
We thank the reviewers for their insightful feedback. In the following, we address their concerns and questions.1

[R1] "Lacking of novelty... All three modules are known techniques with little technical improvements": As will2

be discussed in more detail in the sequel, there might be some significant misunderstanding by the reviewer on modules3

2 and 3 (i.e., module 2 is not based on attention; module 3 is not standard deep SVDD loss). Moreover, module 1 is4

not our main novelty, though for timeseries it is essential to use some model to extract multiscale features. Our main5

novelty is on developing a hierarchical one-class model for timeseries, which allows diverse patterns of multiscale6

features from normal timeseries to be captured.7

"Features fusion module using attention mechanism ... section 3.1.2 should cite attention mechanism rather8

than re-invent some technical terms." : There is a big misunderstanding. The proposed method is more similar to9

clustering than attention, both of which are based on the notion of similarity. If equation (5) is viewed as attention10

as suggested, we would have f̄ l−1
t as the query, and {clj}K

l

j=1 as the keys (as normalization is w.r.t. the Kl clj’s), and11

equation (7) would correspond to the attention output. However, note that the summation in (7) involves Kl−1 (instead12

of Kl) terms, and so obviously this cannot be attention.13
MSL (%) SMAP (%)

prec rec F1 prec rec F1

attention 90.66 87.21 88.90 79.70 66.35 72.41

self-attention 82.49 93.33 87.77 94.55 56.05 70.38

proposed 92.85 94.51 93.67 91.33 99.36 95.18

Indeed, as mentioned at line 116, this should be understood14

as a hierarchical clustering procedure. The f̄ l−1
t ’s are clus-15

tered by their similarities w.r.t. (learnable) centers clj’s using16

(5), to form the higher-level f̂ lt,i’s in (7). At the intermediate17

layers, f̂ lt,j is further merged with the multiscale feature f l+1
t (extracted by dilated RNN) to form f̄ lt,j .18

For experiments, we add two baselines that use attention to obtain f̂ lt,i (and uses a one-layer MLP to fuse the query19

and learned attention vector):1 (i) attention, using query f̄ l−1
t , keys {clj}j , and values {clj}j ; (ii) self-attention, using20

query f̄ l−1
t , keys {f̄ l−1

τ }τ<t, and values {f̄ l−1
τ }τ<t. Because of lack of time, experiments are only run on the MSL and21

SMAP data sets. The table above shows that the proposed model performs best. The discussion above and experimental22

results will be added to the final version.23

"Anomaly loss using SVDD": Deep SVDD uses only one center and one layer, while we have multiple centers (cLj ’s)24

and multiple layers. Besides the simple extension that sums over all cLj ’s, the key challenge is on what contribution25

of each f̄Lt,j,s at the last layer should be compared with each cLj . We propose to aggregate the contributions from the26

features f̄ lt,j,s’s at all layers via an efficient recursive computation of {R̃lt,j}.27

"Authors do not mention how features extracted from dilated RNNs have been inputed into fusion module": The28

reviewer might have overlooked parts of the paper. Indeed, these have been discussed at lines 115-116 and 126-128.29

"Not clear why dilated RNN is a valid choice": As suggested by the reviewer, the dilated RNN can be replaced by30

any other model that can extract multiscale features. We used the dilated RNN only as an example model. As discussed31

above, this part is not our main novelty. Our key novelty is on how to model the diverse patterns of multiscale features32

extracted from timeseries (by the clustering and anomaly detection modules, and the combination of losses).33

[R3] "Broader Impact... use of multiple indices... Figure 1 (right) is not clear": Thanks for your suggestion. We34

will improve our description on one-class learners, simplify notations and make the graph clearer in the final version.35

[R4] "In each layer, there are Kl clusters... motivation": In SVDD, the ball is used to enclose most of the normal36

patterns. However, as mentioned in line 66-67, real-world timeseries data may have complex characteristics and so37

multiple balls can better model the diverse normal temporal behaviors at each resolution (this is similar to using the38

more flexible Gaussian mixture over a single Gaussian in other machine learning models).39

"So many hyper-parameters (Kl) ... sensitivity regarding Kl": Important hyper-parameters in our network mainly40

are λorth and λTSS. For Kl, to construct a hierarchical clustering structure, we empirically found that simply using a41

constant or a decreasing setting such as (6, 6, 6) or (18, 12, 6) for (K1, . . . ,KL) can achieve a good performance. Thus,42

we use a relative small search space to find a good (suboptimal) hyperparameter setting for Kl.43

"Self-supervised and orthogonal losses": These two losses are important. Without the orthogonal loss, the centers44

may be very similar or even duplicate; without the self-supervised loss (which is based on timeseries prediction), the45

model may fail to capture temporal dependencies, which are essential for a proper representation of timeseries data.46

"Theoretical analysis about MVDD": As in deepSVDD, when we use the soft-boundary SVDD objective in each47

hypersphere, the proof of their Proposition 4 can be easily extended to our model, and the ν-property holds. Here, we48

give a brief proof sketch: Define di,j = ‖NNj(xi;Wj)− cj‖2 for i = 1, 2 . . . , N and j = 1, 2 . . . ,KL. The number49

of outliers for the jth hypersphere is N j
out = |{i : di,j > r2}|. It can be shown that the soft-boundary objective of our50

model can be rewritten as
(
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)
r2. The remaining steps are similar to that in the proof of deepSVDD.51

1As in the literature on attention models, we will specify the query, keys, and values for each baseline.


