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Abstract

We address the problem of fitting 3D human models to 3D scans of dressed humans.
Classical methods optimize both the data-to-model correspondences and the human
model parameters (pose and shape), but are reliable only when initialized close to
the solution. Some methods initialize the optimization based on fully supervised
correspondence predictors, which is not differentiable end-to-end, and can only
process a single scan at a time. Our main contribution is LoopReg, an end-to-end
learning framework to register a corpus of scans to a common 3D human model.
The key idea is to create a self-supervised loop. A backward map, parameterized by
a Neural Network, predicts the correspondence from every scan point to the surface
of the human model. A forward map, parameterized by a human model, transforms
the corresponding points back to the scan based on the model parameters (pose and
shape), thus closing the loop. Formulating this closed loop is not straightforward
because it is not trivial to force the output of the NN to be on the surface of the
human model – outside this surface the human model is not even defined. To
this end, we propose two key innovations. First, we define the canonical surface
implicitly as the zero level set of a distance field in R3, which in contrast to more
common UV parameterizations Ω ⊂ R2, does not require cutting the surface, does
not have discontinuities, and does not induce distortion. Second, we diffuse the
human model to the 3D domain R3. This allows to map the NN predictions forward,
even when they slightly deviate from the zero level set. Results demonstrate that we
can train LoopReg mainly self-supervised – following a supervised warm-start, the
model becomes increasingly more accurate as additional unlabelled raw scans are
processed. Our code and pre-trained models can be downloaded for research [5].

1 Introduction

We propose a novel approach for model-based registration, i.e. fitting parametric model to 3D scans
of articulated humans. Registration of scans is necessary to complete, edit and control geometry, and
is often a precondition for building statistical 3D models from data [82, 48, 58, 11].
Classical model-based approaches optimize an objective function over scan-to-model correspondences
and the parameters of a statistical human model, typically pose, shape and non-rigid displacement.
When properly initialized, such approaches are effective and generalize well. However, when the
variation in pose, shape and clothing is high, they are vulnerable to local minima.
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To avoid convergence to local minima, researchers proposed to use predictors to either initialize
the latent parameters of a human model [32], or the correspondences between data points and the
model [60, 76]. Learning to predict global latent parameters of a human model directly from a
point-cloud is difficult and such initializations to standard registration are not yet reliable. Instead,
learning to predict correspondences to a 3D human model is more effective [10, 14].
Several important limitations are apparent with current approaches. First, supervising an initial
regression model of correspondence requires labeled scans [60, 76, 81, 52], which are hard to obtain.
Second, although some approaches use predicted correspondences to initialize a subsequent, classical
optimization-based registration, this process involves non-differentiable steps.
What is lacking is a joint end-to-end differentiable objective over correspondences and human model
parameters, which allows to train the correspondence predictor, self-supervised, given a corpus of
unlabeled scans. This is our motivation in introducing LoopReg.
Given a point-cloud, a backward map, parameterized by a neural network, transforms every scan point
to a corresponding point on the canonical surface (the human model in a canonical pose and shape).
A forward map, parameterized by the SMPL human model [48], transforms canonical points under
articulation, shape and non-rigid deformation, to fit the original point-cloud, see Fig. 1. LoopReg
creates a differentiable loop which supports the self-supervised learning of correspondences, along
with pose, shape and non-rigid deformation, following a short supervised warm-start.
The design of LoopReg requires several technical innovations. First, we need a continuous represen-
tation for canonical points, to be on the human surface manifold. We define the surface implicitly
as the zero level set of a distance field in R3 instead of the more common approach of using a
2D UV parameterization Ω ⊂ R2, which typically relies on manual interaction, and inevitably has
distortion and boundary discontinuities [35]. We follow a Lagrangian formulation; during learning,
NN predictions which deviate from the implicit surface are penalized softly. Furthermore, we interpret
the 3D human model as a function on the surface manifold. We diffuse the function onto the 3D
domain via a distance transform (Fig. 3), which allows to map the NN predictions forward, when
they slightly deviate from the surface during learning.
In summary, our key contributions are:

• LoopReg is the first end-to-end learning process jointly defined over a parametric human
model and the data (scan / point cloud) to model correspondences.

• We propose an alternative to classical UV parameterization for correspondences. We define
the canonical human surface implicitly as the zero levelset of a distance field, and diffuse
the SMPL function to the 3D domain. The formulation is continuous and differentiable.

• LoopReg supports self-supervision. We experimentally show that registration accuracy can
be improved as more unlabeled data is added.

2 Related Work

In this section, we first broadly discuss existing work on correspondence prediction followed by
approaches on non-rigid registration with special focus on methodology dealing with both.

Correspondence prediction. Early 3D correspondence prediction methods relied on optical
flow [16], parametric fitting [74], function mapping [7], and energy minimization [83, 50, 22, 21, 23].
Recent advancements include functional maps to transport real valued functions across sur-
faces [53, 52, 28, 31], learning from unsupervised data [65, 33, 65], implicit correspondences [71]
and search for novel neural network architectures [20, 81, 79].
Aforementioned work focused primarily on establishing correspondences across isometric [54] or
non-isometric shapes [69, 39, 80] but did not leverage such information for parametric model fitting.

Model based registration. In the context of articulated humans, classical ICP based alignment to
parametric models such as SMPL [48] has been widely used for registering human body shapes[56,
18, 19, 58, 59, 34, 29] and even detailed 3D garments [57, 15]. Incorporating additional knowledge
such as precomputed 3D joints, facial landmarks [42, 8] and part segmentation [14] significantly
improves the registration quality but these pre-processing steps are prone to error at various steps.
Though there exist approaches for correspondence-free registration [72, 70, 68], we focus on work
that exploit correspondences for non-rigid registration [12]. Recent work have built on classical
techniques such as functional maps [49], part-based reconstruction [27] and segmentation guided
registration [44] and showed impressive advancements in the registration quality. Despite their
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Figure 1: The input to our method is a scan or point cloud (A)S. For each input pointsi , our network CorrNet
f � (�) predicts a correspondencep i to a canonical model inH � R3 (B). We use these correspondences to
jointly optimize the parametric model (C) and CorrNet under self-supervised training.

strengths, these approaches are not end-to-end differentiable wrt. correspondences. One of the major
bottlenecks in making correspondences differentiable is de�ning a continuous representation for 3D
surfaces.

Representing 3D surfaces.Surface parameterization is non-trivial because it is impossible to �nd a
zero distortion bijective mapping between an arbitrary genus zero surface inR3 and a �nite planar
surface inR2. Prior work has tried to minimize custom objectives such as angle deformation [43],
seam length together with surface distortion [45] and packing ef�ciency [47]. Attempts have been
made to minimize global [37, 67] or patch-wise distortion using local surface features[85]. But the
bottom line remains –a surface inR3 cannot be embedded inR2 without distortions and cuts. Instead,
we de�ne the surface as the zero levelset of a distance �eld inR3, and penalize deviations from it.
Additionally, we diffuse surface functions to 3D, which allows us to predict correspondences directly
in 3D. While implicit surfaces [55, 51, 24, 66, 25] and diffusion [38, 36] techniques have been used
before, they have not been used in tandem to parameterize correspondences in model �tting.

Joint optimization over correspondence and model parameters.Prior work initialize correspon-
dences with a learned regressor [60, 76, 61], and later optimize model parameters, but the process is
not end-to-end differentiable. An energy over correspondence and model parameters can be mini-
mized directly with non-linear optimization (LMICP [30]), which requires differentiating distance
transforms for ef�ciency [9, 73]. In general, the distance transform needs to change with model
parameters, which is hard and needs to be approximated [77] or learned [26]. A few works are
differentiable both wrt. model parameters and correspondences [86, 75]; but their correspondence
representation is only piece-wise continuous and not suitable for learning. Using UV maps, continu-
ous and differentiable (except at the cut boundaries) correspondences can be learned [41, 40] jointly
with model parameters, but inherent problems with UV parametrization still remain. Using mixed
integer programming, sparse correspondences and alignment can be solved at global optimality [13].
In 3D-CODED [32] authors directly learn to deform the model to explain the input point cloud, but
this limits the ability to make localized predictions, and the approach has not been shown to work
with scans of dressed humans.
Our approach on the other hand is not only continuous and differentiable wrt. to both correspondences
and model parameters, but also does not rely on the problematic UV parametrization.

3 Method

Current state of the art human model based registration such as [42, 8] require pre-computed 3D
joints and keypoint/landmark detection. These approaches render the scans from multiple views, use
OpenPose [1] or similar models for image based 2D joint detection, and lift the 2D joint detections
to 3D. This is prone to error at multiple levels. Per-view joint detection may be inconsistent across
views. Furthermore, when scans are point-clouds instead of meshes, they can not be rendered. Fig. 4
and 5 show that accurate scan registration is not possible for complex poses without this information.
In LoopReg, we replace the pre-computed sparse joint information with continuous correspondences
to a parametric human model. Our networkCorrNetcontains a backward map, that transforms scan
points to corresponding points on the surface of a human model with canonical pose and shape. In a
forward map, these corresponding points are deformed using the human model to �t the original scan,
thereby creating a self-supervised loop. We start our description by reviewing the basic formulation
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Figure 2: Illustration of the diffusion process. We diffuse the function (�) (denoted as per-vertex colours),
de�ned only on the vertices(v 1 ; v 2 ; v 3), to any pointp 2 R3 . Within the surface (in this example just a
triangle), the function (�) is diffused using barycentric interpolation (sub-�gure C). For a pointp 2 R3 beyond
the surface, the function (�) is diffused by evaluating the barycentric interpolation at the closest pointc to
p, implemented by pre-computing a distance transform (sub-�gure B). The result is a diffused functiong (p)
de�ned, not only on vertices, but over allR3 . Fig. 3 explains the same process for a complete human mesh.

of traditional model based �tting approaches, and follow with our self-supervised registration method.
For improved readability we additionally tabulate all notation in the supp. mat.

3.1 Classical Model-Based Fitting

The classical way of �tting a 3D (human) model to a scanS is via minimization of an objective
function. LetM (v i ; x) : I � X 0 7! R3, denote the human model which maps a 3D vertexv i 2 I ,
on the canonical human surfaceM T � R3 to a transformed 3D point after deforming according to
model parametersx 2 X 0. For the SMPL+D model, which we use here,x = f � ; � ; D g corresponds
to pose� , shape� , and non-rigid deformationD . The standard registration approach is to �nd a
set of corresponding canonical model pointsC = f c1; : : : ; cN g (thecorrespondences) for the scan
pointsf s1; :::; sN g; si 2 S and minimize a loss of the form:

L(C; x) =
X

si 2S

dist(si ; M 0(ci ; x)) ; (1)

wheredist( �; �) is a distance metric inR3. Note that Eq.(1) uses continuous surface pointsci 2 M T ,
andM 0(�) interpolates the model functionM (�) de�ned for discrete model verticesv i 2 I with
barycentric interpolation.
Eq. 1 is minimized with non-linear ICP, which is a two step non-differentiable process. First, for
every scan point a corresponding point on the human model is computed. Next, the model parameters
are updated to minimize the distance between scan points and corresponding model points using
gradient or Gauss-Newton optimizers. This alternating process is non-differentiable, which rules out
end-to-end training. Our work is inspired by [75] which continuously optimizes the corresponding
points and the model parameters. The trick is to parameterize the canonical surface with piece-wise
mappings from a 2D space
 to 3DR3 – per triangle mappings. This requires keeping track of the
TriangleIDs and point location within the triangle when correspondences shift across triangles. Apart
from being dif�cult to implement, this is not a suitable representation for learning correspondences
as TriangleIDs do not live in a continuous space with metric. Furthermore, the optimization in [75] is
instance speci�c.

3.2 Proposed Formulation

Instead of instance speci�c optimization, we want to automatize the model �tting process by lever-
aging a corpus of 3D human scans. Our key idea is to create a differentiable registration loop
motivated by classical model-based �tting Eq.(1). We learn a continuous and differentiable mapping
f � (s; S) : R3 � S 7! M T � R3, with network parameters� , from the scan pointss 2 S to the
canonical surface (of the human model in canonical pose and shape)M T . Let fS j gN u

j =1 be a set of
unlabeled scans, andX = f x j gN u

j =1 be the set of unknown instance speci�c latent parameters per
scan. The following self-supervised loss creates a loop between the scans and the model

L (�; X ) =
N uX

j =1

X

si 2S j

dist(si ; M 0(f � (si ; Sj ); x j )) ; (2)
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