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Abstract

Linear models have shown great effectiveness and flexibility in many fields such as
machine learning, signal processing and statistics. They can represent rich spaces
of functions while preserving the convexity of the optimization problems where
they are used, and are simple to evaluate, differentiate and integrate. However,
for modeling non-negative functions, which are crucial for unsupervised learning,
density estimation, or non-parametric Bayesian methods, linear models are not
applicable directly. Moreover, current state-of-the-art models like generalized
linear models either lead to non-convex optimization problems, or cannot be easily
integrated. In this paper we provide the first model for non-negative functions which
benefits from the same good properties of linear models. In particular, we prove that
it admits a representer theorem and provide an efficient dual formulation for convex
problems. We study its representation power, showing that the resulting space of
functions is strictly richer than that of generalized linear models. Finally we extend
the model and the theoretical results to functions with outputs in convex cones. The
paper is complemented by an experimental evaluation of the model showing its
effectiveness in terms of formulation, algorithmic derivation and practical results
on the problems of density estimation, regression with heteroscedastic errors, and
multiple quantile regression.

1 Introduction

The richness and flexibility of linear models, with the aid of possibly infinite-dimensional feature
maps, allowed to achieve great effectiveness from a theoretical, algorithmic, and practical viewpoint in
many supervised and unsupervised learning problems, becoming one of the workhorses of statistical
machine learning in the past decades [17, 28]. Indeed linear models preserve convexity of the
optimization problems where they are used. Moreover they can be evaluated, differentiated and also
integrated very easily.

Linear models are adapted to represent functions with unconstrained real-valued or vector-valued
outputs. However, in some applications, it is crucial to learn functions with constrained outputs,
such as functions which are non-negative or whose outputs are in a convex set, possibly with
additional constraints like an integral equal to one, such as in density estimation, regression of
multiple quantiles [10], and isotonic regression [5]. Note that the convex pointwise constraints on
the outputs of the learned function must hold everywhere and not only on the training points. In this
context, other models have been considered, such as generalized linear models [22], at the expense of
losing some important properties that hold for linear ones.

In this paper, we make the following contributions:

- We consider a class of models with non-negative outputs, as well as outputs in a chosen convex
cone, which exhibit the same key properties of linear models. They can be used within empirical
risk minimization with convex risks, preserving convexity. They are defined in terms of an
arbitrary feature map and they can be evaluated, differentiated and integrated exactly.
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- We derive a representer theorem for our models and provide a convex finite-dimensional dual
formulation of the learning problem, depending only on the training examples. Interestingly, in
the proposed formulation, the convex pointwise constraints on the outputs of the learned function
are naturally converted to convex constraints on the coefficients of the model.

- We prove that the proposed model is a universal approximator and is strictly richer than commonly
used generalized linear models. Moreover, we show that its Rademacher complexity is comparable
with the one of linear models based on kernels.

- To show the effectiveness of the method in terms of formulation, algorithmic derivation and
practical results, we express naturally the problems of density estimation, regression with Gaussian
heteroscedastic errors, and multiple quantile regression. We derive the corresponding learning
algorithms for convex dual formulation, and compare it with standard techniques used for the
specific problems on a few reference simulations.

2 Background

In a variety of fields ranging from supervised learning, to Gaussian processes [36], inverse prob-
lems [16], scattered data approximation techniques [35], and quadrature methods to compute
multivariate integrals [3], prototypical problems can be cast as

f
⇤ 2 argmin

f2F

L(f(x1), . . . , f(xn)) + ⌦(f). (1)

Here L : Rn ! R is a (often convex) functional, F a class of real-valued functions, x1, . . . , xn a
given set of points in X , and ⌦ a suitable regularizer [28].

Linear models for the class of functions F are particularly suitable to solve such problems. They
are classically defined in terms of a feature map � : X ! H where X is the input space and H a
separable Hilbert space. Typically, H = Rp, with p 2 N, but H can also be infinite-dimensional. A
linear model is determined by a parameter vector w 2 H as

fw(x) = �(x)>w, (2)
leading to the space F = {fw | w 2 H}. These models are particularly effective for problems in the
form Eq. (1) because they satisfy the following key properties.

P1. They preserve convexity of the loss function. Indeed, given x1, . . . , xn 2 X , if L : Rn ! R
is convex, then L(fw(x1), . . . , fw(xn)) is convex in w.

P2. They are universal approximators. Under mild conditions on � and H (universality of the
associated kernel function [23]) linear models can approximate any continuous function on X .
Moreover they can represent many classes of functions of interest, such as the class of polynomials,
analytic functions, smooth functions on subsets of Rd or on manifolds, or Sobolev spaces [28].

P3. They admit a finite-dimensional representation. Indeed, there is a so-called representer
theorem [15]. Let L be a possibly non-convex functional, F = {fw | w 2 H}, and assume ⌦ is an
increasing function of w>

w (see [29] for more generality and details). Then, the optimal solution f
⇤

of (1) corresponds to f
⇤ = fw⇤ , with w

⇤ =
P

n

i=1 ↵i�(xi), and ↵1, . . .↵n 2 R. Denoting by k the
kernel function k(x, x0) := �(x)>�(x0) for x, x0 2 X (see, e.g., [28]), f⇤ can be rewritten as

f
⇤(x) =

nX

i=1

↵ik(x, xi). (3)

P4. They are differentiable/integrable in closed form. Assume that the kernel k(x, x0) is differen-
tiable in the first variable. Then rxfw⇤(x) =

P
n

i=1 ↵irxk(x, xi). Also the integral of fw⇤ can be
computed in closed form if we know how to integrate k. Indeed, for p : X ! R integrable, we haveR
fw⇤(x)p(x)dx =

P
n

i=1 ↵i

R
k(x, xi)p(x)dx.

Vector-valued models. By juxtaposing scalar-valued linear models, we obtain a vector valued linear
model, i.e. fw1···wp : X ! Rp defined as fw1···wp(x) = (fw1(x), . . . , fwp(x)) 2 Rp.

2.1 Models for non-negative functions or functions with constrained outputs

While linear models provide a powerful formalization for functions from X to R or Rp, in some
important applications arising in the context of unsupervised learning, non-parametric Bayesian
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methods, or graphical models, additional conditions on the model are required. In particular, we will
focus on pointwise output constraints. That is, given Y ( Rp, we want to obtain functions satisfying
f(x) 2 Y for all x 2 X . A prototypical example is the problem of density estimation.
Example 1 (density estimation problem). The goal is to estimate the density of a probability ⇢ on X ,
given some i.i.d. samples x1, . . . , xn. It can be formalized in terms of Eq. (1) (e.g., through maximum
likelihood), with the constraint that f is a density, i.e., f(x) � 0, 8x 2 X , and

R
X
f(x)dx = 1.

Despite the similarity with Eq. (1), linear models cannot be applied because of the constraint f(x) � 0.
Existing approaches to deal with the problem above are reported below, but lack some of the crucial
properties P1-4 that make linear models so effective for problems of the form Eq. (1).

Generalized linear models (GLM). Given a suitable map  : Rp ! Y , these models are of the
form f(x) =  (w>

�(x)). In the case of non-negative functions, common choices are  (z) = e
z ,

leading to the exponential family, or the positive part function  (z) = max(0, z). GLM have an
expressive power comparable to linear models, being able to represent a wide class of functions, and
admit a finite-dimensional representation [14] (they thus satisfy P2 and P3). However, in general
they do not preserve convexity of the functionals where they are used (except for specific cases, such
as L = �

P
n

i=1 log zi and  (z) = e
z [22]). Moreover they cannot be integrated in closed form,

except for specific �, requiring some Monte Carlo approximations [26] (thus missing P1 and P4).
An elegant way to obtain a GLM-like non-negative model is via non-parametric mirror descent [37]
(see, e.g., their Example 4). A favorable feature of this approach is that the map  is built implicitly
according to the geometry of Y . However, still the resulting model does not always satisfy P3, does
not satisfy P1 and P4 , and is only efficient in small-dimensional input spaces.

Non-negative coefficients models (NCM). Leveraging the finite-dimensional representation of linear
models in Eq. (3), the NCM models represent non-negative functions as f(x) =

P
n

i=1 ↵ik(x, xi),
with ↵1, . . .↵n � 0, given a kernel k(x, x0) � 0 for any x, x

0 2 X , such as the Gaussian kernel
e
�kx�x

0
k
2

or the Abel kernel e�kx�x
0
k. By construction these models satisfy P1, P3, P4. However,

they do not satisfy P2. Indeed the fact that ↵1, . . . ,↵n � 0 does not allow cancellation effects and
thus strongly constrains the set of functions that can be represented, as illustrated below.
Example 2. The NCM model cannot approximate arbitrarily well a function with a width strictly
smaller that the width of the kernel. Take k(x, x0) = e

�kx�x
0
k
2

and try to approximate the function
e
�kxk

2
/2 on [�1, 1]. Independently of the chosen n or the chosen locations of the points (xi)ni=1, it

will not be possible to achieve an error smaller than a fixed constant (Appendix D for a simulation).

Partially non-negative linear models (PNM). A partial solution to have a linear model that is
pointwise non-negative is to require non-negativity only on the observed points (xi)ni=1. That is,
the model is of the form w

>
�(x), with w 2 {w 2 H | w>

�(x1) � 0, . . . , w>
�(xn) � 0}. While

this model is easy to integrate in Eq. (1), this does not guarantee the non-negativity outside of a
neighborhood of (xi)ni=1. It is possible to enrich this construction with a set of points that cover the
whole space X (i.e., a fine grid, if X = [�1, 1]d), but this usually leads to exponential costs in the
dimension of X and is not feasible when d � 4.

3 Proposed Model for Non-negative Functions

In this section we consider a non-parametric model for non-negative functions and we show that it
enjoys the same benefits of linear models. In particular, we prove that it satisfies at the same time
all the properties P1, . . . , P4. As linear models, the model we consider has a simple formulation
in terms of a feature map � : X ! H. Let S(H) be the set of bounded Hermitian linear operators
from H to H (symmetric p⇥ p matrices if H = Rp with p 2 N) and denote by A ⌫ 0 the fact that A
is a positive semi-definite operator (a positive semi-definite matrix, when H is finite-dimensional)
[25, 19]. The model is defined for all x 2 X as

fA(x) = �(x)>A�(x), where A 2 S(H), A ⌫ 0. (4)

The proposed model 1 is parametrized in terms of the operator (or matrix when H is finite dimen-
sional) A, like in [9], but with an additional positivity constraint.In particular, this model includes

1Note that the model in Eq. (4) has already been considered in [4] with a similar goal as ours. However,
this workshop publication has only be lightly peer-reviewed, the representer theorem they propose is incorrect,
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all the non-negative functions of the form fw(x) = (w>
�(x))2, w 2 H, by taking A = ww

>, i.e.,
A ⌫ 0, rank(A)  1. However, while this parameterization w 7! fw is not linear in w, the proposed
model Eq. (4) is at the same time linear in A (hence leading to convex optimization problems) and
non-negative for any x 2 X , due to the positiveness of the operator A, as reported in Proposition 1
below (the complete proof in Appendix B.1).
Proposition 1 (Pointwise positivity and linearity in the parameters). Given A,B 2 S(H) and
↵,� 2 R, then f↵A+�B(x) = ↵fA(x) + �fB(x). Moreover, A ⌫ 0 ) fA(x) � 0, 8x 2 X .

An important consequence of linearity of fA in the parameter is that, despite the pointwise non-
negativity in x, it preserves P1, i.e., the convexity of the functional where it is used. First define the
set S(H)+ as S(H)+ = {A 2 S(H) | A ⌫ 0} and note that S(H)+ is convex [12].
Proposition 2 (The model satisfies P1). Let L : Rn ! R be a jointly convex function and
x1, . . . , xn 2 X . Then the function A 7! L(fA(x1), . . . , fA(xn)) is convex on S(H)+.

Proposition 2 is proved in Appendix B.2. The property above provides great freedom in choosing the
functionals to be optimized with the proposed model. However, when H has very high dimensionality
or it is infinite-dimensional, the resulting optimization problem may be quite expensive. In the next
subsection we provide a representer theorem and finite-dimensional representation for our model,
that makes the optimization independent from the dimensionality of H. Moreover nevertheless A is a
matrix (an operator when H is infinite dimensional), in Thm. 2 and Remark 1 we will show that the
model is not fundamentally over-parametrized compared to a standard linear model.

3.1 Finite-dimensional representations, representer theorem, dual formulation

Here we will provide a finite-dimensional representation for the solutions of the following problem,
inf
A⌫0

L(fA(x1), . . . , fA(xn)) + ⌦(A), (5)

given some points x1, . . . , xn 2 H. However, the existence and uniqueness of solutions for the
problem above depend crucially on the choice of the regularizer ⌦ as it happens for linear models
when H is finite-dimensional [16]. To derive a representer theorem for our model, we need to specify
the class of regularizers we are considering. In the context of linear models a typical regularizer is
Tikhonov regularization, i.e., ⌦(w) = �w

>
w, for w 2 H. Since the proposed model is expressed in

terms of a symmetric operator (matrix, if H is finite-dimensional), the equivalent of the Tikhonov
regularizer is a functional that penalizes the squared Frobenius norm of A, i.e., ⌦(A) = �Tr(A>

A),
for A 2 S(H) also written as ⌦(A) = �kAk2

F
[16]. However, since A is an operator, we can also

consider different norms on its spectrum. From this viewpoint, an interesting regularizer corresponds
to the nuclear norm kAk?, which induces sparsity on the spectrum of A, leading to low-rank solutions
[24, 9]. In this paper, for the sake of simplicity we will present the results for the following regularizer,
which is the matrix/operator equivalent of the elastic-net regularizer [39]:

⌦(A) = �1kAk? + �2kAk2
F
, 8A 2 S(H), (6)

with �1,�2 � 0 and �1 + �2 > 0. Since elastic-net penalization induces low-rank solutions [39]
when �1 > 0, this choice allows to obtain models similar to fw(x) = (w>

�(x))2 mentioned above,
but preserving the convexity of the problem. Note that ⌦ is strongly convex as soon as �2 > 0; we
will therefore take �2 > 0 in practice in order to have easier optimization. Recall the definition of the
kernel k(x, x0) := �(x)>�(x0), x, x0 2 X [28]. We have the following theorem.
Theorem 1 (Representer theorem, P3). Let L : Rn ! R [ {+1} be lower semi-continuous and
bounded below, and ⌦ as in Eq. (6). Then Eq. (5) has a solution A⇤ which can be written as

A⇤ =
nX

i,j=1

Bij�(xi)�(xj)
>
, for some matrix B 2 Rn⇥n

, B ⌫ 0. (7)

A⇤ is unique if L is convex and �2 > 0. By Eq. (4), A⇤ corresponds to a function of the form

f⇤(x) := fA⇤(x) =
nX

i,j=1

Bijk(x, xi)k(x, xj), for some matrix B 2 Rn⇥n
, B ⌫ 0.

the optimization algorithm is based on an incorrect representation and inefficient at best. See Appendix F for
details. This model has also been considered in the literature on sum of squares optimization (see chapter 3 of
[8]), which relies on algebraic considerations in the case where � is polynomial and L is a linear function.
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The proof of the theorem above is in Appendix B.3, where it is derived for the more general class of
spectral regularizers (this thus extends a result from [1], from linear operators between potentially
different spaces to positive self-adjoint operators).

Equivalent finite-dimensional formulation in the primal. A direct consequence of Thm. 1 is
the following finite-dimensional representation of the optimization problem in Eq. (5). Denote by
K 2 Rn⇥n the matrix Ki,j = k(xi, xj) and assume w.l.o.g. that it is full rank (always true when the
n observations are distinct and k is a universal kernel such as the Gaussian kernel [23]). Let V be the
Cholesky decomposition of K, i.e., K = V>V. Define the finite dimensional model

f̃A(x) = �(x)>A�(x), A 2 Rn⇥n
, A ⌫ 0, (8)

where � : X ! Rn, defined as �(x) = V�>
v(x), with v(x) = (k(x, xi))

n

i=1 2 Rn, is the classical
empirical feature map. In particular, f̃A = fA where A is of the form Eq. (7) with B = V�1AV�>.
We will say that f̃A is a solution of Eq. (5) if the corresponding A is a solution of Eq. (5).
Proposition 3 (Equivalent finite-dimensional formulation in the primal). Under the assumptions of
Thm. 1, the following problem has at least one solution, which is unique if �2 > 0 and L is convex :

min
A2S(Rn),A⌫0

L(f̃A(x1), . . . , f̃A(xn)) + ⌦(A). (9)

Moreover, for any given solution A⇤ 2 Rn⇥n of Eq. (9), the function f̃A⇤ is a minimizer of Eq. (5).
Finally, note that problems Eq. (5) and Eq. (9) have the same condition number if it exists.

The proposition above (proof in Appendix B.4) characterizes the possibly infinite-dimensional
optimization problem of Eq. (5) in terms of an optimization on n⇥ n matrices. A crucial property
is that the formulation in Eq. (9) preserves convexity, i.e., it is convex as soon as L is convex. To
conclude, Appendix B.4 provides a construction for V valid for possibly rank-deficient K. We now
provide a finer characterization in terms of a dual formulation on only n variables.

Convex dual formulation. We have seen above that the problem in Eq. (5) admits a finite-
dimensional representation and can be cast in terms of an equivalent problem on n ⇥ n matrices.
Here, when L is convex, we refine the analysis and provide a dual optimization problem on only n

variables. The dual formulation is particularly suitable when L is a sum of functions as we will see
later. In the following theorem [A]� corresponds to the negative part2 of A 2 S(Rn).
Theorem 2 (Convex dual problem). Assume L is convex, lower semi-continuous and bounded below.
Assume ⌦ is of the form Eq. (6) with �2 > 0. Assume that the problem has at least a strictly feasible
point, i.e., there exists A0 ⌫ 0 such that L is continuous in (fA0(x1), ..., fA0(xn)) 2 Rn (this
condition is satisfied in simple cases; see examples in Appendix B.5). Denoting with L

⇤ the Fenchel
conjugate of L (see [12]), problem Eq. (9) has the following dual formulation:

sup
↵2Rn

�L
⇤(↵)� 1

2�2
k[VDiag(↵)V> + �1I]�k2F , (10)

and this supremum is atteined. Moreover, if ↵⇤ 2 Rn is a solution of (10), a solution of (5) is
obtained via (7), with B 2 Rn⇥n defined as

B = �
�1
2 V�1[VDiag(↵⇤)V> + �1I]�V

�>
. (11)

The previous theorem (proof in Appendix B.5) has two main consequences explored below.
Remark 1 (Same degrees of freedom as linear models). Thm. 2 shows that Eq. (5) can be cast as a
problem with n degrees of freedom: the same number of a standard non-parametric linear models of
the form w

>
�(x) when a representer theorem is applicable. This is more clear from Eq. (11) where,

nevertheless the matrix B is of dimension n⇥ n, it is completely parametrized by only n variables,
showing that the proposed model is not overparametrized with respect to a linear model.

Moreover, in terms of computations and complexity, the result above is particularly interesting when
L can be written in terms of a sum of functions, i.e., L(z1, . . . , zn) =

P
n

i=1 `i(zi) for some functions

2Given the eigendecomposition A = U⇤U> with U 2 Rn⇥n unitary and ⇤ 2 Rn⇥n diagonal, then
[A]� = U⇤�U

>, with ⇤� diagonal, defined as (⇤�)i,i = min(0,⇤i,i) for i = 1, . . . , n.
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`i : R ! R. Then the Fenchel dual is L⇤(↵) =
P

n

i=1 `
⇤

i
(↵i), where `⇤

i
is the Fenchel dual of `i, and

the optimization can be carried by using accelerated proximal splitting methods as FISTA [6], since
k[VDiag(↵)V> + �1I]�k2F is differentiable in ↵. As discussed in the appendix this would amount
to O(n3) per iteration for FISTA, due to the computation of Eq. (11), for a total cost of O(n3

✏
�1/2) to

achieve a solution of error ✏. Note that O(n3) can be further reduced and made comparable with fast
algorithms for linear models based on kernels [27] (which require n

2 or n
p
n), by using techniques

from randomized linear algebra and Nyström approximation [18] (see more details in Appendix B.5).

4 Approximation Properties of the Model

The goal of this section is to study the approximation properties of our model and to understand
its “richness”, i.e., which functions it can represent. In particular, we will prove that, under mild
assumptions on �, (a) the proposed model satisfies the property P2, i.e., it is a universal approximator
for non-negative functions, and (b) that it is strictly richer than the family of exponential models with
the same �. First, define the set of functions belonging to our model

F�

�
= {fA | A 2 S(H), A ⌫ 0, kAk� < 1},

where k · k� is a suitable norm for S(H). In particular, norms that we have seen to be relevant in the
context of optimization are the nuclear norm k · k? and the Hilbert-Schmidt (Frobenius) norm k · kF .
Given norms k · ka, k · kb, we denote the fact that k · ka is stronger (or equivalent) than k · kb with
k · ka D k · kb (for example, k · k? D k · kF ). In the next theorem we prove that when the feature map
is universal [23], such as the one associated to the Gaussian kernel k(x, x0) = exp(�kx� x

0k2) or
the Abel kernel k(x, x0) = exp(�kx�x

0k), then the proposed model is a universal approximator for
non-negative functions over X (in particular, in the sense of cc-universality [23, 31], see Appendix B.6
for more details and the proof).
Theorem 3 (Universality, P2). Let H be a separable Hilbert space, � : X ! H a universal map [23],
and k · k? D k · k�. Then F�

�
is a universal approximator of non-negative functions over X .

The fact that the proposed model can approximate arbitrarily well any non-negative function on
X , when � is universal, makes it a suitable candidate in the context of nonparametric approxima-
tion/interpolation or learning [35, 34] of non-negative functions. In the following theorem, we give a
more precise characterization of the functions contained in F�

�
. Denote by G� the set of linear models

induced by �, i.e., G� = {w>
�(·) | w 2 H} and by E� the set of exponential models induced by �,

E� = { e
f | f(·) = w

>
�(·), w 2 H }.

Theorem 4 (F�

�
strictly richer than the exponential model). Let k · k? D k · k�. Let X = [�R,R]d,

with R > 0. Let � be such that Wm
2 (X ) = G�, for some m > 0, where Wm

2 (X ) is the Sobolev space
of smoothness m [2]. Let x0 2 X . The following hold:

(a) E� ( F�

�
; (b) the function fx0(x) = e

�kx�x0k
�2 2 C

1(X ) satisfies fx0 2 F�

�
and fx0 /2 E�.

Thm. 4 shows that if � is rich enough, then the space of exponential models is strictly contained in the
space of functions associated to the proposed model. In particular, the proposed model can represent
functions that are exactly zero on some subset of X as showed by the example fx0 in Thm. 4, while
the exponential model can represent only strictly positive functions, by construction. Discussion on
the condition W

m
2 (X ) = G�, proof of Thm. 4 and its generalization to X ✓ Rd are in App. B.7. Here

we note only that the condition W
m
2 (X ) = G� is quite mild and satisfied by many kernels such as

the Abel kernel k(x, x0) = exp(�kx� x
0k) [35, 7]. We conclude with a bound on the Rademacher

complexity [11] of F�

�
, which is a classical component for deriving generalization bounds [30]. Define

F�

�,L
= {fA | A ⌫ 0, kAk�  L}, for L > 0. Thm. 5 shows that the Rademacher complexity of

F�

�,L
depends on L and not on the dimensionality of X , as for regular kernel methods [11].

Theorem 5 (Rademacher compl. of F�

�
). Let k · k� D k · kF and supx2X

k�(x)k  c < 1. Let
(xi)ni=1 be i.i.d. samples, L � 0. The Rademacher complexity of F�

�,L
is upper bounded by 2Lc

2
p
n

.

The result above (more details and proof in Appendix B.8) shows that also from a statistical viewpoint
the proposed model has the same degrees of freedom of a linear model with the same feature map [30].
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In particular, by using the result above we can directly derive explicit learning rates, that are in the
same order of the one for linear models, as follows. Let R(f) = Ex,y`(y, f(x)) be the population risk
for some G-Lipschitz loss function ` and bRD be the empirical version bRD(f) = 1

n

P
n

i=1 `(yi, f(xi))
for a given dataset D of n examples. Keeping the same notations as in the theorem, denote by
bfD,L = argminf2F

�
�,L

bRD(f) the empirical risk minimization solution over the set F�

�,L
. The

excess risk over the set F�

�,L
is bounded as (see Appendix B.9 for more details)

EDR( bfD,L)� inf
f2F

�
�,L

R(f)  2GRn(F�

�,L
)  4GLc

2

p
n

. (12)

In particular, this O(n�1/2) rate in the number of samples is the same as the one obtained for standard
kernel models (see [30]). Hence, despite the proposed model is expressed with respect to a matrix
(and so in principle a squared number of degrees of freedom), complementing from a statistical
viewpoint the results obtained in Thm. 2 and Remark 1 from a representation viewpoint.

5 Extensions: Integral Constraints and Output in Convex Cones

In this section we cover two extensions. The first one generalizes the optimization problem in Eq. (5)
to include linear constraints on the integral of the model, in order to deal with problems like density
estimation in Example 1. The second formalizes models with outputs in convex cones, which is
crucial when dealing with problems like multivariate quantile estimation [10], detailed in Sec. 6.

Constraints on the integral and other linear constraints. We can extend the definition of the
problem in Eq. (5) to take into account constraints on the integral of the model. Indeed by linearity of
integration and trace, we have the following (proof in Appendix B.10).
Proposition 4 (Integrability in closed form, P4). Let A 2 S(H) with A bounded and � uniformly
bounded. Let p : X ! R be an integrable function. There exists a trace class operator Wp 2 S(H)
such that

R
X
fA(x)p(x)dx = Tr(AWp) and Wp =

R
X
�(x)�(x)> p(x)dx.

The result can be extended to derivatives and more general linear functionals on fA (see Ap-
pendix B.10). In particular, note that if we consider the empirical feature map � in Eq. (8), which
characterizes the optimal solution of Eq. (5), by Thm. 1, we have that Wp is defined explicitly
as Wp = V�>MpV�1 with (Mp)i,j =

R
k(x, xi)k(x, xj)p(x)dx, for i, j = 1, . . . , n and it is

computable in closed form. Then, assuming an equality and an inequality constraint on the integral
w.r.t. two functions p and q and two values c1, c2 2 R, the resulting problem takes the following
finite-dimensional form

min
A2S(Rn)

L(f̃A(x1), . . . , f̃A(xn)) + ⌦(A), (13)

s.t. A ⌫ 0, Tr(AWp) = c1, Tr(AWq)  c2.

Representing function with outputs in convex polyhedral cones. We represent a vector-valued
function with our model as the juxtaposition of p scalar valued models, with p 2 N, as follows

fA1···Ap(x) = (fA1(x), . . . , fAp(x)) 2 Rp
, 8 x 2 X .

We recall that a convex polyhedral cone Y is defined by a set of inequalities as follows

Y = {y 2 Rp | c1>y � 0, . . . , ch>y � 0}, (14)

for some c
1
, . . . , c

h 2 Rp and h 2 N. Let us now focus on a single constraint c>y � 0. Note
that, by definition of positive operator (i.e., A ⌫ 0 implies v

>
Av � 0 for any A), we have thatP

p

s=1 csAs ⌫ 0 implies �(x)>(
P

p

s=1 csAs)�(x) � 0 for any x 2 X , which, by linearity of the
inner product and the definition of fA1···Ap is equivalent to c

>
fA1···Ap(x) � 0. From this reasoning

we derive the following proposition (see complete proof in Appendix B.11).
Proposition 5. Let Y be defined as in Eq. (14). Let A1, . . . , Ap 2 S(H). Then the following holds

pX

s=1

c
t

s
As ⌫ 0 8t = 1, . . . , h ) fA1···Ap(x) 2 Y 8x 2 X .
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Note that the set of constraints on the l.h.s. of the equation above defines in turn a convex set on
A1, . . . , Ap. This means that we can use it to constrain a convex optimization problem over the space
of the proposed vector-valued models as follows

min
A1,...,Ap2S(H)

L(fA1···Ap(x1), . . . , fA1···Ap(xn)) +
pX

s=1

⌦(As) (15)

s.t.
P

p

s=1c
t

s
As ⌫ 0, 8 t = 1, . . . , h.

By Proposition 5, the function fA⇤
1 ···A

⇤
p
, where (A⇤

1, . . . , A
⇤

p
) is the minimizer above, will be a

function with output in Y . Moreover, the formulation above admits a finite-dimensional representation
analogous to the one for non-negative functions, as stated below (see proof in Appendix B.12)
Theorem 6 (Representer theorem for model with output in convex polyhedral cones). Under the
assumptions of Thm. 1, the problem in Eq. (15) admits a minimizer (A⇤

1, · · · , A⇤

p
) of the form

A
⇤

s
=

nX

i,j=1

[Bs]i,j�(xi)�(xj)
> =) (f⇤(x))s =

nX

i,j=1

[Bs]i,jk(xi, x)k(xj , x), s = 1, ..., p,

where f⇤ := f(A⇤
1 ,...,A

⇤
p)

is the corresponding function and the Bs 2 S(Rn) are symmetric n ⇥ n

matrices which satisfy the conic constraints
P

p

s=1 c
t
s
Bs ⌫ 0, t = 1, ..., h.

Remark 2 (Efficient representations when the ambient space of Y is high-dimensional). When
p � h, or when Y is a polyhedral cone with Y ⇢ G and G an infinite-dimensional space, it is still
possible to have an efficient representation of functions with output in Y by using the representation
of Y in terms of conical hull [12], i.e., Y = {

P
t

i=1 ↵iyi | ↵i � 0} for some y1, . . . , yt and t 2 N. In
particular, given A1, . . . , At ⌫ 0, the model fA1...At(x) =

P
t

i=1fAi(x)yi satisfies fA1...At(x) 2 Y
for any x 2 X . Moreover it is possible to derive a representer theorem as Thm. 6.
Remark 3. By extending this approach, we believe it is possible to model (a) functions with output
in the cone of positive semidefinite matrices, (b) convex functions. We leave this for future work.

6 Numerical Simulations

In this section, we provide illustrative experiments on the problems of density estimation, regression
with Gaussian heteroscedastic errors, and multiple quantile regression. We derive the algorithm
according to the finite-dimensional formulation in Eq. (13) for non-negative functions with constraints
on the integral, and to Eq. (15) with the finite-dimensional representation suggested by Thm. 6.
Optimization is performed applying FISTA [6] on the dual of the resulting formulations. More details
on implementation and the specific formulations are given below and in Appendix E. The algorithms
are compared with careful implementations of Eq. (1) with the models presented in Sec. 2.1, i.e.,
partially non-negative models (PNM), non-negative coefficients models (NCM) and generalized linear
models (GLM). For all methods we used ⌦(A) = �1kAk⇤ + �2

2 kAk2
F

or ⌦(w) = �

2 kwk
2. We used

the Gaussian kernel k(x, x0) = exp(�kx�x
0k2/(2�2)) with width �. Full cross-validation has been

applied to each model independently, to find the best �,�1,�2 (see Appendix E). The code for these
experiments is available on GitHub (https://github.com/umarteau/non_negative_model).

Density estimation. This problem is illustrated in Example 1. Here we considered the log-likelihood
loss as a measure of error, i.e., L(z1, . . . , zn) = � 1

n

P
n

i=1 log(zi), which is jointly convex and
with an efficient proximal operator [13]. We recall that the problems are constrained to output a
function whose integral is 1. In Fig. 1, we show the experiment on n = 50 i.i.d. points sampled
from ⇢(x) = 1

2N (�1, 0.3) + 1
2N (1, 0.3) and where for all the models we used � = 1, to illustrate

pictorially the main interesting behaviors. Note that PNM (left) is non-negative on the training
points, but it achieves negative values on the regions not covered by examples. This effect is
worsened by the constraint on the integral that borrows areas from negative regions to reduce the
log-likelihood on the dataset. NCM (center-left) produces a function whose integral is one and that is
non-negative everywhere, but the poor approximation properties of the model do not allow to fit the
density of interest (see Example 2). GLM (center-right) produces a function that is non-negative and
approximates quite well ⇢, however, the obtained function does not sum to one, but to 0.987, since
the integral constraint can be enforced only approximately via Monte Carlo sampling (GLM does
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PNM NCM GLM Our Model

Figure 1: Details in Sec. 6. (top) density estimation, (center) regression with Gaussian heteroscedastic
errors. (bottom multiple quantile regression. Shades of blue: estimated curves. Orange: ground truth.
Models: (left) PNM, (center-left) NCM, (center-right), GLM, (right) Our model.

not satisfy P4). Estimating the integral is easy in low dimensions but becomes soon impractical in
higher dimensions [26]. Finally the proposed model (right) leads to a convex problem and produces a
non-negative function whose integral is 1 and that fits the density ⇢ quite well. In Appendix E we
obtain a similar result for a multivariate version of this experiment with d = 10 and n = 1000, where
we cross-validated � for each algorithm.

Heteroscedastic Gaussian process estimation. The goal is to estimate µ : R ! R and
v : R ! R+ determining the conditional density ⇢ of the form ⇢(y|x) = (2⇡v(x))�1/2 exp(�(y �
µ(x))2/(2v(x))) from which the data are sampled. The considered functional corresponds to the
negative log-likelihood, i.e., L =

P
n

i=1
1
2 log v(xi) + (yi � µ(xi))2/(2v(xi)) that becomes convex

in ⌘, ✓ via the so called natural parametrization ⌘(x) = µ(x)/v(x) and ✓(x) = 1/v(x) [21]. We
used a linear model to parametrize ⌘ and the non-negative models for ✓. The experiment on the same
model of [21, 38] is reported in Fig. 1. Modeling ✓ via PNM (left) leads to a convex problem and
reasonable performance. In particular, the fact that ✓ = 0 corresponds to v = +1 prevents the model
for ✓ from crossing zero. NCM (center-left) leads to a convex problem, but very sensitive to the kernel
width � and with poor approximation properties. GLM (center-right) leads to a non-convex problem
and we need to restart the method randomly to have a reasonable convergence. Our model (right)
leads to a convex problem and produces a non-negative function for ✓, that fits well the observed data.

Multiple quantile regression. The goal here is to estimate multiple quantiles of a given conditional
distribution P (Y |x). Given ⌧ 2 (0, 1), q⌧ defined by P (Y > q⌧ (x)|x) = ⌧ is the ⌧ -quantile of
⇢. By construction 0 < ⌧�h  · · ·  ⌧h < 1 implies q⌧�h(x)  · · ·  q⌧h(x). If we denote by
q : X ! R2h+1 the list of quantiles, we have by construction q(x) 2 Y where Y is a convex
cone Y = {y 2 Rh | y�h  · · ·  yh}. To regress quantiles, we used the pinball loss L⌧ (convex,
non-smooth) considered in [20, 32], obtaining L =

P
h

j=�h

P
n

i=1 L⌧j (f(xi), yi). In Fig. 1, we used
⌧�1 = 1

4 , ⌧0 = 1
2 , ⌧1 = 3

4 . Using PNM, (left) the ordering is enforced by explicit constraints on the
observed dataset [33, 10]. The resulting problem is convex. However, in regions with low density of
points, PNM quantiles do not respect their natural order. To enforce the order constraint, a fine grid
covering the space would be needed as in [33]. For NCM, GLM and our model, we represented the
quantiles as q⌧±j = q⌧0 ±

P
i=1 v±i where the v’s are non-negative functions and q⌧0 , with ⌧0 = 1

2 ,
is the median and is modeled by a linear model. NCM (center-left) leads to a convex problem and
quantiles that respect the ordering, but the estimation is very sensitive to the chosen � and has poor
approximation properties. GLM (center-right) leads to a non-convex non-differentiable problem, with
many local minima, which is difficult to optimize with standard techniques (see Appendix E). GLM
does not succeed in approximating the quantiles. Our model (right) leads to a convex optimization
problem that approximates the quantiles relatively well and preserves their natural order everywhere.
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