
Promoting Stochasticity for Expressive Policies via
a Simple and Efficient Regularization Method

(Supplemental Material)

A Proof for Section 3

A.1 Proof for Theorems in Section 3.2

In this part, we show the relationship between Q∗α, π
∗
α, and Qπ

∗
α
α . Specifically, we show that under

assumption 1 and 2

1. the optimal Q-function Q∗α := supπ∈ΠQ
π
α is Lipschitz continuous on A;

2. the optimal policy π∗α exists, i.e., ∃π∗α ∈ Π s.t. Qπ
∗
α
α = Q∗α;

3. the relationship between π∗α and Q∗α is

π∗α(·|s) = arg max
q∈∆

Ea∼q [Q∗α(s, a)] + αF(q).

Lemma 1. Under assumption 1, the set ∆ is weakly compact.

Proof. Denote

P(A) := all Borel probability measures on A,
where A is the compact action space. Then it comes from Theorem 9.4 in [50] that P(A) is weakly
compact. By assumption 1, ∆ is a weakly closed subset of P(A), so ∆ is also weakly compact.

Lemma 2. Under assumption 1, if the regularized Q-function Qα(s, a) is continuous on the action
space A, then the optimization problem

max
q∈∆

Js(q) := max
q∈∆

(Ea∼q[Qα(s, a)] + α (Ea∼q [f(a)] + Ea,a′∼q [g(a, a′)])) (11)

always admits an optimal solution for all state s ∈ S, where f, g are defined in Equation (3).

Proof. As Qα, f, g are all bounded, we have

max
q∈∆

Js(q) < +∞.

Then we can find a sequence (qi)
∞
i=1, qi ∈ ∆ s.t.

lim
i→+∞

Js(qi) = sup
q∈∆

Js(q).

By Lemma 1, ∆ is weakly compact, so we can find a subsequence (qij)
∞
j=1 that weakly converges to

some q∞ ∈ ∆. Then by Theorem 2.8 in [5], we have

qij × qij ⇒ q∞ × q∞.
As Qα, f are both continuous on A and g is continuous on A×A, we obtain

Js(q
∞) = lim

j→+∞
Js(qij) = sup

q∈∆
Js(q),

which means that q∞ is an optimal solution to maxq∈∆ Js(q).

Lemma 3. Under Assumption 2, the optimal Q-function Q∗α := supπ∈ΠQ
π
α is L-Lipschitz continu-

ous on A for all s ∈ S.

12

Proof.

|Q∗α(s, a1)−Q∗α(s, a2)| = | sup
π∈Π

Qπα(s, a1)− sup
π∈Π

Qπα(s, a2)|

≤ sup
π∈Π
|Qπα(s, a1)−Qπα(s, a2)|

≤ L‖a1 − a2‖2.

Thus, Q∗α is Lipschitz continuous on A with Lipschitz constant L.

Theorem 1. Under Assumption 1 and 2, the optimal policy π∗α must exist and satisfy the following
condition for all states:

π∗α(·|s) = arg max
q∈∆

Ea∼q [Q∗α(s, a)] + αF(q). (12)

Proof. By Lemma 3 we have that Q∗α is Lipschitz continuous. Then by Lemma 2 there must exist
some policy π∗α s.t.

π∗α(·|s) = arg max
q∈∆

(Ea∼q[Q∗α(s, a)] + α (F(q))) , ∀ s ∈ S.

Then we have

Q∗α(s, a) = max
π∈Π

Qπα(s, a)

= r(s, a) + γEs′∼P (·|s,a)

[
max
π∈Π

V πα (s)

]
= r(s, a) + γEs′∼P (·|s,a)

[
max
q∈∆

(
Ea′∼q[max

π∈Π
Qπα(s′, a′)] + αF(q)

)]
= r(s, a) + γEs′∼P (·|s,a)

[
max
q∈∆

(Ea′∼q[Q∗α(s′, a′)] + αF(q))

]
= r(s, a) + γEs′∼P (·|s,a)

[
Ea′∼π∗α(·|s′) [Q∗α (s′, a′)] + αF (π∗ (·|s′))

]
= · · ·
= Q

π∗α
α (s, a), ∀ (s, a) ∈ S ×A.

Hence π∗α is the optimal policy of the regularized RL problem.

A.2 Proof for Theorems in Section 3.3

In this part, we prove all the theorems in Section 3.3 for dφ.

Theorem 2. Assume that any distribution q ∈ ∆ is a product of its margin distributions. Then d̃φ is
a distance metric on the set of probability measures ∆.

13

Proof.

d̃2
φ(q, u) =2Ea∼q,a′∼u[

n∑
i=1

φ
(

([a]i − [a′]i)
2
)

]

− Ea,a′∼u[

n∑
i=1

φ
(

([a]i − [a′]i)
2
)

]− Ea,a′∼q[
n∑
i=1

φ
(

([a]i − [a′]i)
2
)

]

=

n∑
i=1

2Ea∼q,a′∼u[φ
(

([a]i − [a′]i)
2
)

]

−
n∑
i=1

Ea,a′∼u[φ
(

([a]i − [a′]i)
2
)

]−
n∑
i=1

Ea,a′∼q[φ
(

([a]i − [a′]i)
2
)

]

=

n∑
i=1

2E[a]i∼[q]i,[a′]i∼[u]i [φ
(

([a]i − [a′]i)
2
)

]

−
n∑
i=1

E[a]i,[a′]i∼[u]i [φ
(

([a]i − [a′]i)
2
)

]−
n∑
i=1

E[a]i,[a′]i∼[q]i [φ
(

([a]i − [a′]i)
2
)

]

=

n∑
i=1

d2
φ([q]i, [u]i),

where the third equation comes from that q, u are both products of their own margin distributions.

Previous work [3] has shown that dφ([q]i, [u]i) is a metric on [∆]i for all i = 1, 2, · · · , n. Thus,

d̃φ(q, u) =
(∑n

i=1 d
2
φ([q]i, [u]i)

) 1
2

is also a metric on ∆.

Theorem 3. Assume the uniform distribution u ∈ ∆. If F(q) = −d2
φ(q, u), then π∗α(·|s) dφ−→ u for

all states when α→∞.

Proof. By Theorem 1 we have

V ∗α (s) = Ea∼π∗α(·|s)[Q
∗
α(s, a)]− αd2

φ(π∗α(·|s), u).

Define πu : πu(·|s) = u. Then we have

0 ≤ 1

α
(V ∗α (s)− V πuα (s))

=
1

α

(
Ea∼π∗α(·|s)[Q

∗
α(s, a)]− Ea∼πu(·|s)[Q

πu
α (s, a)]

)
− d2

φ(π∗α(·|s), u)

≤ 2‖Q∗α‖∞
α

− d2
φ(π∗α(·|s), u).

As Q∗α is bounded, when α→∞, we have

d2
φ(π∗α(·|s), u) ≤ 2‖Q∗α‖∞

α
→ 0,

which means π∗α(·|s) dφ−→ u for all states.

Theorem 4. Suppose the action space A is convex and the set ∆ contains all Borel probability
measures on A. Under Assumption 2, if we use the regularizer F(q) = −d2

φ(q, u) and choose
function φ such that limx→0+ 2α

√
xφ′(x) > L, then π∗α(·|s) will never be a Dirac delta distribution.

Proof. Suppose that |A| > 1. (Otherwise the problem is trivial.) Suppose b ∈ A is an arbitrary

action. Choose another action bt ∈ A such that ‖b− bt‖2 = t > 0. Then δb(A) =

{
0, b /∈ A
1, b ∈ A is a

Dirac delta distribution on A, and qt = 1
2 (δb + δbt) is a Dirac mixture distribution on A.

14

To prove that π∗α(·|s) will never be a Dirac delta distribution for any state s, we only need to prove

∀ b ∈ A, ∃ bt ∈ A s.t. Js(qt) > Js(δb),

where Js(q) = Ea∼q[Q∗α(s, a)]+α (Ea∼q [f(a)] + Ea,a′∼q [g(a, a′)]) is the regularized RL objective
at state s and qt is defined above.

Define

f(x) := −2Ey∼u[φ(‖x− y‖22)],

g(x, y) := φ(‖x− y‖22),

∆Q(t) :=
1

t
(Ea∼qt [Q∗α(s, a)]− Ea∼δb [Q∗α(s, a)]) ,

∆f (t) :=
1

t
(Ea∼qt [f(a)]− Ea∼δb [f(a)]) ,

∆g(t) :=
1

t
(Ea,a′∼qt [g(a, a′)]− Ea,a′∼δb [g(a, a′)]) ,

then we have

J(qt)− J(δb) = t (∆Q(t) + α (∆f (t) + ∆g(t))) .

For ∆Q: by Lemma 3 we have Q∗α is Lipschitz, hence

∆Q(t) =
1

2t
(Q∗α(s, bt)−Q∗α(s, b))

≥ −L
2
.

For ∆f : we have

∆f (t) =
1

2t
(f(bt)− f(b)) .

Note that f(x) is continuous differentiable on A. We discuss the value of ∆f (t) in three conditions.

1. If ∇f(b) = 0, then we have ∆f (t) = o(t)
t , i.e., lim

t→0+
∆f (t) = 0.

2. If ∇f(b) 6= 0 and b ∈ int(A), then let bt = b + t ∇f(b)
‖∇f(b)‖2 , we have ∆f (t) > 0 for small

enough t.

3. If∇f(b) 6= 0 and b ∈ bdry(A), then we can find some bt s.t. ∇f>(b)(bt−b) ≥ 0. To prove
this, suppose∇f>(b)(a− b) < 0 for all a ∈ A. Then define bε = b+ ε∇f(b) (ε > 0), with
small enough ε, we have f(bε) ≥ f(b). However, as ‖bε − a‖2 > ‖b− a‖2 for all a ∈ A,
we have f(bε) < f(b) for all ε > 0 by the definition of f , which results in a contradiction.
Thus, we can find some bt s.t. ∇f>(b)(bt − b) ≥ 0, and so we have limt→0+ ∆f (t) ≥ 0.

Thus, ∀ ε > 0, we can always find some bt and δ1 s.t. ∀ 0 < t < δ1 we have ∆f (t) ≥ −ε.
For ∆g: note that φ′ is continuous and limx→0+ 2α

√
xφ′(x) > L, then for small enough t, we have

∆f (t) =
1

2t
(g(b, bt)− φ(0))

=
1

2

φ(t2)− φ(0)

t

= εφ′(ε2) (ε ∈ (0, t))

>
L

2α
.

15

Therefore, we can always find some direction (bt − b) and some δ > 0 s.t. for all 0 < t < δ, we have
J(qt)− J(δb) = t (∆Q(t) + α (∆f (t) + ∆g(t)))

> t

(
−L

2
+ α (∆f (t)− ε)

)
> t

(
−L

2
+ α

(
L

2α

))
= 0,

which means δb can never be the optimal policy at state s. Thus, the optimal policy π∗α(·|s) at any
state s ∈ S will never be a Dirac distribution.

Lemma 4. Assume the regularization function F maps ∆ to a closed interval [LF , UF]. Then for
any policy π ∈ Π, we have

V π + α
LF

1− γ ≤ V
π
α ≤ V π + α

UF
1− γ .

Proof. According to the definition of V πα (s), we have

V πα (s) = Eπ

[∞∑
t=0

γt (r(st, at) + αF (π(·|st)))
∣∣∣∣∣ s0 = s

]

= Eπ

[∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s

]
+ αEπ

[∞∑
t=0

γtF (π(·|st))
∣∣∣∣∣ s0 = s

]

= V π(s) + αEπ

[∞∑
t=0

γtF (π(·|st))
∣∣∣∣∣ s0 = s

]
.

As LF ≤ F(π(·|s)) ≤ UF for all state s, we have

1

1− γLF = Eπ

[∞∑
t=0

γtLF

∣∣∣∣∣ s0 = s

]

≤ Eπ

[∞∑
t=0

γtF (π(·|st))
∣∣∣∣∣ s0 = s

]

≤ Eπ

[∞∑
t=0

γtUF

∣∣∣∣∣ s0 = s

]

=
1

1− γUF .
Thus, we obtain

V π(s) + α
LF

1− γ ≤ V
π
α (s) ≤ V π(s) + α

UF
1− γ , ∀ s ∈ S.

Theorem 5. Assume that the optimal policy π∗α exists and the action space satisfies diam(A) ≤ U .
If we use the regularizer F(q) = −d2

φ(q, u), then we have

V ∗ − 2α

1− γ
(
φ(U2)− φ(0)

)
≤ V π∗α ≤ V ∗. (13)

Proof. The right side of the inequality is obvious, as π∗ is the optimal policy of the original problem.
For the left side, by Lemma 4 we have

V ∗ ≤ V π∗α − α LF
1− γ

V
π∗α
α ≤ V π∗α + α

UF
1− γ .

16

Hence we obtain

V ∗ ≤ V π∗α − α LF
1− γ

≤ V π
∗
α

α − α LF
1− γ

≤ V π∗α − α LF
1− γ + α

UF
1− γ .

The second inequality follows from that π∗α is the optimal policy of the regularized problem. Define

g(x) = −Ea∼u[φ(x, a)],

then g(x) is continuous on A, where A is a compact set. Let

a0 = arg min
x

g(x),

then we have

−d2
φ(δa0 , u) ≤ F(q) ≤ −d2

φ(u, u) = 0.

Note that

−d2
φ(δa0 , u) = Ea,a′∼δa0 [φ(‖a− a′‖22)] + Ea,a′∼u[φ(‖a− a′‖22)]− 2Ea∼δa0 ,a′∼u[φ(‖a− a′‖22)]

= φ(0) + Ea,a′∼u[φ(‖a− a′‖22)]− 2Ea∼u[φ(‖a− a0‖22)]

≥ 2
(
φ(0)− φ(U2)

)
.

Thus, we obtain

V ∗ − 2α

1− γ
(
φ(U2)− φ(0)

)
≤ V π∗α ≤ V ∗.

A.3 Results for d̃φ

In this part, we provide similar results for d̃φ. The proofs for these results are similar to that for dφ.
All results are under the assumptions

1. the action space A is a product space, i.e., A = A1 ×A2 × · · · × An;

2. any distribution q ∈ ∆ is a product of its margin distributions, i.e., q = [q]1×[q]2×· · ·×[q]n,
where [q]i is the marginal distribution of q on Ai.

Theorem 6. Assume the uniform distribution u ∈ ∆. If F(q) = −d̃2
φ(q, u), then π∗α(·|s) d̃φ−→ u for

all states when α→∞.

Theorem 7. Suppose the action space A is convex and ∆ = { q = [q]1 × [q]2 × · · · ×
[q]n | [q]i is a Borel probability measure on Ai} . Under Assumption 2, if we use the regularizer
F(q) = −d̃2

φ(q, u) and choose function φ such that limx→0+ 2α
√
xφ′(x) > L, then the optimal

policy distribution π∗α(·|s) for any state s ∈ S will never be a Dirac delta distribution.

Theorem 8. Assume that the optimal policy π∗α exists and the action space satisfies diam(Ai) ≤ U
for i = 1, 2, · · · , n. If we use the regularizer F(q) = −d̃2

φ(q, u), then we have

V ∗ − 2nα

1− γ
(
φ(U2)− φ(0)

)
≤ V π∗α ≤ V ∗. (14)

A.4 Policy Iteration for Regularized RL

In this section, we show the convergence of policy iteration for Regularized RL. All results in this
section are under the Assumption 1 and 2.

17

Lemma 5. The regularized Bellman operator and the regularized optimal Bellman operator are
respectively defined by

(T πα Q) (s, a) := r(s, a) + γEs′∼P (·|s,a) [(VπαQ) (s′)] , (15)

(T ∗αQ) (s, a) := r(s, a) + γEs′∼P (·|s,a)

[
sup
π∈Π

(VπαQ) (s′)

]
, (16)

where (VπαQ) (s′) := Ea′∼π(·|s′) [Q(s′, a′)] + αF(π(·|s′)). (17)

Then both T πα and T ∗α are contraction operators.

Proof. Let Q1, Q2 be two regularized Q-functions, then

|T ∗αQ1(s, a)− T ∗αQ2(s, a)|

=

∣∣∣∣r(s, a) + γ

(
Es′∼P (·|s,a)

[
sup
π∈Π

(VπαQ1) (s′)

])
− r(s, a)− γ

(
Es′∼P (·|s,a)

[
sup
π∈Π

(VπαQ2) (s′)

])∣∣∣∣
= γ

∣∣∣∣Es′∼P (·|s,a)

[
sup
π∈Π

(VπαQ1 − VπαQ2) (s′)

]∣∣∣∣
≤ γEs′∼P (·|s,a)

[
sup
π∈Π
|(VπαQ1 − VπαQ2) (s′)|

]
= γEs′∼P (·|s,a)

[
sup
q∈∆

(|Ea′∼q [Q1(s′, a′)−Q2(s′, a′)]|)
]

≤ γEs′∼P (·|s,a)

[
sup
q∈∆

(Ea′∼q [|Q1(s′, a′)−Q2(s′, a′)|])
]

≤ γEs′∼P (·|s,a)

[
sup
q∈∆

(Ea′∼q[‖Q1 −Q2‖∞])

]
= γ‖Q1 −Q2‖∞,

and

|T πα Q1(s, a)− T πα Q2(s, a)|
=
∣∣r(s, a) + γ

(
Es′∼P (·|s,a) [(VπαQ1) (s′)]

)
− r(s, a)− γ

(
Es′∼P (·|s,a) [(VπαQ2) (s′)]

)∣∣
= γ

∣∣Es′∼P (·|s,a) [(VπαQ1 − VπαQ2) (s′)]
∣∣

≤ γEs′∼P (·|s,a) [|(VπαQ1 − VπαQ2) (s′)|]
= γEs′∼P (·|s,a)

[(∣∣Ea′∼π(·|s′) [Q1(s′, a′)−Q2(s′, a′)]
∣∣)]

≤ γEs′∼P (·|s,a)

[(
Ea′∼π(·|s′) [|Q1(s′, a′)−Q2(s′, a′)|]

)]
≤ γEs′∼P (·|s,a)

[(
Ea′∼π(·|s′)[‖Q1 −Q2‖∞]

)]
= γ‖Q1 −Q2‖∞,

Thus, we have

‖T ∗αQ1 − T ∗αQ2‖∞ ≤ γ‖Q1 −Q2‖∞ and ‖T πα Q1 − T πα Q2‖∞ ≤ γ‖Q1 −Q2‖∞,
which means both T πα and T ∗α are contraction mappings.

Lemma 6. Suppose πold ∈ Π. Let

πnew(·|s) = argmax
q∈∆

Ea∼q [Qπold
α (s, a)] + αF(q), ∀ s ∈ S. (18)

Then we have Qπnew
α ≥ T ∗αQπold

α ≥ Qπold
α .

Proof. First we prove that Qπnew
α ≥ Qπold

α . As

Ea∼πnew(·|s)[Q
πold
α (s, a)] + αF(πnew(·|s)) ≥ Ea∼πold(·|s)[Q

πold
α (s, a)] + αF(πold(·|s))

= V πold
α (s),

18

we have

Qπold
α (s, a) = r(s, a) + γEs′∼P (·|s,a)[V

πold
α (s)]

≤ r(s, a) + γEs′∼P (·|s,a)[Ea∼πnew(·|s)[Q
πold
α (s, a)] + F(πnew(·|s))]

≤ · · ·
≤ Qπnew

α (s, a).

Thus, we have Qπnew
α ≥ Qπold

α . Now we start to prove that Qπnew
α ≥ T ∗αQπold

α ≥ Qπold
α .

For the latter inequality, we have

TαQπold
α (s, a) = r(s, a) + γ

(
Es′∼P (·|s,a)[sup

q∈∆
(Ea′∼q[Qπold

α (s′, a′)] + αF(πold(·|s′)))]
)

≥ r(s, a) + γ
(
Es′∼P (·|s,a)[Ea′∼πold(·|s′)[Q

πold
α (s′, a′)] + αF(πold(·|s′))]

)
= Qπold

α (s, a), ∀ (s, a) ∈ S ×A.
For the former inequality, we have

Qπnew
α (s, a) = r(s, a) + γ

(
Es′∼P (·|s,a)[Ea′∼πnew(·|s′)[Q

πnew
α (s′, a′)] + αF(πnew(·|s′))]

)
≥ r(s, a) + γ

(
Es′∼P (·|s,a)[Ea′∼πnew(·|s′)[Q

πold
α (s′, a′)] + αF(πnew(·|s′))]

)
= r(s, a) + γ

(
Es′∼P (·|s,a)[sup

q∈∆
(Ea′∼q[Qπold

α (s′, a′)] + αF(q))]

)
= TαQπold

α (s, a), ∀ (s, a) ∈ S ×A.
Thus, we have Qπnew

α ≥ T ∗αQπold
α ≥ Qπold

α .

Lemma 7. Qα is the optimal Q-function of the regularized RL if and only if Qα satisfies the Bellman
optimality condition. That is,

Qα = sup
π∈Π

Qπα ⇔ Qα = T ∗αQα. (19)

Proof. Suppose Qα = supπ∈ΠQ
π
α. By Lemma 6, we have

T ∗αQα(s, a) ≥ Qα(s, a).

By Theorem 1, there must exist some policy π∗α ∈ Π s.t. Qπ
∗
α
α = Qα. Then

T ∗αQα(s, a) = T ∗αQπ
∗

α (s, a) ≤ Qπ
∗
new
α (s, a) ≤ sup

π∈Π
Qπα(s, a) = Qα(s, a),

where the first inequality comes from Lemma 6. Thus, we have T ∗αQα(s, a) = Qα(s, a).

Note that T ∗α is a contraction mapping, so the solution to Q = T ∗αQ is unique. Thus, we have

Qα = sup
π∈Π

Qπα ⇔ Qα = T ∗αQα.

Lemma 8 (Policy Evaluation). Let Q0
α : S × A → R be an arbitrary bounded function. For any

policy π ∈ Π, define Qk+1
α := T πα Qkα. Then we have ‖Qπα −Qkα‖∞ ≤ γk‖Qπα −Q0

α‖∞.

Proof. According to the definition of Qπα, we have

T πα Qπα = Qπα.

That is, Qπα is the fixed point of T πα . Hence

‖Qπα −Qkα‖∞ = ‖T πα Qπα − T πα Qk−1
α ‖∞

≤ γ‖Qπα −Qk−1
α ‖∞

≤ · · ·
≤ γk‖Qπα −Q0

α‖∞.

19

Theorem 9 (Policy Iteration). Suppose π0 ∈ Π, and a sequence of policies (πk)∞k=0 is obtained by
repeatedly updating the policy via Equation (18). Then we have ‖Q∗α−Qπkα ‖∞ ≤ γk‖Q∗α−Qπ0

α ‖∞.

Proof. By Lemma 6 and Lemma 7, we have

‖Q∗α −Qπkα ‖∞ ≤ ‖Q∗α − T ∗αQπk−1
α ‖∞

= ‖T ∗αQ∗α − T ∗αQπk−1
α ‖∞

≤ γ‖Q∗α −Qπk−1
α ‖∞

≤ · · ·
≤ γk‖Q∗α −Qπ0

α ‖∞.

B Details of Algorithm Implementation and Experiment Settings

B.1 Regularization Term

Here we provide details of our regularizers used in this paper, including Gini mean difference (GMD),
generalized energy distance (GED) , and internal energy (IE).

Table 5: Expressions of f, g for our regularizers. In this table, [δ]i denotes |[a]i − [a′]i|, [b]i denotes
1 + [a]i and [c]i denotes 1− [a]i. In practice, we impose a small ε > 0 on [δ]i, [b]i and [c]i

F(q) φ(z) f(a) g(a, a′)

GMD z0.5 -
∑n
i=1 [δ]i

GED z0.5 −2
∑n
i=1

(
[a]2i + 1

) ∑n
i=1 [δ]i

z0.25 − 4
3

∑n
i=1

(
[b]1.5i + [c]1.5i

) ∑n
i=1

√
[δ]i

log z −2
∑n
i=1 ([c]i log[c]i − [b]i log[b]i)

∑n
i=1 log[δ]2i

IE z0.25 -
∑n
i=1

√
[δ]i

B.2 Policy Networks

Here, we introduce the policy architectures used in the Section 5. For each policy architecture, we
apply the function tanh to the outputs since the action spaces are bounded in [−1, 1]n.

Squashed Gaussian (SG) We use the same policy architecture as that used in SAC [20]. The
actions are sampled from a Gaussian whose means and covariances are given by a neural network.

Noisy network (NN) The policy is represented by a neural network [11] with parametric noise
added to its weights. In our experiments, we use the factorised Gaussian noise. We refer the interested
readers to the paper [11] for more details.

Dirac mixtures (DM) Each dimension of the action is randomly selected from 32 possible values
with equal probability. Therefore, for each state, the network outputs a vector with 32×n dimensions.
Moreover, each dimension of action is independent of other dimensions.

Generator Model (GM) The policy is represented by a neural network with noise added to its last
layer. Moreover, all dimensions of the actions are also sampled independently.

Normalizing flow (NF) We use the same policy architecture as that used in SAC-NF [28]. We use
the radial [38] flows since it achieves better performance than planar [38] and IAF flows.

B.3 Details of Experiment Settings and Hyperparameters

Reproducing the Baselines We list the implementations of our baselines, including soft actor-critic
(SAC), twin delayed deep deterministic policy gradient algorithm (TD3), and deep deterministic
policy gradient (DDPG).

20

SAC We use the pyTorch implementation of SAC in https://github.com/vitchyr/rlkit,
which is recommended by the authors of SAC.

TD3 We use the up-to-date code from the authors’ git repository https://github.com/
sfujim/TD3. The authors have tuned the hyperparameters several times after releasing the
code and thus the current version is much stronger than the one used in their paper [12].

DDPG We use the pyTorch implementation of DDPG in https://github.com/vitchyr/rlkit.

Hyperparameters We use the same hyperparameter as that of SAC [20] if possible. Table 6 lists
the common ACED parameters used in the comparative evaluation and abalation study.

Table 6: Shared parameters used in all experiments.Here,N (0, 0.09I) denotes a Gaussian distribution
with mean 0 and covariance matrix 0.09I.

Parameter Value

optimizer Adam [23]
learning rate 3 · 10−4

discount (γ) 0.99
replay buffer size 106

number of hidden layers 2 (1 for NF policies)
number of hidden units per layer 256
number of samples per minibatch 256
nonlinearity ReLU
target smoothing coefficient 0.005
target update interval 1
sample number 32
target valur (T) F(N (0, 0.09I))

Evaluation policies As with SAC, we use a deterministic policy for evaluation. Except DM policy,
all policy can be regard as h(s, ξ) where ξ is sampled from a standard normal distribution. For
these networks, the corresponding evaluation policy is represented by h(s,0). For DM policy, the
deterministic policy outputs the mean of actions. We provide the performance comparison between
the stochastic policy and evaluation policy in the next section.

C Additional Experimental Results

C.1 Evaluation policy

We provide comparison between the stochastic policies and the evaluation policies. The results in
Figure 4 show that using evaluation policies results in a higher return.

C.2 Discussion on performance

ACED (power-0.25) outperforms SAC even with SG policies (same as that used in SAC). To
understand how the performance difference comes, we analyze the stochasticity of learned policies.
For each policy, we sample 20000 states and estimate the entropies of policy distributions at these
states. Figure 5 is the histogram of these entropies. This histogram shows that our regularization
power-0.25 leads to higher variability of entropies compared to SAC.

C.3 Performance Comparison for Normalizing FLow Policies

We compare ACED and SAC with normalizing flow policies. We use authors’ implementation of
SAC-NF [28] in this Section. Results in Figure 6 show that ACED achieves comparable performance
with SAC. Moreover, ACED is more efficient that SAC (shown in Table 4) when using NF policies.

21

https://github.com/vitchyr/rlkit
https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
https://github.com/vitchyr/rlkit

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2500

5000

7500

10000

12500

Av
er

ag
e

re
tu

rn

Half Cheetah

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Walker2D

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Ant

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

25

50

75

100

125

Av
er

ag
e

re
tu

rn

Swimmer

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Humanoid

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

1000

2000

3000

Av
er

ag
e

re
tu

rn

Hopper

DM
DM (stoch.)

SG
SG (stoch.)

GM
GM (stoch.)

NN
NN (stoch.)

Figure 4: Comparison between the stochastic policies of ACED and the evaluation policies.

35 30 25 20 15 10 5 0 5
0.00

0.05

0.10

0.15

0.20

0.25 aced
sac

Figure 5: Comparison of stochasticity between ACED and SAC. We use this histogram to show
distribution of entropies.

C.4 Examples in Multi-Goal Environments

We use the similar example as in soft Q-learning [17] to show that ACED can learn multi-modal
distributions. Figure 7 illustrates the 2D multi-goal environments and the learned policy. The left
shows the reward functions and the trajectories from a policy learned with ACED. The right shows
the Q-values and the sampled actions at state (0, 0).

22

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

2000

4000

6000

8000

Av
er

ag
e

re
tu

rn

Half Cheetah

aced
sac

Figure 6: Comparison of performance between ACED and SAC (with normalizing flow policies). We
run each experiments with three different random seeds.

(a) Sample number (b) Policy architecture

Figure 7: Learned policy with ACED. The left illustrates the trajectories from the learned policy.
The right shows the sampled actions at state (0, 0). Results show that ACED can learn a policy
that captures multiple goals. Moreover, the right picture shows the our regularization can lead to
multimodal behaviors.

C.5 Comparison Between dφ and d̃φ

We compare the regularization defined by dφ with the regularization defined by d̃φ (see Figure 8).
We approximate the function f in the regularization d2

φ by sampling from the uniform distribution u.
The reason why the regularization d2

φ does not work is that sampling from the uniform distribution
introduces large variance of the estimated gradient.

23

0.0 0.2 0.4 0.6 0.8 1.0

Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Ant
d̃2
φ

d2
φ

Figure 8: Comparison between the regularization defined by dφ with the regularization defined by d̃φ.

C.6 Sensitivity Analysis

ACED is insensitive to the sample number N and the target value T . The sensitivity analysis for N
can be found in Section 5.3 and Appendix C.9. Figure 9 shows the sensitivity analysis for T . Here,
we set T as F(N (0, λI)), where N (0, λI) is a Gaussian distribution with the covariance matrix λI.

0.0 0.4 0.8 1.2 1.6 2.0

Steps 1e6

0

5000

10000

15000

Av
er

ag
e

re
tu

rn

Half Cheetah

λ = 0.03

λ = 0.06

λ = 0.09

λ = 0.12

SAC-MAX

0.0 0.4 0.8 1.2 1.6 2.0

Steps 1e6

0

2000

4000

Av
er

ag
e

re
tu

rn

Walker2D

0.0 0.4 0.8 1.2 1.6 2.0

Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn
Ant

0.0 0.4 0.8 1.2 1.6 2.0

Steps 1e6

0

50

100

Av
er

ag
e

re
tu

rn

Swimmer

0.0 0.4 0.8 1.2 1.6 2.0

Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Humanoid

0.0 0.4 0.8 1.2 1.6 2.0

Steps 1e6

0

1000

2000

3000

Av
er

ag
e

re
tu

rn

Hopper
Figure 9: Sensitivity analysis for target value T .

24

Table 7: Comparison between ACED and SAC. Both algorithms use ensemble Gaussian policy whose
ensemble size is 5. We record the best performance during the first 1.0 million steps.

Algorithm ACED (N = 2) SAC
Time (h) 7.06± 0.30 10.96± 1.34

Performance 4697± 1140 3641± 917

C.7 Comparison with Generative Actor Critic (GAC)

We compare ACED with GAC [48] in HalfCheetah-v2 task. GAC also does not limit the representation
of the policy. Figure 10 shows that our method outperforms GAC. We note that GAC is expensive in
computation. GAC takes more than 65h to train the policy with about 1.0 million steps, while ACED
takes less than 8h.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

5000

10000

15000

Av
er

ag
e

re
tu

rn

Half Cheetah
ACED GAC

Figure 10: Comparison of performance between ACED and GAC in HalfCheetah-v2.

C.8 Comparison between ACED and SAC in Efficiency

To show the improved efficiency of ACED, we evaluate ACED (N = 2) against SAC with an
ensemble of policies in HalfCHeetah-v2 task. The ensemble size is 5, and each policy outputs a
Gaussian distribution. Experiments 7 show runing ACED with 1 million samples costs about 7 hours
while runing SAC costs about 11 hours. The core reason is that ACED does not need to compute
probability density, which requires the forward prediction of all networks.

C.9 More Results for Ablation Study

We provide additional results (Figure 11, 12 and 13) as a supplement to Section 5.3. The results in Ant-
v2 tasks further support our conclusions in Section 5.3. In Humanoid-v2 task, Using regularization
does not lead to significant performance improvements.

25

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2500

5000

7500

10000

12500

Av
er

ag
e

re
tu

rn

HalfCheetah-v2

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

Av
er

ag
e

re
tu

rn

Walker2D

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Ant

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

50

100

Av
er

ag
e

re
tu

rn
Swimmer

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Humanoid

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

1000

2000

3000

Av
er

ag
e

re
tu

rn

Hopper

N = 2 N = 8 N = 32 N = 128 SAC-MAX

Figure 11: Performance of ACED when sample number N varies.

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2500

5000

7500

10000

12500

Av
er

ag
e

re
tu

rn

Half Cheetah

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Walker2D

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Ant

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

50

100

150

Av
er

ag
e

re
tu

rn

Swimmer

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Humanoid

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

1000

2000

3000

Av
er

ag
e

re
tu

rn

Hopper

DM
DM (= 0)

SG
SG (= 0)

GM
GM (= 0)

NN
NN (= 0)

SAC-MAX

Figure 12: Performance of ACED with different policy architectures.

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

5000

10000

15000

Av
er

ag
e

re
tu

rn

Half Cheetah

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

Av
er

ag
e

re
tu

rn

Walker2D

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Ant

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

50

100

Av
er

ag
e

re
tu

rn

Swimmer

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Humanoid

0.0 0.4 0.8 1.2 1.6 2.0
Steps 1e6

0

1000

2000

3000

Av
er

ag
e

re
tu

rn

Hopper

log power-0.25 power-0.5 interal_energy SAC-MAX

Figure 13: Performance of ACED with different regularizers.

26

