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Abstract

The study of adversarial vulnerabilities of deep neural networks (DNNs) has pro-
gressed rapidly. Existing attacks require either internal access (to the architecture,
parameters, or training set of the victim model) or external access (to query the
model). However, both the access may be infeasible or expensive in many scenarios.
We investigate no-box adversarial examples, where the attacker can neither access
the model information or the training set nor query the model. Instead, the attacker
can only gather a small number of examples from the same problem domain as that
of the victim model. Such a stronger threat model greatly expands the applicability
of adversarial attacks. We propose three mechanisms for training with a very small
dataset (on the order of tens of examples) and find that prototypical reconstruction
is the most effective. Our experiments show that adversarial examples crafted on
prototypical auto-encoding models transfer well to a variety of image classification
and face verification models. On a commercial celebrity recognition system held
by clarifai.com, our approach significantly diminishes the average prediction
accuracy of the system to only 15.40%, which is on par with the attack that trans-
fers adversarial examples from a pre-trained Arcface model. Our code is publicly
available at: https://github.com/qizhangli/nobox-attacks.

1 Introduction

The adversarial vulnerability of deep neural networks (DNNs) have been extensively studied over the
past few years [46, 12, 35, 30, 3, 29, 1]. It has been demonstrated that an attacker is able to generate
small, human-imperceptible perturbations to fool advanced DNN models to make incorrect decisions.
These attacks pose great threats to security-critical systems where DNNs are deployed and lead to
increasing concerns about the robustness of DNNs.

Based on how much information the attacker knows, we can divide existing attacks into white-box and
black-box settings. In black-box attacks, the attacker cannot access the architecture, the parameters,
or the training data of the victim model. Early attempts for black-box adversarial attacks [33, 34]
relied on the transferability of adversarial examples. They trained substitute architectures by querying
the victim models. Recent progress considered gradient estimation [5, 20, 50, 21, 13, 6, 4] and
boundary tracing [2].

Black-box attacks rely on querying the victim models, a.k.a., “oracles”. However, in many scenarios,
such queries are either infeasible (e.g., the model API is inaccessible to the attacker) or are expensive
in time or money. To overcome this limitation, we consider a stronger threat model where the attacker
makes no query to the victim model (and also has no access to the model parameters or its training
data). This was coined as the “no-box” threat model [5] but no practical attack has been studied to the
best of our knowledge. We investigate such no-box attacks against DNNs on computer vision models.
Similar to some strong black-box attacks [34], we assume that the attacker can access neither a large
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scale training data nor pre-trained models on it. Instead, she or he can collect only a small number of
auxiliary examples (on the order of tens or less) from the same problem domain. Given this small
sample size, it is challenging to obtain a substitute model using conventional supervised training.

Inspired by recent advances in unsupervised representation learning and distribution modeling [48,
41], we developed auto-encoders that can learn discriminative features given very little data, e.g., 20
images from 2 classes. We investigated three training mechanisms by (a) estimating the front view of
each rotated image, (b) estimating the best fit of each possible jigsaw puzzle, and (c) constructing
prototypical images, respectively. They entail discriminative and, more importantly, generalizable
feature representations. We evaluated our approach on two computer vision tasks: image classification
and face verification. Our experiments show that adversarial examples crafted on such auto-encoding
models transfer well to a variety of open-source victim models, and their effectiveness is sometimes
even on par with those crafted using pre-trained models trained on the same large-scale data set as the
victim models. On a celebrity recognition system hosted by clarifai.com, our approach reduced
the prediction accuracy of the system from 100.00% to only 15.40%, using only 10 facial images
for training and crafting each adversarial example. We also studied the quality of the generated
adversarial example in such a way, and we showed in the supplementary materials that the generated
no-box adversarial examples were intrinsically different from the adversarial examples generated in
the white-box/black-box settings, which probably worth further exploring.

2 Related Work

Adversarial attacks The common goal of adversarial attacks is to generate small perturbations that
is capable of fooling learning machines [46, 12]. Current adversarial attacks can be roughly divided
into two categories: white-box attacks and black-box attacks, according to whether the training data,
architecture, and parameters of the victim model are accessible [33]. Black-box attacks target the
scenario where very limited information about the victim model is accessible, while a certain number
of model queries (a.k.a., oracle queries) are granted. This line of work can further be split into two
sub-lines, revolving around “reverse engineering” via training substitute models [49, 33, 34, 60] and
gradient/boundary estimations [31, 5, 9, 54, 2, 4], respectively, both of which have their pros and
cons. In particular, they all require a large number of timely queries to the victim model, for different
purpose though. However, it is also conceivable that numerous queries and real-time response from
the victim model are difficult to obtain, if not infeasible. In this paper we consider a critical threat
by performing adversarial attacks to models, on which no query is to be issued. It was mentioned
once as a “no-box” setting [5] yet has not been studied in depth. Our work is also related to attacks to
auto-encoders [25, 47] and image translation networks [37], despite they considered different tasks.

Transferability Our approach exploits the transferability of adversarial examples. It was first
unraveled by Szegedy et al. [46] that adversarial examples crafted on one DNN may fool (i.e., transfer
to) other DNNs with a non-trivial success rate. Single-step attacks, e.g., the fast gradient sign method
(FGSM) [12], and multi-step attacks, e.g., the iterative FGSM (I-FGSM) [26], have been compared in
the sense of transferability [26]. Multiple efforts have been devoted to improving the transferability
of adversarial examples. For instance, Xie et al. [53] suggested to apply random and differentiable
transformations to the inputs when performing attacks on pre-trained substitute models [53]. It was
also widely explored to craft more transferable adversarial examples by optimizing on intermediate
layers of the substitute models [61, 22, 19, 27, 14]. Unlike prior work that experimented on substitute
models trained on the same set of data as that for training victim models, in this paper, we assume no
access to the real victim training set and attempt to obtain models on a small number of auxiliary
examples, e.g., 20 images from 2 classes. Moreover, in lieu of generating adversarial examples on
softmax-based classification networks, we resort to auto-encoding models and (possibly for the first
time) attempt to develop suitable attacks for them.

Self-supervised learning Self-supervised learning exploits surrogate supervision from unlabeled
data for gaining high-level data understanding of data, targeting a similar problem to ours. Pretext
learning tasks including context prediction [8], image colorization [59], rotation prediction [11], and
jigsaw puzzle analysis [32] have been introduced over the last few years. Our reconstruction from
chaos mechanisms are inspired by self-supervised learning. Though inferior to our best ones from
prototypical image reconstruction, they achieve reasonable performance in transferring adversarial
examples to the supervised victim models. More discussions will be given in Section 3, 4.2, and 4.3.
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Figure 1: With limited training data, conventional supervised learning suffer from severe over-�tting.

Figure 2: Data augmentations and regularizations help to a limited extent in the conventional
supervised setting. Weight decay, dropout, and some popular data augmentations are adopted.

3 Our Approach to No-Box Attacks

Our work considers a threat model in which the attacker attempts to attack classi�cation models
without issuing any model query. We consider the practical scenario where the attacker can gather a
(labeled) dataset with very limited size, but not a large-scale training dataset or pre-trained models on
it. What comes uppermost in mind is to utilize the transferability of adversarial examples. However,
current supervised learning for DNNs require large-scale training to generalize, hence, to achieve the
goal of performing attack under our threat model, one should �rst develop proper training mechanisms
and “substitute” architectures. We will introduce our design in Section 3.1. Given the substitute
models, one should then perform proper attacks with outstanding transferability, which will be
elaborated in Section 3.2.

3.1 Training Mechanisms

Assume a benign instancex0 is to be perturbed such that being mis-classi�ed into an arbitrary label.
We aim to train a discriminative model on a small and thus easily gathered (and labeled) auxiliary
datasetX := f (x i ; yi )gn � 1

i =0 , including the instancex0 to be perturbed. We �rst consider the auxiliary
dataset involving only two classes,i.e., yi 2 f 0; 1g, despite higher data variety is always bene�cial.
Throughout this paper, we constrainn � 20 if not otherwise clari�ed.

Since the sample size is limited, we ought to make best use of data. It is conceivably very challenging
to train a classi�cation DNN equipped with softmax viaconventional supervised learning, using the
cross-entropy loss. One may train a variety of DNNs onX and observe fast convergence. Yet, test
performance will show little generalizable discriminative ability of all these models, on account of
over-�tting (as depicted in Figure 1, shaded areas represent scaled standard deviations). Training on
different data from that of the victim models also leads to low attack success rates, implying that the
internal statistics of images are not really captured. Data augmentations and typical regularizations
(e.g., dropout [43] and weight decay) provide limited help in improving the models, showing that
these methods does not play fundamental roles in generalization [57] (see Figure 2).

One may resort to image-to-image mappings, owing to their success in modeling internal distribution
of data, even using single images [48, 41]. A natural baseline in this spirit is a classical convolutional
auto-encoder learning to reconstruct its inputs,i.e., minimizing

P
i kDec(Enc(x i )) � x i k2. On one

hand, such a model is capable of capturing low-level image representations without suffering from
severe over-�tting, while on the other hand, discriminative ability is by no means entailed and thus
adversarial examples crafted against the model are dif�cult to transfer to the victim models, as will
be empirically discussed in Section 4.2 and 4.3.
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Figure 3: Illustration of the proposed training mechanisms for auto-encoding substitute models for
no-box attacks, including two unsupervised mechanisms (i.e., reconstruction from rotation/jigsaw)
and a supervised mechanism (i.e., prototypical image reconstruction).

Reconstruction from chaos Less over-�tting implies more “resonation” between DNN architec-
ture and (joint) data distribution [51]. We thus stick with image-to-image models and try to enhance
their discriminative ability. Our initial attempts are inspired byself-supervised learning[10, 32, 11].
It has been shown that predicting image rotation angles [11] and jigsaw puzzle con�gurations [32]
endow DNNs with considerable discriminative abilities. We thus incorporate such pretext information
and introduce tasks for estimating: (a) the front view of each rotated images and (b) the prefect �t of
each possible jigsaw puzzle, using image-to-image auto-encoding models. Their learning objectives
are commonly formulated as:

L rotation =jigsaw =
1
n

n � 1X

i =0

kDec(Enc(T(x i ))) � x i k2; (1)

in which the image transformation functionT(�) is designed to rotate images or shuf�e image patches
for the two tasks, respectively. Though the learning task is stillunsupervisedas with the classical
auto-encoder, the pretext information is content-related and should be bene�cial to classi�cation. We
will show in Section 4.2 that adversarial examples crafted on substitute models trained using these
mechanisms transfer better than the classical unsupervised baseline.

Prototypical image reconstruction Besides reconstruction from “chaos” (i.e., rotations and jigsaw
puzzles), a more supervised mechanism is also introduced. Since the attacker also hasf yi g at hand,
there is no reason not to use it. In this context, we propose to encourage the models to reconstruct
class-speci�c prototypes, such that direct supervision is entailed to the auto-encoding models. Natural
images inf x i g are eligible to be such prototypes, making the model outputs lie in pixel spaces as
well. More formally, we opt to minimize

L prototypical =
1
n

n � 1X

i =0

�
(1 � yi )



 Dec(Enc(x i )) � x (0)





2
+ yi



 Dec(Enc(x i )) � x (1)





2
�

; (2)

in whichx (0) 2 f x i jyi = 0g andx (1) 2 f x i jyi = 1g are randomly chosen image prototypes from the
two classes, respectively. The intuition behind this mechanism is that a model will have to distinguish
samples with different labels, in order to obtain perfect training. See Figure 3 for an outline of this
prototypical reconstruction mechanism, together with those of the other two mechanisms introduced
in the previous paragraph. It is possible to introduce more than one decoder with this mechanism, by
sampling multiple pairs of image prototypes from the two classes. The loss function in Eq.(2) can
also be easily generalized to train such models with multiple decoders. Since richer supervision can
be obtained from more decoders and more prototypes, we may expect superior attack performance in
such a setting. Bene�t from explicit supervision, the obtained prototypical models may also be cast
into classi�cation models. We achieve the goal by making predictions based on similarity between
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