details of Experiment Settings and Hyperparameters
Reproducing the Baselines We list the implementations of our baselines, including soft actor-critic

(SAC), twin delayed deep deterministic policy gradient algorithm (TD3), and deep deterministic
policy gradient (DDPG).
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SAC We use the pyTorch implementation of SAC in https://github.com/vitchyr/rlkit,
which is recommended by the authors of SAC.

TD3 We use the up-to-date code from the authors’ git repository https://github.com/
sfujim/TD3. The authors have tuned the hyperparameters several times after releasing the
code and thus the current version is much stronger than the one used in their paper [12].

DDPG We use the pyTorch implementation of DDPG in https://github.com/vitchyr/rlkit.
Hyperparameters We use the same hyperparameter as that of SAC [20] if possible. Table []lists

the common ACED parameters used in the comparative evaluation and abalation study.

Table 6: Shared parameters used in all experiments.Here, (0, 0.091) denotes a Gaussian distribution
with mean 0 and covariance matrix 0.091.

Parameter Value

optimizer Adam [23]]

learning rate 3-1074

discount () 0.99

replay buffer size 108

number of hidden layers 2 (1 for NF policies)

number of hidden units per layer 256
number of samples per minibatch 256

nonlinearity ReLU

target smoothing coefficient 0.005

target update interval 1

sample number 32

target valur (T) F(N(0,0.091))

Evaluation policies As with SAC, we use a deterministic policy for evaluation. Except DM policy,
all policy can be regard as h(s, &) where & is sampled from a standard normal distribution. For
these networks, the corresponding evaluation policy is represented by A(s, 0). For DM policy, the
deterministic policy outputs the mean of actions. We provide the performance comparison between
the stochastic policy and evaluation policy in the next section.

C Additional Experimental Results

C.1 Evaluation policy

We provide comparison between the stochastic policies and the evaluation policies. The results in
Figure 4] show that using evaluation policies results in a higher return.

C.2 Discussion on performance

ACED (power-0.25) outperforms SAC even with SG policies (same as that used in SAC). To
understand how the performance difference comes, we analyze the stochasticity of learned policies.
For each policy, we sample 20000 states and estimate the entropies of policy distributions at these
states. Figure[3]is the histogram of these entropies. This histogram shows that our regularization
power-0.25 leads to higher variability of entropies compared to SAC.

C.3 Performance Comparison for Normalizing FLow Policies
We compare ACED and SAC with normalizing flow policies. We use authors’ implementation of

SAC-NF [28] in this Section. Results in Figure[6]show that ACED achieves comparable performance
with SAC. Moreover, ACED is more efficient that SAC (shown in Table [4)) when using NF policies.
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Figure 4: Comparison between the stochastic policies of ACED and the evaluation policies.
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Figure 5: Comparison of stochasticity between ACED and SAC. We use this histogram to show
distribution of entropies.

C.4 Examples in Multi-Goal Environments

We use the similar example as in soft Q-learning to show that ACED can learn multi-modal
distributions. Figure[7]illustrates the 2D multi-goal environments and the learned policy. The left
shows the reward functions and the trajectories from a policy learned with ACED. The right shows
the Q-values and the sampled actions at state (0, 0).
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Figure 6: Comparison of performance between ACED and SAC (with normalizing flow policies). We
run each experiments with three different random seeds.

(a) Sample number (b) Policy architecture

Figure 7: Learned policy with ACED. The left illustrates the trajectories from the learned policy.
The right shows the sampled actions at state (0,0). Results show that ACED can learn a policy
that captures multiple goals. Moreover, the right picture shows the our regularization can lead to
multimodal behaviors.

C.5 Comparison Between d,;, and d,;

We compare the regularization defined by d4 with the regularization defined by J¢ (see Figure .
We approximate the function f in the regularization di by sampling from the uniform distribution .
The reason why the regularization di does not work is that sampling from the uniform distribution
introduces large variance of the estimated gradient.
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Figure 8: Comparison between the regularization defined by dy with the regularization defined by J¢.

C.6 Sensitivity Analysis

ACED is insensitive to the sample number N and the target value 7. The sensitivity analysis for N
can be found in Section[5.3]and Appendix[C.9] Figure[9]shows the sensitivity analysis for 7'. Here,
we set T as F(N(0, MI)), where A/(0, AI) is a Gaussian distribution with the covariance matrix AL
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Figure 9: Sensitivity analysis for target value 7.
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Table 7: Comparison between ACED and SAC. Both algorithms use ensemble Gaussian policy whose
ensemble size is 5. We record the best performance during the first 1.0 million steps.

Algorithm  ACED (IV = 2) SAC
Time (h) 7.06 £ 0.30 10.96 +1.34
Performance 4697 4+ 1140 3641 + 917

C.7 Comparison with Generative Actor Critic (GAC)

We compare ACED with GAC [48]] in HalfCheetah-v2 task. GAC also does not limit the representation
of the policy. Figure[T0]shows that our method outperforms GAC. We note that GAC is expensive in
computation. GAC takes more than 65A to train the policy with about 1.0 million steps, while ACED

takes less than 8h.
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Figure 10: Comparison of performance between ACED and GAC in HalfCheetah-v2.
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C.8 Comparison between ACED and SAC in Efficiency

To show the improved efficiency of ACED, we evaluate ACED (N = 2) against SAC with an
ensemble of policies in HalfCHeetah-v2 task. The ensemble size is 5, and each policy outputs a
Gaussian distribution. Experiments [/|show runing ACED with 1 million samples costs about 7 hours
while runing SAC costs about 11 hours. The core reason is that ACED does not need to compute
probability density, which requires the forward prediction of all networks.

C.9 More Results for Ablation Study
We provide additional results (Figure[TT] [I2and[I3)) as a supplement to Section[5.3] The results in Ant-

v2 tasks further support our conclusions in Section In Humanoid-v2 task, Using regularization
does not lead to significant performance improvements.
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Figure 11: Performance of ACED when sample number N varies.
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Figure 12: Performance of ACED with different policy architectures.
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Figure 13: Performance of ACED with different regularizers.
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