
We thank all reviewers for carefully reading our paper and their valuable comments. We appreciate that our paper is1

recognized for several positive aspects: [R1, R2, R4] novel and well-motivated, [R2, R3, R4] clear write-up, and [All]2

extensive and strong experiments. Below are our responses to the reviewers, which we will incorporate in the final draft.3
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(a) Prediction heads
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(b) Trajectory assignment

Av
er

ag
e 

R
et

ur
n

4,000

8,000

12,000

16,000

Horizon of Trajectory-wise Oracle Loss (M)
1 5 10 20 30

(c) Trajectory-wise oracle loss
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(d) Adaptive planning

[R2, R3, R4] Effects of major hyperparameters. We choose the number H of prediction heads and the horizon4

M of trajectory-wise oracle loss based on the trajectory assignments in training environments, i.e., how distinctively5

trajectories are assigned to prediction heads (see Figure 4 and 5 of the original draft and above Figure (b) for examples).6

Also, the horizon N of adaptive planning is set to the same value as M to match the horizon of trajectory-wise oracle7

loss and adaptive planning. We use the same hyperparameters H , M , and N for all environments. We will clarify the8

hyperparameter setups in the final draft.9

Following the suggestions of R2, R3, and R4, we also perform ablation studies in HalfCheetah environments by varying10

the major hyperparameters of our method: H ∈ {2, 3, 4, 5, 8}, M ∈ {1, 5, 10, 20, 30}, and N ∈ {1, 5, 10, 20, 30}.11

Figure (a) shows that H = 3 achieves the best performance because three prediction heads are enough to capture12

the multi-modality of the training environments in our setting. When H > 3, the performance decreases because13

trajectories from similar dynamics are split into multiple heads as shown in Figure (b). However, as pointed out by R4,14

we expect that more heads would be effective in environments with more varying environmental factors. Figure (c) and15

(d) show that choosing the head per-trajectory is more effective and our method is robust to change in hyperparameters16

M ≥ 10 and N ≥ 10. We will include more comprehensive results for all environments in the final draft.17

[R1] Limitation of our method. Thank you very much for your pointers. As we assume that MDPs with similar18

dynamics will behave similarly, the effectiveness of our method would be limited if the dynamics of unseen environments19

are significantly different from the dynamics of training environments. As you pointed out, gain from our method may20

decrease if the agent is not exposed to a variety of MDPs. We will clarify these limitations in the final draft.21

[R1] Clarification on problem formulation. Our work addresses the dynamics generalization problem of model-22

based RL methods, where learned dynamics models fail to provide accurate predictions as the transition dynamics of23

environments change. Thank you for your suggestion, and we will clarify this in the final draft.24

[R1] Clarification on multi-modal nature of environments. We assume that the transition dynamics distribution of25

MDP is multi-modal, which emerges as the environmental factors (e.g., mass and length of the agent) change. We26

remark that capturing this property is important as environmental factors are ever-changing in real-world environments.27

Prior model-based RL methods that do not consider this property fail to generalize as the future prediction from28

dynamics models becomes inaccurate. We will clarify this in the final draft.29

[R2] Editorial comment. We will remove the “Due to space limitation” phrase in the final draft.30

[R3] Novelty. As R1, R2, and R4 pointed out, we believe that we propose a novel and well-motivated combination31

of multiple choice learning and model-based RL, whose major components are (i) context-conditional multi-headed32

dynamics model, (ii) trajectory-wise oracle loss, and (iii) adaptive planning. We also verify the effectiveness of the33

proposed method for improving dynamics generalization via exhaustive ablation studies on various benchmarks.34

[R3] Extension to other model-based RL methods. Applying our trajectory-wise multiple choice learning scheme35

to model-based policy optimization methods (e.g., MBPO and Dreamer) is an interesting direction, and we think our36

method is naturally applicable. For example, one can consider employing our method for learning specialized policies37

using specialized prediction heads. We leave this as future work, but will include related discussion in the final draft.38

[R3] Broader Impact. We will add more discussion related to the broader impact of our work to the final draft.39

[R4] Comparison to PEARL. We emphasize that our method is evaluated using the zero-shot generalization per-40

formance in test environments, while PEARL is evaluated using the few-shot adaptation performance, i.e., PEARL41

conducts adaptation to test environments before evaluation. Our method still achieves superior sample efficiency42

compared to PEARL in most environments and outperforms PEARL in HalfCheetah and CrippledAnt environments43

even in terms of asymptotic performance. We also remark that as in PEARL, it is possible to learn a context-conditional44

policy using context vectors from our method (e.g., see [1]) to further improve performance.45

[R4] Qualitative analysis on control tasks. This is a very interesting question. Following your suggestion, we46

visualize the behavior of a cheetah agent using the prediction head specialized for low-mass environments on the47

HalfCheetah environment with a default body mass. Interestingly, we observe that the cheetah agent moves as if it has a48

lightweight body, i.e., moving its limbs about very fast. We will include videos in the final draft.49

[1] K. Lee et al. Context-aware dynamics model for generalization in model-based RL. In ICML, 2020.50


